Modern Systems
Analysis and Design

8th Edition

Joseph S. Valacich
Joey F. George

Modern Systems
Analysis and Design

8th Edition

Joseph S. Valacich

University of Arizona

Joey F. George

lowa State University

PEARSON

Boston Columbus Indianapolis New York San Francisco
Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montréal Toronto
Delhi Mexico City Sao Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo

Vice President, Business Publishing: Donna Battista
Editor-in-Chief: Stephanie Wall
Senior Sponsoring Editor: Neera Bhalla
Acquisitions Editor: Samantha Lewis
Program Manager: Emily Biberger
Editorial Assistants: Olivia Vignone, Michael Campbell
Vice President, Product Marketing: Maggie Moylan
Director of Marketing, Digital Services

and Products: Jeanette Koskinas
Executive Field Marketing Manager: Adam Goldstein
Field Marketing Manager: Lenny Ann Raper
Product Marketing Assistant: Jessica Quazza
Team Lead, Program Management: Ashley Santora
Team Lead, Project Management: Jeff Holcomb

Project Manager: Ilene Kahn
Operations Specialist: Diane Peirano
Creative Director: Blair Brown
Art Director: Janet Slowik
Vice President, Director of Digital Strategy
and Assessment: Paul Gentile
Manager of Learning Applications: Paul Del.uca
Full-Service Project Management and
Composition: George Jacob/Integra
Interior Designer: Integra Software Services, Inc.
Cover Designer: Integra Software Services, Inc.
Cover Art: hunthomas,/123rf
Printer/Binder: RR Donnelley/Roanoke
Cover Printer: Phoenix Color/Hagerstown

Microsoft and/or its respective suppliers make no representations about the suitability of the information contained
in the documents and related graphics published as part of the services for any purpose. All such documents and
related graphics are provided “as is” without warranty of any kind. Microsoft and/or its respective suppliers hereby
disclaim all warranties and conditions with regard to this information, including all warranties and conditions of
merchantability, whether express, implied or statutory, fitness for a particular purpose, title and non-infringement.
In no event shall Microsoft and/or its respective suppliers be liable for any special, indirect or consequential
damages or any damages whatsoever resulting from loss of use, data or profits, whether in an action of contract,
negligence or other tortious action, arising out of or in connection with the use or performance of information
available from the services.

The documents and related graphics contained herein could include technical inaccuracies or typographical
errors. Changes are periodically added to the information herein. Microsoft and/or its respective suppliers may
make improvements and/or changes in the product(s) and/or the program(s) described herein at any time.
Partial screen shots may be viewed in full within the software version specified.

Microsoft® and Windows® are registered trademarks of the Microsoft Corporation in the U.S.A. and other countries.
This book is not sponsored or endorsed by or affiliated with the Microsoft Corporation.

Copyright © 2017, 2014, 2011 by Pearson Education, Inc. or its affiliates. All Rights Reserved. Manufactured

in the United States of America. This publication is protected by copyright, and permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any
form or by any means, electronic, mechanical, photocopying, recording, or otherwise. For information regarding
permissions, request forms, and the appropriate contacts within the Pearson Education Global Rights and
Permissions department, please visit www.pearsoned.com/permissions/ .

Acknowledgments of third-party content appear on the appropriate page within the text.

PEARSON and ALWAYS LEARNING are exclusive trademarks owned by Pearson Education, Inc. or its affiliates in
the U.S. and/or other countries.

Unless otherwise indicated herein, any third-party trademarks, logos, or icons that may appear in this work are the
property of their respective owners, and any references to third-party trademarks, logos, icons, or other trade dress
are for demonstrative or descriptive purposes only. Such references are not intended to imply any sponsorship,
endorsement, authorization, or promotion of Pearson’s products by the owners of such marks, or any relationship
between the owner and Pearson Education, Inc., or its affiliates, authors, licensees, or distributors.

Library of Congress Cataloging-in-Publication Data
Hoffer, Jeffrey A.

Modern systems analysis and design/Jeffrey A. Hoffer, University of Dayton, Joey F. George, Iowa State University,
Joseph S. Valacich, University of Arizona.—Eighth edition.

pages cm

Includes bibliographical references and index.

ISBN-13: 978-0-13-420492-5

ISBN-10: 0-18-420492-1

1. System design. 2. System analysis. 1. George, Joey F. II. Valacich, Joseph S., 1959— Il Title.

QA76.9.888H6197 2015

003—dc23

2015013648

10987654321

PEARSON

ISBN 10: 0-13-420492-1
ISBN 13: 978-0-13-420492-5

http://www.pearsoned.com/permissions/

To my mother, Mary Valacich. You are the best!

To my mother, Loree George

This page intentionally left blank

Brief Contents

Preface xix

PART ONE FOUNDATIONS FOR SYSTEMS DEVELOPMENT 1
1 The Systems Development Environment 3
2 The Origins of Software 26
3 Managing the Information Systems Project 44
Appendix: Object-Oriented Analysis and Design: Project Management 78

PART TWO PLANNING 85
4 Identifying and Selecting Systems Development Projects 87

5 Initiating and Planning Systems Development Projects 111

PART THREE ANALYSIS 145
6 Determining System Requirements 147
7 Structuring System Process Requirements 182
Appendix 7A: Object-Oriented Analysis and Design: Use Cases 217
Appendix 7B: Object-Oriented Analysis and Design: Activity Diagrams 232
Appendix 7C: Object-Oriented Analysis and Design: Sequence
Diagrams 237
Appendix 7D: Business Process Modeling 246
8 Structuring System Data Requirements 255
Appendix: Object-Oriented Analysis and Design: Object Modeling—Class
Diagrams 290

PART FOUR DESIGN 309

9 Designing Databases 311
10 Designing Forms and Reports 353
11 Designing Interfaces and Dialogues 381
12 Designing Distributed and Internet Systems 417

PART FIVE IMPLEMENTATION AND MAINTENANCE 451

13 System Implementation 453

14 Maintaining Information Systems 486

GLOSSARY OF TERMS 504
GLOSSARY OF ACRONYMS 511
INDEX 512

This page intentionally left blank

Contents

Preface

PART ONE FOUNDATIONS FOR SYSTEMS DEVELOPMENT

Xix

AN OVERVIEW OF PART ONE 2

The Systems Development Environment 3

Learning Objectives 3

Introduction 3

A Modern Approach to Systems Analysis and Design 5

Developing Information Systems and the Systems Development Life Cycle
A Specialized Systems Development Life Cycle 12

The Heart of the Systems Development Process 13
The Traditional Waterfall SDLC 15

Different Approaches to Improving Development 16
Case Tools 16

Agile Methodologies 17
eXtreme Programming 19

Object-Oriented Analysis and Design 20
Our Approach to Systems Development 22
Summary 23

Key Terms 23

Review Questions 24

Problems and Exercises 24

Field Exercises 25

References 25

The Origins of Software 26
Learning Objectives 26
Introduction 26

Systems Acquisition 26
Outsourcing 27
Sources of Software 28
Choosing Off-the-Shelf Software 34
Validating Purchased Software Information 37

Reuse 37
Summary 40
Key Terms 40

Vii

viii CONTENTS

Review Questions 41
Problems and Exercises 41
Field Exercises 41

References 41

BEC CASE: THE ORIGINS OF SOFTWARE 43

PETRI Case Questions 43

3 Managing the Information Systems Project 44
Learning Objectives 44

Introduction 44

B N oy Pine Valley Furniture Company Background 44
1 FURNTTURE Managing the Information Systems Project 46
Initiating a Project 50
Planning the Project 53
Executing the Project 58
Closing Down the Project 62
Representing and Scheduling Project Plans 63
Representing Project Plans 64
Calculating Expected Time Durations Using PERT 65
B NE oy Constructing a Gantt Chart and Network Diagram at Pine Valley Furniture 66
T IFURNITURE Using Project Management Software 69
B NE Ly Establishing a Project Start Date 70
FURNITURE Entering Tasks and Assigning Task Relationships 70

Selecting a Scheduling Method to Review Project Reports 71
Summary 72
Key Terms 73
Review Questions 74
Problems and Exercises 74
Field Exercises 76

References 76

Appendix: Object-Oriented Analysis and Design 78
Learning Objectives 78
Unique Characteristics of an OOSAD Project 78

Define the System as a Set of Components 78
Complete Hard Problems First 78
Using Iterations to Manage the Project 80
Don’t Plan Too Much Up Front 80
How Many and How Long Are Iterations? 81
Project Activity Focus Changes Over the Life of a Project 83

Summary 83
Review Question 83

Problems and Exercises 83

PETRI BEC CASE: MANAGING THE INFORMATION SYSTEMS 84
Case Questions 84

PART TWO PLANNING

s PINE
s 1 VALLEY
| FURNITURE

AN OVERVIEW OF PART TWO 86

Identifying and Selecting Systems Development Projects
Learning Objectives 87
Introduction 87

Identifying and Selecting Systems Development Projects 88
The Process of Identifying and Selecting IS Development Projects 89
Deliverables and Outcomes 93

Corporate and Information Systems Planning 94
Corporate Strategic Planning 95
Information Systems Planning 97

CONTENTS

87

Electronic Commerce Applications: Identifying and Selecting Systems Development

Projects 104
Internet Basics 104
Pine Valley Furniture WebStore 105

Summary 106

Key Terms 106

Review Questions 107
Problems and Exercises 107
Field Exercises 108
References 108

BEC CASE: IDENTIFYING AND SELECTING SYSTEMS DEVELOPMENT

PROJECTS 110
Case Questions 110

Initiating and Planning Systems Development Projects
Learning Objectives 111

Introduction 111

Initiating and Planning Systems Development Projects 111

The Process of Initiating and Planning Is Development Projects 112
Deliverables and Outcomes 113

Assessing Project Feasibility 114
Assessing Economic Feasibility 115
Assessing Technical Feasibility 123
Assessing Other Feasibility Concerns 126

Building and Reviewing the Baseline Project Plan 127
Building the Baseline Project Plan 127
Reviewing the Baseline Project Plan 132

Electronic Commerce Applications: Initiating and Planning Systems
Development Projects 137

111

Initiating and Planning Systems Development Projects for Pine Valley Furniture’s WebStore

Summary 139
Key Terms 139

ix

X CONTENTS

PETRI
ELECTRO

Review Questions 140
Problems and Exercises 140
Field Exercises 141
References 141

BEC CASE: INITIATING AND PLANNING SYSTEMS DEVELOPMENT PROJECTS
Case Questions 143

ANALYSIS

Learning Objectives 147
Introduction 147

Performing Requirements Determination 147
The Process of Determining Requirements 148
Deliverables and Outcomes 149

Traditional Methods for Determining Requirements 150
Interviewing and Listening 150
Interviewing Groups 154
Directly Observing Users 155
Analyzing Procedures and Other Documents 156

Contemporary Methods for Determining System
Requirements 161

Joint Application Design 162

Using Prototyping During Requirements Determination 165

Radical Methods for Determining System Requirements 167
Identifying Processes to Reengineer 168
Disruptive Technologies 168

Requirements Determination Using Agile Methodologies 169
Continual User Involvement 169
Agile Usage-Centered Design 170
The Planning Game from eXtreme Programming 171

Electronic Commerce Applications: Determining System
Requirements 173

Determining System Requirements for Pine Valley Furniture’s
WebStore 173

Summary 176

Key Terms 176

Review Questions 177
Problems and Exercises 177
Field Exercises 178
References 179

BEC CASE: DETERMINING SYSTEM REQUIREMENTS 180
Case Questions 181

CONTENTS

Learning Objectives 182
Introduction 182

Process Modeling 182
Modeling a System’s Process for Structured Analysis 183
Deliverables and Outcomes 183

Data Flow Diagramming Mechanics 184
Definitions and Symbols 184
Developing DFDs: An Example 186
Data Flow Diagramming Rules 189
Decomposition of DFDs 190
Balancing DFDs 193

An Example DFD 195

Using Data Flow Diagramming in the Analysis Process 198
Guidelines for Drawing DFDs 198
Using DFDs as Analysis Tools 200
Using DFDs in Business Process Reengineering 201

Modeling Logic With Decision Tables 203

Electronic Commerce Application: Process Modeling Using Data Flow Diagrams 206
Process Modeling for Pine Valley Furniture’s WebStore 207

Summary 208

Key Terms 209

Review Questions 210
Problems and Exercises 210
Field Exercises 216
References 216

Object-Oriented Analysis and Design: Use Cases 217
Learning Objectives 217
Introduction 217

Use Cases 217
What Is a Use Case? 217
Use Case Diagrams 218
Definitions and Symbols 219

Written Use Cases 222
Level 223
The Rest of the Template 223

Electronic Commerce Application: Process Modeling Using Use Cases
Writing Use Cases for Pine Valley Furniture’s Webstore 227

Summary 230

Key Terms 230

Review Questions 230

Problems and Exercises 230

Field Exercise 231

References 231

Xi

225

Xii CONTENTS

Object-Oriented Analysis and Design: Activity Diagrams 232
Learning Objectives 232
Introduction 232
When to Use an Activity Diagram 235
Problems and Exercises 235
Reference 236

Object-Oriented Analysis and Design 237
Learning Objectives 237
Introduction 237
Dynamic Modeling: Sequence Diagrams 237

Designing a Use Case with a Sequence
Diagram 239

A Sequence Diagram for Hoosier Burger 242
Summary 244

Key Terms 244

Review Questions 244

Problems and Exercises 244

Field Exercise 245

References 245

Business Process Modeling 246
Learning Objective 246
Introduction 246
Basic Notation 246
Business Process Example 250
Summary 251
Key Terms 251
Review Questions 251
Problems and Exercises 251
Field Exercises 252
References 252

BEC CASE: STRUCTURING SYSTEM PROCESS REQUIREMENTS 253
TR! Case Questions 254

Learning Objectives 255
Introduction 255

Conceptual Data Modeling 256
The Conceptual Data Modeling Process 257
Deliverables and Outcomes 258

Gathering Information for Conceptual Data Modeling 259

e PINE
VALLEY
FURNITURE

CONTENTS

Introduction to E-R Modeling 261
Entities 261
Attributes 263
Candidate Keys and Identifiers 264
Other Attribute Types 265
Relationships 266

Conceptual Data Modeling and the E-R Model 267
Degree of a Relationship 268
Cardinalities in Relationships 270
Naming and Defining Relationships 271
Associative Entities 272
Summary of Conceptual Data Modeling with E-R Diagrams 274

Representing Supertypes and Subtypes 274

Business Rules 275
Domains 276
Triggering Operations 278

Role of Packaged Conceptual Data Models: Database Patterns 279
Universal Data Models 279
Industry-Specific Data Models 279
Benefits of Database Patterns and Packaged Data Models 279

Electronic Commerce Application: Conceptual Data
Modeling 280
Conceptual Data Modeling for Pine Valley Furniture’s WebStore 280

Summary 284

Key Terms 284

Review Questions 285
Problems and Exercises 286
Field Exercises 288
References 289

Object-Oriented Analysis and Design: Object Modelling—Class Diagrams = 290
Learning Objectives 290
Introduction 290
Representing Objects and Classes 290
Types of Operations 291
Representing Associations 292
Representing Associative Classes 294
Representing Stereotypes for Attributes 295
Representing Generalization 295
Representing Aggregation 298

An Example of Conceptual Data Modeling at Hoosier
Burger 299

Summary 302
Key Terms 302

xiii

Xiv CONTENTS

(PETRIE

Review Questions 303
Problems and Exercises 303
References 304

BEC CASE: STRUCTURING SYSTEM DATA REQUIREMENTS
Case Questions 306

PART FOUR DESIGN

RS

sliEiR 2R
-
e PINE

L= I VALLEY
FURNITURE

AN OVERVIEW OF PART FOUR 310

Designing Databases 311
Learning Objectives 311
Introduction 311

Database Design 311
The Process of Database Design 312
Deliverables and Outcomes 314
The Relational Database Model 317
Well-Structured Relations 317

Normalization 318
Rules of Normalization 319
Functional Dependence and Primary Keys 319
Second Normal Form 320
Third Normal Form 320

Transforming E-R Diagrams Into Relations 321
Represent Entities 322
Represent Relationships 322
Summary of Transforming E-R Diagrams to Relations 326

Merging Relations 326
An Example of Merging Relations 326
View Integration Problems 327

Logical Database Design for Hoosier Burger 328

Physical File and Database Design 331
Designing Fields 331
Choosing Data Types 332
Controlling Data Integrity 333
Designing Physical Tables 334
Arranging Table Rows 337
Designing Controls for Files 341

Physical Database Design for Hoosier Burger 342

Electronic Commerce Application: Designing Databases 343
Designing Databases for Pine Valley Furniture’s WebStore 344

Summary 346

Key Terms 347

Review Questions 348
Problems and Exercises 348

Field Exercises 349

305

10

e PINE
VALLEY
FURNITURE

11

CONTENTS
References 350

BEC CASE: DESIGNING DATABASES 351
Case Questions 352

Designing Forms and Reports 353
Learning Objectives 353
Introduction 353

Designing Forms and Reports 353
The Process of Designing Forms and Reports 355
Deliverables and Outcomes 356

Formatting Forms and Reports 360
General Formatting Guidelines 360
Highlighting Information 362
Color versus No Color 364
Displaying Text 365
Designing Tables and Lists 365
Paper versus Electronic Reports 369

Assessing Usability 371
Usability Success Factors 371
Measures of Usability 372

Electronic Commerce Applications: Designing Forms and Reports for Pine
Valley Furniture’s Webstore =~ 373
General Guidelines 373
Designing Forms and Reports at Pine Valley Furniture 373
Lightweight Graphics 374
Forms and Data Integrity Rules 374
Stylesheet-Based HTML 375
Summary 375
Key Terms 376
Review Questions 376
Problems and Exercises 377
Field Exercises 377

References 378

BEC CASE: DESIGNING FORMS AND REPORTS 379
Case Questions 379

Designing Interfaces and Dialogues 381
Learning Objectives 381
Introduction 381

Designing Interfaces and Dialogues 381
The Process of Designing Interfaces and Dialogues 381
Deliverables and Outcomes 382

Interaction Methods and Devices 382
Methods of Interacting 382
Hardware Options for System Interaction 390

XV

XVi CONTENTS

Designing Interfaces 392
Designing Layouts 392
Structuring Data Entry 395
Controlling Data Input 397
Providing Feedback 398
Providing Help 400

Designing Dialogues 403
Designing the Dialogue Sequence 404
Building Prototypes and Assessing Usability 405
Designing Interfaces and Dialogues in Graphical Environments 407
Graphical Interface Design Issues 407
Dialogue Design Issues in a Graphical Environment 409

e R Electronic Commerce Application: Designing Interfaces and Dialogues for Pine Valley

FURNITURE - Eyrniture’s Webstore 409
General Guidelines 410
Designing Interfaces and Dialogues at Pine Valley Furniture 411
Menu-Driven Navigation with Cookie Crumbs 411

Summary 412

Key Terms 412

Review Questions 413
Problems and Exercises 413
Field Exercises 414
References 414

PETRI BEC CASE: DESIGNING INTERFACES AND DIALOGUES 415
ELECTRO % Case Questions 416

12 Designing Distributed and Internet Systems 417
Learning Objectives 417
Introduction 417

Designing Distributed and Internet Systems 417
The Process of Designing Distributed and Internet Systems 417
Deliverables and Outcomes 418

Designing LAN and Client/Server Systems 419
Designing Systems for LANs 419
Designing Systems for a Client/Server Architecture 421

Cloud Computing 425
What Is Cloud Computing? 425
Managing the Cloud 429
Service-Oriented Architecture 432
Web Services 433

Designing Internet Systems 434
Internet Design Fundamentals 435
Site Consistency 436
Design Issues Related to Site Management 438

e PINE
[e IVALLEY

= FURNITURE

(PETRIE

CONTENTS

Electronic Commerce Application: Designing a Distributed Advertisement Server
for Pine Valley Furniture’s Webstore 441

Advertising on Pine Valley Furniture’s WebStore 441

Designing the Advertising Component 442

Designing the Management Reporting Component 443

Summary 444

Key Terms 444

Review Questions 446
Problems and Exercises 446
Field Exercises 447
References 448

BEC CASE: DESIGNING DISTRIBUTED AND INTERNET SYSTEMS 449
Case Questions 449

PART FIVE IMPLEMENTATION AND MAINTENANCE

13

AN OVERVIEW OF PART FIVE 452

System Implementation 453
Learning Objectives 453
Introduction 453

System Implementation 454
Coding, Testing, and Installation Processes 455
Deliverables and Outcomes from Coding, Testing,
and Installation 455
Deliverables and Outcomes from Documenting the System, Training Users,
and Supporting Users 457

Software Application Testing 457
Seven Different Types of Tests 458
The Testing Process 461
Combining Coding and Testing 463
Acceptance Testing by Users 463

Installation 464
Direct Installation 464
Parallel Installation 465
Single-Location Installation 466
Phased Installation 466
Planning Installation 467

Documenting the System 468
User Documentation 468

Training and Supporting Users 470
Training Information Systems Users 470
Supporting Information Systems Users 471
Support Issues for the Analyst to Consider 473

Xvii

XVvili CONTENTS

Organizational Issues in Systems Implementation 474
Why Implementation Sometimes Fails 475
Security Issues 477

Electronic Commerce Application: System Implementation and Operation
for Pine Valley Furniture’s Webstore 478

Developing Test Cases for the WebStore 478

Alpha and Beta Testing the WebStore 480

WebStore Installation 480

Project Closedown 481
Summary 481

Key Terms 482

Review Questions 483
Problems and Exercises 483
Field Exercises 484
References 484

BEC CASE: SYSTEM IMPLEMENTATION 485
PETRI :
ELECTRO Case Questions 485

14 Maintaining Information Systems 486

Learning Objectives 486
Introduction 486

Maintaining Information Systems 486
The Process of Maintaining Information Systems 487
Deliverables and Outcomes 488

Conducting Systems Maintenance 489
Types of Maintenance 489
The Cost of Maintenance 490
Managing Maintenance 492
Role of Automated Development Tools in Maintenance 497

Website Maintenance 497

B PNE Electronic Commerce Application: Maintaining an Information System for Pine Valley

{“JFURNITURE Furniture’s Webstore 499
Maintaining Pine Valley Furniture’s WebStore 499
Cannot Find Server 499

Summary 500

Key Terms 501

Review Questions 502
Problems and Exercises 502
Field Exercises 502
References 503

GLOSSARY OF TERMS 504
GLOSSARY OF ACRONYMS 511
INDEX 512

Preface

DESCRIPTION

Modern Systems Analysis and Design, Eighth Edition, covers the concepts, skills, meth-
odologies, techniques, tools, and perspectives essential for systems analysts to suc-
cessfully develop information systems. The primary target audience is upper-division
undergraduates in a management information systems (MIS) or computer informa-
tion systems curriculum; a secondary target audience is MIS majors in MBA and MS
programs. Although not explicitly written for the junior college and professional
development markets, this book can also be used by these programs.

We have over 55 years of combined teaching experience in systems analysis and
design and have used that experience to create this newest edition of Modern Systems
Analysis and Design. We provide a clear presentation of the concepts, skills, and tech-
niques that students need to become effective systems analysts who work with others
to create information systems for businesses. We use the systems development life
cycle (SDLC) model as an organizing tool throughout the book to provide students
with a strong conceptual and systematic framework. The SDLC in this edition has five
phases and a circular design.

With this text, we assume that students have taken an introductory course on
computer systems and have experience designing programs in at least one program-
ming language. We review basic system principles for those students who have not
been exposed to the material on which systems development methods are based. We
also assume that students have a solid background in computing literacy and a gener-
al understanding of the core elements of a business, including basic terms associated
with the production, marketing, finance, and accounting functions.

NEW TO THE EIGHTH EDITION

The following features are new to the Eighth Edition:

® New material. To keep up with the changing environment for systems develop-
ment, Chapter 12 has undergone a complete and thorough revision. While
cloud computing is introduced in Chapter 2, it is given extensive coverage in
the revised Chapter 12. Service-oriented architecture has been reintroduced
to the book in the version of Chapter 12. Other new material includes expan-
sions of two of the appendices to Chapter 7. The appendices on activity dia-
grams and on Business Process Management Notation now include additional
text and figures. Throughout the book figures, tables, and related content
have been updated and refreshed.

® Updated content. Throughout the book, the content in each chapter has been
updated where appropriate. We have expanded our coverage of multiple top-
ics in Chapter 2. Examples of updates in other chapters include revising the
information on the information services (IS)/information technology job
market in Chapter 1. Another example is Chapter 13, where we have updated
and extended the section on information systems security. All screenshots
come from current versions of leading software products. We have also made
a special effort to update our reference lists, purging out-of-date material and
including current references.

XiX

XX

PREFACE

® Dropped material. In our efforts to keep the book current and to streamline it,

the coverage of some things was dropped from this edition. Chapter 1 no lon-
ger includes Rapid Application Development. Chapter 12 no longer covers
data warehouses or data marts. Chapter 13 no longer includes a section on
Electronic Performance Support Systems.

Organization. We have retained the organization of the book first introduced
in the Sixth Edition. We have 14 chapters and 6 appendices. The first appen-
dix follows Chapter 1. Four appendices follow Chapter 7, including the new
one on business process modeling. The sixth appendix follows Chapter 8.
This streamlined organization worked well in the Sixth and Seventh Editions,
so we decided to continue with it.

Approach to presentation of object-oriented material. We retain our approach to
object-orientation (OO) from the last edition. Brief appendices related to
the object-oriented approach continue to appear immediately after related
chapters. The OO appendices appear as follows: Chapter 3 features a spe-
cial OO section on IS project management. Chapter 7 now has three OO
appendices: one on use cases; one on sequence diagrams; and one about
activity diagrams. (The fourth appendix to Chapter 7 is about Business
Process Management Notation, which is not part of UML, although it is
governed by the Object Management Group (OMG).) Chapter 8 has a
special section on object-oriented database design. The rationale for this
organization is the same as in the past: to cleanly separate out structured
and object-oriented approaches so that instructors not teaching OO can
bypass it. On the other hand, instructors who want to expose their students
to object-orientation can now do so with minimal effort devoted to finding
the relevant OO material.

Updated illustrations of technology. Screen captures have been updated through-
out the text to show examples using the latest versions of programming and
Internet development environments (including the latest versions of NET,
Visio, and Microsoft Office) and user interface designs. Many references to
websites are provided for students to stay current with technology trends that
affect the analysis and design of information systems.

Themes of Modern Systems Analysis and Design

1. Systems development is firmly rooted in an organizational context. The suc-

cessful systems analyst requires a broad understanding of organizations, orga-
nizational culture, and organizational operations.

. Systems development is a practical field. Coverage of current practices as well

as accepted concepts and principles is essential in a textbook.

. Systems development is a profession. Standards of practice, a sense of con-

tinuing personal development, ethics, and a respect for and collaboration
with the work of others are general themes in the textbook.

. Systems development has significantly changed with the explosive growth in

databases, data-driven systems architectures, rapid development, the Inter-
net, and Agile Methodologies. Systems development and database manage-
ment can be and should be taught in a highly coordinated fashion. The text is
compatible with the Hoffer, Ramesh, and Topi database text, Modern Database
Management, Eleventh Edition, also published by Pearson. The proper linking
of these two textbooks is a strategic opportunity to meet the needs of the IS
academic field.

5. Success in systems analysis and design requires not only skills in methodolo-
gies and techniques, but also project management skills for managing time,
resources, and risks. Thus, learning systems analysis and design requires a
thorough understanding of the process as well as the techniques and deliver-
ables of the profession.

Given these themes, this textbook emphasizes the following:

® A business, rather than a technology, perspective

¢ The role, responsibilities, and mind-set of the systems analyst as well as the sys-
tems project manager, rather than those of the programmer or business manager

® The methods and principles of systems development, rather than the specific
tools or tool-related skills of the field

DISTINCTIVE FEATURES

The following are some of the distinctive features of Modern Systems Analysis and
Design:

1. This book is organized in parallel to the Hoffer, Ramesh, and Topi database
text, Modern Database Management, Twelfth Edition (2016), which will facili-
tate consistency of frameworks, definitions, methods, examples, and nota-
tions to better support systems analysis and design and database courses
adopting both texts. Even with the strategic compatibilities between this text
and Modern Database Management, each of these books is designed to stand
alone as a market leader.

2. The grounding of systems development in the typical architecture for systems
in modern organizations, including database management and web-based
systems.

3. A clear linkage of all dimensions of systems description and modeling—pro-
cess, decision, and data modeling—into a comprehensive and compatible set
of systems analysis and design approaches. Such a broad coverage is necessary
so that students understand the advanced capabilities of the many systems de-
velopment methodologies and tools that are automatically generating a large
percentage of code from design specifications.

4. Extensive coverage of oral and written communication skills, including sys-
tems documentation, project management, team management, and a variety
of systems development and acquisition strategies (e.g., life cycle, prototyp-
ing, object orientation, Joint Application Development [JAD], systems reengi-
neering, and Agile Methodologies).

5. Consideration of standards for the methodologies of systems analysis and the
platforms on which systems are designed.

6. Discussion of systems development and implementation within the context
of change management, conversion strategies, and organizational factors in
systems acceptance.

7. Careful attention to human factors in systems design that emphasize usability
in both character-based and graphical user interface situations.

8. Visual development products are illustrated and the current limitations tech-
nologies are highlighted.

9. The text includes a separate chapter on systems maintenance. Given the type
of job many graduates first accept and the large installed base of systems, this
chapter covers an important and often neglected topic in systems analysis and
design texts.

PREFACE

XXi

Xxii

PREFACE

e PINE

[e IVALLEY
1 FURNITURE

HOOSIER

PEDAGOGICAL FEATURES

The pedagogical features of Modern Systems Analysis and Design reinforce and apply
the key content of the book.

Three Nlustrative Fictional Cases

The text features three fictional cases, described below.

Pine Valley Furniture (PVF): In addition to demonstrating an electronic business-
to-consumer shopping website, several other systems development activities from
PVF are used to illustrate key points. PVF is introduced in Chapter 3 and revisited
throughout the book. As key systems development life cycle concepts are presented,
they are applied and illustrated with this descriptive case. For example, in Chapter 5
we explore how PVF plans a development project for a customer tracking system. A
margin icon identifies the location of the case segments.

Hoosier Burger (HB): This second illustrative case is introduced in Chapter 7 and revis-
ited throughout the book. HB is a fictional fast-food restaurant in Bloomington, Indiana.
We use this case to illustrate how analysts would develop and implement an automated
food-ordering system. A margin icon identifies the location of the case segments.

Petrie Electronics: This fictional retail electronics company is used as an extended
project case at the end of 12 of the 14 chapters, beginning with Chapter 2. Designed
to bring the chapter concepts to life, this case illustrates how a company initiates,
plans, models, designs, and implements a customer loyalty system. Discussion ques-
tions are included to promote critical thinking and class participation. Suggested
solutions to the discussion questions are provided in the Instructor’s Manual.

End-of-Chapter Material

We developed an extensive selection of end-of-chapter materials that are designed to
accommodate various learning and teaching styles.

® Chapter Summary. Reviews the major topics of the chapter and previews the
connection of the current chapter with future ones.

e Key Terms. Designed as a self-test feature, students match each key term in
the chapter with a definition.

® Review Questions. Test students’ understanding of key concepts.

® Problems and Exercises. Test students’ analytical skills and require them to
apply key concepts.

® Field Exercises. Give students the opportunity to explore the practice of sys-
tems analysis and design in organizations.

e Margin Term Definitions. Each key term and its definition appear in the mar-
gin. Glossaries of terms and acronyms appear at the back of the book.

® References. References are located at the end of each chapter. The total num-
ber of references in this text amounts to over 100 books, journals, and web-
sites that can provide students and faculty with additional coverage of topics.

USING THIS TEXT

As stated earlier, this book is intended for mainstream systems analysis and design
courses. It may be used in a one-semester course on systems analysis and design or
over two quarters (first in a systems analysis and then in a systems design course). Be-
cause this book text parallels Modern Database Management, chapters from this book
and from Modern Database Management can be used in various sequences suitable for
your curriculum. The book will be adopted typically in business schools or depart-
ments, not in computer science programs. Applied computer science or computer
technology programs may also adopt the book.

The typical faculty member who will find this book most interesting is someone who

® has a practical, rather than technical or theoretical, orientation;
® has an understanding of databases and the systems that use databases; and

® uses practical projects and exercises in their courses.

More specifically, academic programs that are trying to better relate their systems
analysis and design and database courses as part of a comprehensive understanding
of systems development will be especially attracted to this book.

The outline of the book generally follows the systems development life cycle, which
allows for a logical progression of topics; however, it emphasizes that various approaches
(e.g., prototyping and iterative development) are also used, so what appears to be a
logical progression often is a more cyclic process. Part One provides an overview of sys-
tems development and previews the remainder of the book. Part One also introduces
students to the many sources of software that they can draw on to build their systems
and to manage projects. The remaining four parts provide thorough coverage of the five
phases of a generic systems development life cycle, interspersing coverage of alternatives
to the SDLC as appropriate. Some chapters may be skipped depending on the orienta-
tion of the instructor or the students’ background. For example, Chapter 3 (Managing
the Information Systems Project) can be skipped or quickly reviewed if students have
completed a course on project management. Chapter 4 (Identifying and Selecting Sys-
tems Development Projects) can be skipped if the instructor wants to emphasize systems
development once projects are identified or if there are fewer than 15 weeks available
for the course. Chapters 8 (Structuring System Data Requirements) and 9 (Designing
Databases) can be skipped or quickly scanned (as a refresher) if students have already
had a thorough coverage of these topics in a previous database or data structures course.
The sections on object orientation in Chapters 3, 7, and 8 can be skipped if faculty wish
to avoid object-oriented topics. Finally, Chapter 14 (Maintaining Information Systems)
can be skipped if these topics are beyond the scope of your course.

Because the material is presented within the flow of a systems development proj-
ect, itis not recommended that you attempt to use the chapters out of sequence, with
a few exceptions: Chapter 9 (Designing Databases) can be taught after Chapters 10
(Designing Forms and Reports) and 11 (Designing Inferfaces and Dialogues), but
Chapters 10 and 11 should be taught in sequence.

THE SUPPLEMENT PACKAGE:
WWW.PEARSONHIGHERED.COM/HOFFER

A comprehensive and flexible technology support package is available to enhance
the teaching and learning experience. All instructor supplements are available on
the text website: www.pearsonhighered.com/hoffer.

Instructor Resources

At the Instructor Resource Center, www.pearsonhighered.com/irc, instructors can
easily register to gain access to a variety of instructor resources available with this
text in downloadable format. If assistance is needed, our dedicated technical support
team is ready to help with the media supplements that accompany this text. Visit
http:/ /247 pearsoned.com for answers to frequently asked questions and toll-free
user support phone numbers.

The following supplements are available with this text:

e Instructor’s Manual
e Test Bank
¢ TestGen® Computerized Test Bank

e PowerPoint Presentation

PREFACE

Xxiii

http://www.Pearsonhighered.com/hoffer
http://www.pearsonhighered.com/hoffer
http://www.pearsonhighered.com/irc
http://247.pearsoned.com

XXiV

PREFACE

ACKNOWLEDGMENTS

The authors have been blessed by considerable assistance from many people on all
aspects of preparation of this text and its supplements. We are, of course, respon-
sible for what eventually appears between the covers, but the insights, corrections,
contributions, and prodding of others have greatly improved our manuscript. Over
the years, dozens of people have reviewed the various editions of this textbook. Their
contributions have stimulated us, frequently prompting us to include new topics and
innovative pedagogy. We greatly appreciate the efforts of the many faculty and prac-
ticing systems analysts who have reviewed this text.

We extend a special note of thanks to Jeremy Alexander, who was instrumental
in conceptualizing and writing the PVF WebStore feature that appears in Chapters 4
through 14. The addition of this feature has helped make those chapters more
modern and innovative. We would also like to thank Jeff Jenkins, of Brigham Young
University, for his help with the Visual Basic screenshots in the current edition.

We also wish to thank Atish Sinha of the University of Wisconsin—Milwaukee for
writing the original version of some of the object-oriented analysis and design ma-
terial. Dr. Sinha, who has been teaching this topic for several years to both under-
graduates and MBA students, executed a challenging assignment with creativity and
cooperation.

We are also indebted to our undergraduate and MBA students, who have given us
many helpful comments as they worked with drafts of this text, and our thanks go to
Fred McFadden (University of Colorado, Colorado Springs), Mary Prescott (Univer-
sity of South Florida), Ramesh Venkataraman (Indiana University), and Heikki Topi
(Bentley University) for their assistance in coordinating this text with its companion
book, Modern Database Management, also by Pearson Education.

Finally, we have been fortunate to work with a large number of creative and
insightful people at Pearson, who have added much to the development, format,
and production of this text. We have been thoroughly impressed with their com-
mitment to this text and to the IS education market. These people include: Nicole
Sam (Acquisitions Editor), Neeraj Bhalla (Senior Sponsoring Editor), Olivia Vignone
(Editorial Assistant), Ilene Kahn (Project Manager). We would also like to thank
George Jacobs and the crew at Integra Software Services, Inc.

The writing of this text has involved thousands of hours of time from the authors
and from all of the people listed previously. Although our names will be visibly
associated with this book, we know that much of the credit goes to the individuals
and organizations listed here for any success it might achieve. It is important for the
reader to recognize all the individuals and organizations that have been committed
to the preparation and production of this book.

Joseph S. Valacich, Tucson, Arizona
Joey . George, Ames, lowa

PART ONE

Foundations for Systems
Development

Chapter 1 Chapter 3

The Systems Development Environment Managing the Information Systems Project

Chapter 2
The Origins of Software

S

PART ONE

Foundations for Systems Development

You are beginning a journey that will enable you to
build on every aspect of your education and experi-
ence. Becoming a systems analyst is not a goal; it is a
path to a rich and diverse career that will allow you
to exercise and continue to develop a wide range of
talents. We hope that this introductory part of the
text helps open your mind to the opportunities of the
systems analysis and design field and to the engaging
nature of systems work.

Chapter 1 shows you what systems analysis and
design is all about and how it has evolved over the past
several decades. As businesses and systems have become
more sophisticated and more complex, there has been
an increasing emphasis on speed in systems analysis
and design. Systems development began as an art, but
most businesspeople soon realized this was not a tena-
ble long-term solution to developing systems to support
business processes. Systems development became more
structured and more like engineering, and managers
stressed the importance of planning, project manage-
ment, and documentation. Now we are witnessing a
reaction against excesses in all three of these areas, and
the focus has shifted to agile development. The evo-
lution of systems analysis and design and the current
focus on agility are explained in Chapter 1. It is also
important, however, that you remember that systems
analysis and design exists within a multifaceted orga-
nizational context that involves other organizational
members and external parties. Understanding systems
development requires an understanding not only of
each technique, tool, and method, but also of how
these elements complement and support each other
within an organizational setting.

As you read this book, you'll also discover that the
systems analysis and design field is constantly adapting
to new situations due to a strong commitment to con-
stant improvement. Our goal in this book is to provide
you with a mosaic of the skills needed to work effectively
in any environment where you may find yourself, armed

with the knowledge to determine the best practices for
that situation and argue for them effectively.

Chapter 2 presents an introduction to the many
sources from which software and software components
can be obtained. Back when systems analysis and design
was an art, all systems were written from scratch by in-
house experts. Businesses had little choice. Now there
is little excuse for in-house development, so it becomes
crucial that systems analysts understand the software
industry and the many different sources of software.
Chapter 2 provides an initial map of the software indus-
try landscape and explains most of the many choices
available to systems analysts.

Chapter 3 addresses a fundamental characteristic
of life as a systems analyst: working within the frame-
work of projects with constrained resources. All systems-
related work demands attention to deadlines, working
within budgets, and coordinating the work of various
people. The very nature of the systems development life
cycle (SDLC) implies a systematic approach to a project,
which is a group of related activities leading to a final
deliverable. Projects must be planned, started, executed,
and completed. The planned work of the project must
be represented so that all interested parties can review
and understand it. In your job as a systems analyst, you
will have to work within the schedule and other project
plans, and thus it is important to understand the man-
agement process controlling your work.

Finally, Part I introduces the Petrie Electronics
case. The Petrie case helps demonstrate how what you
learn in each chapter might fit into a practical organi-
zational situation. The case begins after Chapter 2; the
remaining book chapters through Chapter 13 each have
an associated case installment. The first section intro-
duces the company and its existing information systems.
This introduction provides insights into Petrie, which
will help you understand the company more completely
when we look at the requirements and design for new
systems in later case sections.

Chapter

—

Learning Objectives
After studying this chapter, you should be able to
1.1 define information systems analysis and design,

1.2 describe the information systems development life
cycle (SDLC),

1.3 explain computer-aided software engineering
(CASE) tools,

! The Systems Development
Environment

b T

1.4 describe the Agile Methodologies and eXtreme
Programming, and

1.5 explain object-oriented analysis and design and
the Rational Unified Process (RUP).

Introduction

Information systems analysis and design is a complex,
challenging, and stimulating organizational process
that a team of business and systems professionals uses
to develop and maintain computer-based information
systems. Although advances in information technology
continually give us new capabilities, the analysis and
design of information systems is driven from an organi-
zational perspective. An organization might consist of
a whole enterprise, specific departments, or individual
work groups. Organizations can respond to and antici-
pate problems and opportunities through innovative use
of information technology. Information systems analysis
and design is therefore an organizational improvement
process. Systems are built and rebuilt for organizational
benefits. Benefits result from adding value during the
process of creating, producing, and supporting the
organization’s products and services. Thus the analy-
sis and design of information systems is based on your
understanding of the organization’s objectives, struc-
ture, and processes, as well as your knowledge of how to
exploit information technology for advantage.

In the current business environment, the Internet,
especially the World Wide Web, has been firmly inte-
grated into an organization’s way of doing business.
Although you are probably most familiar with marketing
done on the web and web-based retailing sites, such as
eBay or Amazon.com, the overwhelming majority of busi-
ness use of the web is business-to-business applications.

These applications run the gamut of everything busi-
nesses do, including transmitting orders and payments
to suppliers, fulfilling orders and collecting payments
from customers, maintaining business relationships, and
establishing electronic marketplaces where businesses
can shop online for the best deals on resources they need
for assembling their products and services. Although
the Internet seems to pervade business these days, it is
important to remember that many of the key aspects of
business—offering a product or service for sale, collecting
payment, paying employees, maintaining supplier and cli-
ent relationships—have not changed. Understanding the
business and how it functions is still the key to successful
systems development, even in the fast-paced, technology-
driven environment that organizations find themselves in
today.

Careers in information technology (IT) present a
great opportunity for you to make a significant and visible
impact on business. The demand for skilled informa-
tion technology workers is growing. According to the US
Bureau of Labor Statistics, the professional I'T workforce
will grow by more than 22 percent between 2010 and
2020 (Thibodeau, 2012). The fastest growth will come for
software developers (32 percent) and database adminis-
trators (31 percent). One particular aspect of the infor-
mation technology industry, cloud computing, created
almost 14 million technology and related jobs between
2012 and 2015 (McDougall, 2012). Annual revenues from

3

4 PART I FOUNDATIONS FOR SYSTEMS DEVELOPMENT

Information systems analysis
and design

The complex organizational process
whereby computerbased information
systems are developed and maintained.

Application software
Computer software designed to support
organizational functions or processes.

Systems analyst

The organizational role most responsible
for the analysis and design of information
systems.

cloud computing will be over $1.1 trillion (USD) starting that year. And the growth
will be global, with the number of cloud computing jobs in Brazil increasing by 186
percent, the number of jobs in China and India almost doubling, and growth in
cloud-related jobs increasing by 66 percent in the United States. (See more about
cloud computing in Chapter 2.) With the challenges and opportunities of dealing
with rapid advances in technology, it is difficult to imagine a more exciting career
choice than information technology, and systems analysis and design is a big part of
the IT landscape. Furthermore, analyzing and designing information systems will
give you the chance to understand organizations at a depth and breadth that might
take many more years to accomplish in other careers.

An important (but not the only) result of systems analysis and design is
application software, software designed to support a specific organizational function
or process, such as inventory management, payroll, or market analysis. In addition to
application software, the total information system includes the hardware and systems
software on which the application software runs, documentation and training materi-
als, the specific job roles associated with the overall system, controls, and the people
who use the software along with their work methods. Although we will address all of
these various dimensions of the overall system, we will emphasize application soft-
ware development—your primary responsibility as a systems analyst.

In the early years of computing, analysis and design was considered an art. Now
that the need for systems and software has become so great, people in industry and
academia have developed work methods that make analysis and design a disciplined
process. Our goal is to help you develop the knowledge and skills needed to under-
stand and follow such software engineering processes. Central to software engineer-
ing processes (and to this book) are various methodologies, techniques, and tools
that have been developed, tested, and widely used over the years to assist people like
you during systems analysis and design.

Methodologies are comprehensive, multiple-step approaches to systems devel-
opment that will guide your work and influence the quality of your final product—
the information system. A methodology adopted by an organization will be consis-
tent with its general management style (e.g., an organization’s orientation toward
consensus management will influence its choice of systems development methodol-
ogy). Most methodologies incorporate several development techniques.

Techniques are particular processes that you, as an analyst, will follow to help
ensure that your work is well thought out, complete, and comprehensible to others
on your project team. Techniques provide support for a wide range of tasks, includ-
ing conducting thorough interviews to determine what your system should do, plan-
ning and managing the activities in a systems development project, diagramming the
system’s logic, and designing the reports your system will generate.

Tools are typically computer programs that make it easy to use and benefit
from techniques and to faithfully follow the guidelines of the overall development
methodology. To be effective, techniques and tools must both be consistent with an
organization’s systems development methodology. Techniques and tools must make
it easy for systems developers to conduct the steps called for in the methodology.
These three elements—methodologies, techniques, and tools—work together to
form an organizational approach to systems analysis and design (see Figure 1-1).

Although many people in organizations are responsible for systems analysis
and design, in most organizations the systems analyst has the primary responsibil-
ity. When you begin your career in systems development, you will most likely begin
as a systems analyst or as a programmer with some systems analysis responsibilities.
The primary role of a systems analyst is to study the problems and needs of an orga-
nization in order to determine how people, methods, and information technology
can best be combined to bring about improvements in the organization. A systems
analyst helps system users and other business managers define their requirements
for new or enhanced information services. As such, a systems analyst is an agent of
change and innovation.

CHAPTER 1 THE SYSTEMS DEVELOPMENT ENVIRONMENT 5

BT

Techniques

Methodologies

In the rest of this chapter, we will examine the systems approach to analysis
and design. You will learn how systems analysis and design has changed over the
decades as computing has become more central to business. You will learn about
the systems development life cycle, which provides the basic overall structure of the
systems development process and of this book. This chapter ends with a discussion
of some of the methodologies, techniques, and tools created to support the systems
development process.

A MODERN APPROACH TO SYSTEMS ANALYSIS
AND DESIGN

The analysis and design of computer-based information systems began in the 1950s.
Since then, the development environment has changed dramatically, driven by
organizational needs as well as by rapid changes in the technological capabilities
of computers. In the 1950s, development focused on the processes the software
performed. Because computer power was a critical resource, efficiency of process-
ing became the main goal. Computers were large, expensive, and not very reliable.
Emphasis was placed on automating existing processes, such as purchasing or paying,
often within single departments. All applications had to be developed in machine
language or assembly language, and they had to be developed from scratch because
there was no software industry. Because computers were so expensive, computer
memory was also at a premium, so system developers conserved as much memory as
possible for data storage.

The first procedural, or third-generation, computer programming languages did
not become available until the beginning of the 1960s. Computers were still large and
expensive, but the 1960s saw important breakthroughs in technology that enabled the
development of smaller, faster, less expensive computers—minicomputers—and the
beginnings of the software industry. Most organizations still developed their applications
from scratch using their in-house development staff. Systems development was more an
art than a science. This view of systems development began to change in the 1970s,
however, as organizations started to realize how expensive it was to develop custom-
ized information systems for every application. Systems development came to be more

FIGURE 1-1

An organizational approach to systems
analysis and design is driven by
methodologies, techniques, and tools
Sources: Top: Mitarart/Fotolia; Left:
Lev/Fotolia; Right: PaulPaladin/Fotolia

6 PART I

Systems development
methodology

A standard process followed in an
organization fo conduct all the steps
necessary fo analyze, design, implement,
and mainfain information sysfems.

Systems development

life cycle (SDLC)

The traditional methodology used fo
develop, mainfain, and replace information
systems.

FOUNDATIONS FOR SYSTEMS DEVELOPMENT

disciplined as many people worked to make it more like engineering. Early database
management systems, using hierarchical and network models, helped bring discipline
to the storage and retrieval of data. The development of database management systems
helped shift the focus of systems development from processes first to data first.

The 1980s were marked by major breakthroughs in computing in organizations,
as microcomputers became key organizational tools. The software industry expanded
greatly as more and more people began to write off-the-shelf software for microcom-
puters. Developers began to write more and more applications in fourth-generation
languages, which, unlike procedural languages, instructed a computer on what to
do instead of how to do it. Computer-aided software engineering (CASE) tools were
developed to make systems developers’ work easier and more consistent. As com-
puters continued to get smaller, faster, and cheaper, and as the operating systems
for computers moved away from line prompt interfaces to windows- and icon-based
interfaces, organizations moved to applications with more graphics. Organizations
developed less software in-house and bought relatively more from software vendors.
The systems developer’s job went through a transition from builder to integrator.

The systems development environment of the late 1990s focused on systems
integration. Developers used visual programming environments, such as PowerBuilder
or Visual Basic, to design the user interfaces for systems that run on client/server
platforms. The database, which may be relational or object-oriented, and which may
have been developed using software from firms such as Oracle, Microsoft, or Ingres,
resided on the server. In many cases, the application logic resided on the same server.
Alternatively, an organization may have decided to purchase its entire enterprise-wide
system from companies such as SAP AG or Oracle. Enterprise-wide systems are large,
complex systems that consist of a series of independent system modules. Developers
assemble systems by choosing and implementing specific modules. Starting in the
middle years of the 1990s, more and more systems development efforts focused on
the Internet, especially the web.

Today there is continued focus on developing systems for the Internet and
for firms’ intranets and extranets. As happened with traditional systems, Internet
developers now rely on computer-based tools to speed and simplify the development
of web-based systems. Many CASE tools directly support web application develop-
ment. More and more, systems implementation involves a three-tier design, with the
database on one server, the application on a second server, and client logic located
on user machines. Another important development is the move to wireless system
components. Wireless devices can access web-based applications from almost any-
where. Finally, the trend continues toward assembling systems from programs and
components purchased off the shelf. In many cases, organizations do not develop the
application in-house. They don’t even run the application in-house, choosing instead
to use the application on a per-use basis by accessing it through the cloud.

DEVELOPING INFORMATION SYSTEMS
AND THE SYSTEMS DEVELOPMENT LIFE CYCLE

Most organizations find it beneficial to use a standard set of steps, called a systems
development methodology, to develop and support their information systems. Like
many processes, the development of information systems often follows a life cycle.
For example, a commercial product follows a life cycle in that it is created, tested, and
introduced to the market. Its sales increase, peak, and decline. Finally, the product is
removed from the market and replaced by something else. The systems development
life cycle (SDLC) is a common methodology for systems development in many orga-
nizations; it features several phases that mark the progress of the systems analysis and
design effort. Every textbook author and information systems development organi-
zation uses a slightly different life-cycle model, with anywhere from 3 to almost 20
identifiable phases.

CHAPTER 1 THE SYSTEMS DEVELOPMENT ENVIRONMENT

Planning

Maintenance Analysis

Implementation < Design

The life cycle can be thought of as a circular process in which the end of
the useful life of one system leads to the beginning of another project that will
develop a new version or replace an existing system altogether (see Figure 1-2). At
first glance, the life cycle appears to be a sequentially ordered set of phases, but it is
not. The specific steps and their sequence are meant to be adapted as required for a
project, consistent with management approaches. For example, in any given SDLC
phase, the project can return to an earlier phase if necessary. Similarly, if a commer-
cial product does not perform well just after its introduction, it may be temporarily
removed from the market and improved before being reintroduced. In the SDLC,
it is also possible to complete some activities in one phase in parallel with some
activities of another phase. Sometimes the life cycle is iterative; that is, phases are
repeated as required until an acceptable system is found. Some people consider the
life cycle to be a spiral, in which we constantly cycle through the phases at different
levels of detail (see Figure 1-3). However conceived, the systems development life
cycle used in an organization is an orderly set of activities conducted and planned
for each development project. The skills required of a systems analyst apply to all
life-cycle models. Software is the most obvious end product of the life cycle; other
essential outputs include documentation about the system and how it was devel-
oped, as well as training for users.

Every medium to large corporation and every custom software producer
will have its own specific life cycle or systems development methodology in place

Design Implementation
Go/No Go Axis
Analysis
Maintenance
Planning

FIGURE 1-2
Systems development life cycle

FIGURE 1-3
Evolutionary model

7

8 PART I

FIGURE 1-4

U.S. Department of Justice's systems
development life cycle

(Source: Diagram based on http://www.
Justice.gov/archive/jmd/irm/lifecycle/chl.
htm#paral.2)

Top to bottom: haveseen/Shutterstock;
Kruwt/Fotolia; Bedrin/Shutterstock;
Pressmaster/Shutterstock; pilotl39/
Fotolia; Sozaijiten; Elnur/Fotolia;
rtguest/Shutterstock; michaeljung/
Shutterstock; AleksaStudio/Shutterstock

Planning

The first phase of the SDLC in which an
organization’s fotal information system
needs are identified, analyzed, prioritized,
and arranged.

FOUNDATIONS FOR SYSTEMS DEVELOPMENT

Initiation

System Concept Development

Planning

Requirements Analysis

\ I! Design
%"% |
1
Development

5
b

Integration and Test

Implementation

(‘J ‘ Operation and Maintenance

-

L

(see Figure 1-4). Even if a particular methodology does not look like a cycle, and
Figure 1-4 does not, you will probably discover that many of the SDLC steps are
performed and SDLC techniques and tools are used. Learning about systems anal-
ysis and design from the life-cycle approach will serve you well no matter which
systems development methodology you use.

When you begin your first job, you will likely spend several weeks or months
learning your organization’s SDLC and its associated methodologies, techniques, and
tools. In order to make this book as general as possible, we follow a rather generic
life-cycle model, as described in more detail in Figure 1-5. Notice that our model is
circular. We use this SDLC as one example of a methodology but, more important,
as a way to arrange the topics of systems analysis and design. Thus, what you learn
in this book, you can apply to almost any life cycle you might follow. As we describe
this SDLC throughout the book, you will see that each phase has specific outcomes
and deliverables that feed important information to other phases. At the end of each
phase, a systems development project reaches a milestone and, as deliverables are
produced, they are often reviewed by parties outside the project team. In the rest
of this section, we provide a brief overview of each SDLC phase. At the end of the
section, we summarize this discussion in a table that lists the main deliverables or
outputs from each SDLC phase.

The first phase in the SDLC is planning. In this phase, someone identifies the
need for a new or enhanced system. In larger organizations, this recognition may be
part of a corporate and systems planning process. Information needs of the orga-
nization as a whole are examined, and projects to meet these needs are proactively
identified. The organization’s information system needs may result from requests
to deal with problems in current procedures, from the desire to perform additional

Disposition

http://www.justice.gov/archive/jmd/irm/lifecycle/ch1.htm#para1.2
http://www.justice.gov/archive/jmd/irm/lifecycle/ch1.htm#para1.2

CHAPTER 1 THE SYSTEMS DEVELOPMENT ENVIRONMENT

Chapters 4-5

Planning
Chapter 14 | Maintenance Analysis Chapters 6-8
Implementation Design
Chapter 13 Chapters 9-12

tasks, or from the realization that information technology could be used to capitalize
on an existing opportunity. These needs can then be prioritized and translated into
a plan for the information systems department, including a schedule for developing
new major systems. In smaller organizations (as well as in large ones), determination
of which systems to develop may be affected by ad hoc user requests submitted as
the need for new or enhanced systems arises, as well as from a formalized informa-
tion planning process. In either case, during project identification and selection, an
organization determines whether resources should be devoted to the development
or enhancement of each information system under consideration. The outcome of
the project identification and selection process is a determination of which systems
development projects should be undertaken by the organization, at least in terms of
an initial study.

Two additional major activities are also performed during the planning phase:
the formal, yet still preliminary, investigation of the system problem or opportu-
nity at hand and the presentation of reasons why the system should or should not
be developed by the organization. A critical step at this point is determining the
scope of the proposed system. The project leader and initial team of systems analysts
also produce a specific plan for the proposed project the team will follow using the
remaining SDLC steps. This baseline project plan customizes the standardized SDLC
and specifies the time and resources needed for its execution. The formal definition
of a project is based on the likelihood that the organization’s information systems
department is able to develop a system that will solve the problem or exploit the
opportunity and determine whether the costs of developing the system outweigh the
benefits it could provide. The final presentation of the business case for proceeding
with the subsequent project phases is usually made by the project leader and other
team members to someone in management or to a special management committee
with the job of deciding which projects the organization will undertake.

The second phase in the SDLC is analysis. During this phase, the analyst thor-
oughly studies the organization’s current procedures and the information systems
used to perform organizational tasks. Analysis has two subphases. The first is require-
ments determination. In this subphase, analysts work with users to determine what
the users want from a proposed system. The requirements determination process
usually involves a careful study of any current systems, manual and computerized,
that might be replaced or enhanced as part of the project. In the second part of
analysis, analysts study the requirements and structure them according to their

FIGURE 1-5
SDLC-based guide to this book

Analysis

The second phase of the SDLC in which
sysfem requirements are studied and
structured.

10 PART I FOUNDATIONS FOR SYSTEMS DEVELOPMENT

Design

The third phase of the SDLC in which the
description of the recommended solution
is converted into logical and then physical
system specifications.

Logical design

The part of the design phase of the SDLC

in which all functional features of the system
chosen for development in analysis are
described independently of any computer
platform.

Physical design

The part of the design phase of the SDLC
in which the logical specifications of the
system from logical design are transformed
info technology-specific defails from which
all programming and system consfruction
can be accomplished.

Implementation

The fourth phase of the SDIC, in
which the information system is coded,
tested, installed, and supported in the
organization.

interrelationships and eliminate any redundancies. The output of the analysis phase
is a description of (but not a detailed design for) the alternative solution recom-
mended by the analysis team. Once the recommendation is accepted by those with
funding authority, the analysts can begin to make plans to acquire any hardware and
system software necessary to build or operate the system as proposed.

The third phase in the SDLC is design. During design, analysts convert the
description of the recommended alternative solution into logical and then physi-
cal system specifications. The analysts must design all aspects of the system, from
input and output screens to reports, databases, and computer processes. The analysts
must then provide the physical specifics of the system they have designed, either as
a model or as detailed documentation, to guide those who will build the new sys-
tem. That part of the design process that is independent of any specific hardware
or software platform is referred to as logical design. Theoretically, the system could
be implemented on any hardware and systems software. The idea is to make sure
that the system functions as intended. Logical design concentrates on the business
aspects of the system and tends to be oriented to a high level of specificity.

Once the overall high-level design of the system is worked out, the analysts
begin turning logical specifications into physical ones. This process is referred to
as physical design. As part of physical design, analysts design the various parts of
the system to perform the physical operations necessary to facilitate data capture,
processing, and information output. This can be done in many ways, from creating
a working model of the system to be implemented to writing detailed specifica-
tions describing all the different parts of the system and how they should be built.
In many cases, the working model becomes the basis for the actual system to be
used. During physical design, the analyst team must determine many of the physi-
cal details necessary to build the final system, from the programming language
the system will be written in, to the database system that will store the data, to the
hardware platform on which the system will run. Often the choices of language,
database, and platform are already decided by the organization or by the client,
and at this point these information technologies must be taken into account in the
physical design of the system. The final product of the design phase is the physical
system specifications in a form ready to be turned over to programmers and other
system builders for construction. Figure 1-6 illustrates the differences between logi-
cal and physical design.

The fourth phase in the SDLC is implementation. The physical system speci-
fications, whether in the form of a detailed model or as detailed written specifi-
cations, are turned over to programmers as the first part of the implementation
phase. During implementation, analysts turn system specifications into a working
system that is tested and then put into use. Implementation includes coding, test-
ing, and installation. During coding, programmers write the programs that make
up the system. Sometimes the code is generated by the same system used to build
the detailed model of the system. During testing, programmers and analysts test
individual programs and the entire system in order to find and correct errors.
During installation, the new system becomes part of the daily activities of the orga-
nization. Application software is installed, or loaded, on existing or new hardware,
and users are introduced to the new system and trained. Testing and installation
should be planned for as early as the project initiation and planning phase; both
testing and installation require extensive analysis in order to develop exactly the
right approach.

Implementation activities also include initial user support such as the final-
ization of documentation, training programs, and ongoing user assistance. Note
that documentation and training programs are finalized during implementation;
documentation is produced throughout the life cycle, and training (and educa-
tion) occurs from the inception of a project. Implementation can continue for as
long as the system exists, because ongoing user support is also part of implemen-
tation. Despite the best efforts of analysts, managers, and programmers, however,

CHAPTER 1

1/4 PIPE
DWG. NO. REV. DATE
1. QUANTITY REQUIRED: 2 o9 [SHEET 1 OF _ | szEa
NOTES: ' DRAWN BY: C. M. ALLEN 8-26-92 SCALE: _NONE
CAD FILE: RAPS DO NOT SCALE DRAWING!

installation is not always a simple process. Many well-designed systems have failed
because the installation process was faulty. Even a well-designed system can fail if
implementation is not well managed. Because the project team usually manages
implementation, we stress implementation issues throughout this book.

The fifth and final phase in the SDLC is maintenance. When a system (includ-
ing its training, documentation, and support) is operating in an organization, users
sometimes find problems with how it works and often think of better ways to perform
its functions. Also, the organization’s needs with respect to the system change over
time. In maintenance, programmers make the changes that users ask for and modify
the system to reflect evolving business conditions. These changes are necessary to
keep the system running and useful. In a sense, maintenance is not a separate phase
but a repetition of the other life cycle phases required to study and implement the
needed changes. One might think of maintenance as an overlay on the life cycle
rather than as a separate phase. The amount of time and effort devoted to mainte-
nance depends a great deal on the performance of the previous phases of the life
cycle. There inevitably comes a time, however, when an information system is no
longer performing as desired, when maintenance costs become prohibitive, or when
an organization’s needs have changed substantially. Such problems indicate that it
is time to begin designing the system’s replacement, thereby completing the loop

THE SYSTEMS DEVELOPMENT ENVIRONMENT 11

FIGURE 1-6

Difference between logical design and
physical design

(a) A skateboard ramp blueprint (logical
design)

(Sources: www.tumyeto.com/tydu/skatebrd/
organizations/plans/14pipe.jpg; www
Lumyeto.com/tydu/skatebrd/organizations/
plans/iuscblue. html. Accessed September
16, 1999. Reprinted by permission of the
International Association of Skateboard
Companies.)

(b) A skateboard ramp (physical design)

Maintenance

The final phase of the SDLC, in which
an information system is systematically
repaired and improved.

http://www.tumyeto.com/tydu/skatebrd/organizations/plans/14pipe.jpg
http://www.tumyeto.com/tydu/skatebrd/organizations/plans/14pipe.jpg
http://www.tumyeto.com/tydu/skatebrd/organizations/plans/iuscblue.html
http://www.tumyeto.com/tydu/skatebrd/organizations/plans/iuscblue.html
http://www.tumyeto.com/tydu/skatebrd/organizations/plans/iuscblue.html

12

PART I

FOUNDATIONS FOR SYSTEMS DEVELOPMENT

TABLE 1-1 Products of SDLC Phases

Phase Products, Outputs, or Deliverables

Planning Priorities for systems and projects; an architecture for data, networks,
and selection hardware, and information systems management are
the result of associated systems

Detailed steps, or work plan, for project

Specification of system scope and planning and high-level system
requirements or features

Assignment of team members and other resources
System justification or business case

Analysis Description of current system and where problems or opportunities exist,
with a general recommendation on how to fix, enhance, or replace
current system

Explanation of alternative systems and justification for chosen alternative

Design Functional, detailed specifications of all system elements (data,
processes, inputs, and outputs)

Technical, detailed specifications of all system elements (programs, files,
network, system software, efc.)

Acquisition plan for new technology
Implementation Code, documentation, training procedures, and support capabilities

Maintenance New versions or releases of software with associated updates to
documentation, training, and support

and starting the life cycle over again. Often the distinction between major mainte-
nance and new development is not clear, which is another reason maintenance often
resembles the life cycle itself.

The SDLC is a highly linked set of phases whose products feed the activities
in subsequent phases. Table 1-1 summarizes the outputs or products of each phase
based on the in-text descriptions. The chapters on the SDLC phases will elaborate on
the products of each phase as well as on how the products are developed.

Throughout the SDLC, the systems development project itself must be care-
fully planned and managed. The larger the systems project, the greater the need for
project management. Several project management techniques have been developed
over the past decades, and many have been made more useful through automation.
Chapter 3 contains a more detailed treatment of project planning and management
techniques. Next, we will discuss some of the criticisms of the SDLC and present
alternatives developed to address those criticisms. First, however, we will introduce
you to a specialized SDLC that focuses on security during development.

A SPECIALIZED SYSTEMS DEVELOPMENT
LIFE CYCLE

Although the basic SDLC provides an overview of the systems development process,
the concept of the SDLC can also be applied to very specific aspects of the process. As
mentioned previously, the maintenance phase can be described in terms of the SDLC.
Another example of a specialized SDLC is Microsoft’s Security Development Lifecycle
(SDL) (see http://www.microsoft.com/security/sdl/default.aspx for details). The
Security Development Lifecycle is depicted in Figure 1-7. First note how the five basic
phases of the development life cycle (in green) are not exactly the same as the five
phases of the SDLC we will use in this book. Three of the five phases are almost identi-
cal to the phases in our SDLC. The Microsoft SDL starts with “requirements,” which
is similar to “analysis”; this is followed by the design phase, which is followed by imple-
mentation. Our life cycle starts with planning and ends with maintenance. Both of
these phases are peculiar to systems development in an organizational context, where

http://www.microsoft.com/security/sdl/default.aspx

CHAPTER 1 THE SYSTEMS DEVELOPMENT ENVIRONMENT

Y Venﬁcat

FIGURE 1-7

Microsoft’s Security Development
Lifecycle (SDL)

(Source: hitp://www.microsoft.com/security/
sdl/default.aspx. Used by permission.)

the information systems that are procured are used inside the organization. Careful
planning is required to determine which systems will be developed for an organiza-
tion. Each system developed is an investment, and if the organization invests in a par-
ticular system, it cannot invest in some alternative system or in something else, such
as a new store. Investment funds are limited, after all. Maintenance is also peculiar to
an organizational context. Once systems go into general use, the organization needs
to earn as much of a return on those investments as it can, so it is important that the
systems run as long as possible. Companies such as Microsoft, which develop systems
for others to use, do not need to worry about internal planning and maintenance
in their product life cycles. Instead, as they have limited control over systems once
they have been sold, they are concerned about selling a mature and reliable prod-
uct. Therefore, they have two phases after implementation: verification and release.
Verification involves quality assurance for products before they are released. Release
involves all of the activities related to making the product available for general use.
Next, note the two parts of the SDL that precede and follow the main development
phases: training (in blue) and response (in orange). Two things make this particular
SDLC specialized to security issues: the two unique phases that begin and end the
life cycle (training and response), and the particular security activities associated with
each phase in the development life cycle.

Training in Microsoft’s SDL refers to the training each member of a develop-
ment team receives about security basics and trends in security. The idea behind the
training—indeed, the idea behind a specialized security development life cycle—is
to have security become part of the development process from the beginning and
not suddenly appear at the end of the SDLC. By training team members about
security and how it can be addressed throughout the life cycle, security measures
can be built into the system throughout its development. The response at the end of
the SDL refers to a response plan developed during the release phase. If there is a
security threat to a particular product, then the previously developed response plan is
executed. The security-related activities that take place throughout the development
life cycle vary by phase. Listing and explaining each activity is beyond the scope of
this chapter, but we can provide some examples. One specialized activity performed
during the requirements phase is a separate analysis of requirements related to both
security and privacy. During design, developers can model threats to a system and
consider how those threats differ with different design options. During implementa-
tion, project team members can conduct static analyses of source code, looking for
security threats. During verification, they can conduct dynamic analyses. As part of
the release phase, team members develop the incident response plan, mentioned
previously, and they conduct a final security review. By adhering to a specialized life
cycle devoted to security, project team members can ensure not only that security is
addressed, but that it is addressed in a planned, systematic manner.

THE HEART OF THE SYSTEMS DEVELOPMENT
PROCESS

The SDLC provides a convenient way to think about the processes involved in sys-
tems development and the organization of this book. The different phases are clearly
defined, their relationships to one another are well specified, and the sequencing of
phases from one to the next, from beginning to end, has a compelling logic. In many

http://www.microsoft.com/security/sdl/default.aspx
http://www.microsoft.com/security/sdl/default.aspx

14 PART I FOUNDATIONS FOR SYSTEMS DEVELOPMENT

FIGURE 1-8
Analysis—design—code-test loop

FIGURE 1-9
Heart of systems development

Analysis

Test Design

Code

ways, though, the SDLC is fiction. Although almost all systems development projects
adhere to some type of life cycle, the exact location of activities and the specific
sequencing of steps can vary greatly from one project to the next. Current practice
combines the activities traditionally thought of as belonging to analysis, design, and
implementation into a single process. Instead of systems requirements being pro-
duced in analysis, systems specifications being created in design, and coding and
testing being done at the beginning of implementation, current practice combines
all of these activities into a single analysis—design—code—test process (Figure 1-8).
These activities are the heart of systems development, as we suggest in Figure 1-9.
This combination of activities is typical of current practices in Agile Methodologies.
A well-known instance of one of the Agile Methodologies is eXtreme Programming,
although there are other variations. We will introduce you to Agile Methodologies
and eXtreme Programming, but first it is important that you learn about the prob-
lems with the traditional SDLC. You will read about these problems next. Then you
will read about CASE tools, Agile Methodologies, and eXtreme Programming.

Planning

Maintenance Analysis

Implementation

CHAPTER 1 THE SYSTEMS DEVELOPMENT ENVIRONMENT

The Traditional Waterfall SDLC

There are several criticisms of the traditional life-cycle approach to systems develop-
ment; one relates to the way the life cycle is organized. To better understand these
criticisms, it is best to see the form in which the life cycle has traditionally been por-
trayed, the so-called waterfall (Figure 1-10). Note how the flow of the project begins
in the planning phase and from there runs “downhill” to each subsequent phase,
just like a stream that runs off a cliff. Although the original developer of the waterfall
model, W. W. Royce, called for feedback between phases in the waterfall, this feed-
back came to be ignored in implementation (Martin, 1999). It became too tempting
to ignore the need for feedback and to treat each phase as complete unto itself,
never to be revisited once finished.

Traditionally, one phase ended and another began once a milestone had been
reached. The milestone usually took the form of some deliverable or prespecified
output from the phase. For example, the design deliverable is the set of detailed physi-
cal design specifications. Once the milestone had been reached and the new phase
initiated, it became difficult to go back. Even though business conditions continued
to change during the development process and analysts were pressured by users and
others to alter the design to match changing conditions, it was necessary for the ana-
lysts to freeze the design at a particular point and go forward. The enormous amount
of effort and time necessary to implement a specific design meant that it would be
very expensive to make changes in a system once it was developed. The traditional
waterfall life cycle, then, had the property of locking users into requirements that had
been previously determined, even though those requirements might have changed.

Yet another criticism of the traditional waterfall SDLC is that the role of system
users or customers was narrowly defined (Kay, 2002). User roles were often relegated
to the requirements determination or analysis phases of the project, where it was
assumed that all of the requirements could be specified in advance. Such an assump-
tion, coupled with limited user involvement, reinforced the tendency of the waterfall
model to lock in requirements too early, even after business conditions had changed.

In addition, under the traditional waterfall approach, nebulous and intangible
processes such as analysis and design are given hard-and-fast dates for completion,

Planning

N

Analysis

R

Logical

Design _W

Physical

Design _W

Implementation

N

Maintenance

FIGURE 1-10
Traditional waterfall SDLC

15

16 PART I FOUNDATIONS FOR SYSTEMS DEVELOPMENT

Computer-aided software
engineering (CASE) tools
Software tools that provide automated
support for some portion of the sysfems
development process.

and success is overwhelmingly measured by whether those dates are met. The focus
on milestone deadlines, instead of on obtaining and interpreting feedback from the
development process, leads to too little focus on doing good analysis and design. The
focus on deadlines leads to systems that do not match users’ needs and that require
extensive maintenance, unnecessarily increasing development costs. Finding and fix-
ing a software problem after the delivery of the system is often far more expensive
than finding and fixing it during analysis and design (Griss, 2003). The result of
focusing on deadlines rather than on good practice is unnecessary rework and main-
tenance effort, both of which are expensive. According to some estimates, mainte-
nance costs account for 40 to 70 percent of systems development costs (Dorfman and
Thayer, 1997). Given these problems, people working in systems development began
to look for better ways to conduct systems analysis and design.

DIFFERENT APPROACHES TO IMPROVING
DEVELOPMENT

In the continuing effort to improve the systems analysis and design process, several
different approaches have been developed. We will describe the more important
approaches in more detail in later chapters. Attempts to make systems development
less of an art and more of a science are usually referred to as systems engineering or soft-
ware engineering. As the names indicate, rigorous engineering techniques have been
applied to systems development. One manifestation of the engineering approach is
CASE tools, which you will read about next.

CASE Tools

Other efforts to improve the systems development process have taken advantage of
the benefits offered by computing technology itself. The result has been the creation
and fairly widespread use of computer-aided software engineering (CASE) tools.
CASE tools have been developed for internal use and for sale by several leading
firms, but the best known is the series of Rational tools made by IBM.

CASE tools are used to support a wide variety of SDLC activities. CASE tools
can be used to help in multiple phases of the SDLC: project identification and
selection, project initiation and planning, analysis, design, and implementation and
maintenance. An integrated and standard database called a repository is the common
method for providing product and tool integration, and has been a key factor in
enabling CASE to more easily manage larger, more complex projects and to seam-
lessly integrate data across various tools and products. The idea of a central reposi-
tory of information about a project is not new—the manual form of such a repository
is called a project dictionary or workbook.

The general types of CASE tools are listed below:

® Diagramming tools enable system process, data, and control structures to be
represented graphically.

e Computer display and report generators help prototype how systems “look and
feel.” Display (or form) and report generators make it easier for the systems
analyst to identify data requirements and relationships.

* Analysis tools automatically check for incomplete, inconsistent, or incorrect
specifications in diagrams, forms, and reports.

® A central repository enables the integrated storage of specifications, diagrams,
reports, and project management information.

® Documentation generators produce technical and user documentation in
standard formats.

® Code generators enable the automatic generation of program and database def-
inition code directly from the design documents, diagrams, forms, and reports.

CHAPTER 1 THE SYSTEMS DEVELOPMENT ENVIRONMENT

TABLE 1-2 Examples of CASE Usage within the SDLC

17

SDLC Phase Key Activities CASE Tool Usage
Project identification Display and structure high-level ~ Diagramming and matrix tools to create and structure information
and selection organizational information
Project initiation Develop project scope and Repository and documentation generators to develop project plans
and planning feasibility
Analysis Determine and structure system Diagramming to create process, logic, and data models
requirements
Logical and physical ~ Create new system designs Form and report generators to prototype designs; analysis and documentation
design generators to define specifications
Implementation Translate designs into an Code generators and analysis, form and report generators to develop system;
information system documentation generators to develop system and user documentation
Maintenance Evolve information system All tools are used (repeat life cycle)

CASE helps programmers and analysts do their jobs more efficiently and more
effectively by automating routine tasks. However, many organizations that use CASE
tools do not use them to support all phases of the SDLC. Some organizations may
extensively use the diagramming features but not the code generators. Table 1-2 sum-
marizes how CASE is commonly used within each SDLC phase. There are a variety of
reasons why organizations choose to adopt CASE partially or not use it at all. These
reasons range from a lack of vision for applying CASE to all aspects of the SDLC, to
the belief that CASE technology will fail to meet an organization’s unique system
development needs. In some organizations, CASE has been extremely successful,
whereas in others it has not.

AGILE METHODOLOGIES

Many approaches to systems analysis and design have been developed over the years.
In February 2001, many of the proponents of these alternative approaches met in
Utah and reached a consensus on several of the underlying principles their various
approaches contained. This consensus turned into a document they called “The
Agile Manifesto” (Table 1-3). According to Fowler (2003), the Agile Methodologies
share three key principles: (1) a focus on adaptive rather than predictive method-
ologies, (2) a focus on people rather than roles, and (3) a focus on self-adaptive
processes.

The Agile Methodologies group argues that software development meth-
odologies adapted from engineering generally do not fit with real-world software
development (Fowler, 2003). In engineering disciplines, such as civil engineering,
requirements tend to be well understood. Once the creative and difficult work of
design is completed, construction becomes very predictable. In addition, construc-
tion may account for as much as 90 percent of the total project effort. For software, on
the other hand, requirements are rarely well understood, and they change continually
during the lifetime of the project. Construction may account for as little as 15 percent
of the total project effort, with design constituting as much as 50 percent. Applying
techniques that work well for predictable, stable projects, such as bridge building,
tend not to work well for fluid, design-heavy projects such as writing software, say
the Agile Methodology proponents. What is needed are methodologies that embrace
change and that are able to deal with a lack of predictability. One mechanism for
dealing with a lack of predictability, which all Agile Methodologies share, is iterative
development (Martin, 1999). Iterative development focuses on the frequent produc-
tion of working versions of a system that have a subset of the total number of required
features. Iterative development provides feedback to customers and developers alike.

The Agile Methodologies’ focus on people is an emphasis on individuals rather
than on the roles that people perform (Fowler, 2003). The roles that people fill, of

18

PART I

FOUNDATIONS FOR SYSTEMS DEVELOPMENT

TABLE 1-3 The Agile Manifesto

The Manifesto for Agile Software Development
Seventeen anarchists agree:

We are uncovering better ways of developing software by doing it and helping others do it.
Through this work we have come to value:

* Individuals and interactions over processes and tools.

* Working software over comprehensive documentation.

e Customer collaboration over contract negotiation.

® Responding fo change over following a plan.

That is, while we value the items on the right, we value the items on the left more. We follow
the following principles:

e Our highest priority is to satisfy the customer through early and continuous delivery of
valuable software.

* Welcome changing requirements, even late in development. Agile processes harness change
for the customer’s competitive advantage.

e Deliver working software frequently, from a couple of weeks to a couple of months, with
a preference to the shorter timescale.

e Businesspeople and developers work together daily throughout the project.

® Build projects around motivated individuals. Give them the environment and support they
need, and trust them to get the job done.

® The most efficient and effective method of conveying information to and within a development
team is face-to-face conversation.

* Working software is the primary measure of progress.
e Continuous attention to technical excellence and good design enhances agility.

e Agile processes promote sustainable development. The sponsors, developers, and users
should be able to maintain a constant pace indefinitely.

e Simplicity—the art of maximizing the amount of work not done—is essential.

® The best architectures, requirements, and designs emerge from self-organizing teams.

* At regular infervals, the team reflects on how to become more effective, then tunes and
adjusts its behavior accordingly.

—Kent Beck, Mike Beedle, Arie van Bennekum, Alistair Cockburn, Ward Cunningham,
Martin Fowler, James Grenning, Jim Highsmith, Andrew Hunt, Ron Jeffries, Jon Kern,
Brian Marick, Robert C. Martin, Steve Mellor, Ken Schwaber, Jeff Sutherland, Dave Thomas
(www.agileAlliance.org)

(Source: http://agilemanifesto.org/ © 2001, the above authors. This declaration may be freely
copied in any form, but only in its entirety through this notice.)

systems analyst or tester or manager, are not as important as the individuals who fill
those roles. Fowler argues that the application of engineering principles to systems
development has resulted in a view of people as interchangeable units instead of a
view of people as talented individuals, each bringing something unique to the devel-
opment team.

The Agile Methodologies promote a self-adaptive software development pro-
cess. As software is developed, the process used to develop it should be refined
and improved. Development teams can do this through a review process, often
associated with the completion of iterations. The implication is that, as processes
are adapted, one would not expect to find a single monolithic methodology within
a given corporation or enterprise. Instead, one would find many variations of the
methodology, each of which reflects the particular talents and experience of the
team using it.

Agile Methodologies are not for every project. Fowler (2003) recommends an
agile or adaptive process if your project involves

¢ unpredictable or dynamic requirements,
¢ responsible and motivated developers, and
® customers who understand the process and will get involved.

http://www.agileAlliance.org
http://agilemanifesto.org/

CHAPTER 1

TABLE 1-4 Five Critical Factors That Distinguish Agile and Traditional Approaches

to Systems Development

Factor Agile Methods Traditional Methods

Size Well matched to small products and Methods evolved to handle large
teams. Reliance on tacit knowledge products and teams. Hard to tailor
limits scalability. down to small projects.

Criticality ~ Untested on safety-critical products. Methods evolved to handle highly
Potential difficulties with simple critical products. Hard to tailor down
design and lack of documentation. to products that are not critical.

Dynamism Simple design and continuous Detailed plans and Big Design Up Front,
refactoring are excellent for highly excellent for highly stable environment
dynamic environments but a source but a source of expensive rework for
of potentially expensive rework for highly dynamic environments.
highly stable environments.

Personnel Requires continuous presence of a Needs a critical mass of scarce experts
critical mass of scarce experts. during project definition but can work
Risky to use non-agile people. with fewer later in the project, unless

the environment is highly dynamic.

Culture Thrives in a culture where people feel Thrives in a culture where people feel

comfortable and empowered by
having many degrees of freedom
(thriving on chaos).

comfortable and empowered by
having their roles defined by clear
practices and procedures (thriving

THE SYSTEMS DEVELOPMENT ENVIRONMENT

on order).

(Source: Boehm, Barry; Turner, Richard, Balancing Agility and Discipline: A Guide for the
Perplexed, 1st Ed., © 2004. Reprinted and electronically reproduced by permission of Pearson
Education, Inc. New York, NY.)

A more engineering-oriented, predictable process may be called for if the
development team exceeds 100 people or if the project is operating under a fixed-
price or fixed-scope contract. In fact, whether a systems development project is
organized in terms of Agile or more traditional methodologies depends on many dif-
ferent considerations. If a project is considered to be high risk and highly complex,
and has a development team made up of hundreds of people, then more traditional
methods will apply. Less risky, smaller, and simpler development efforts lend them-
selves more to Agile methods. Other determining factors include organizational
practice and standards, and the extent to which different parts of the system will be
contracted out to others for development. Obviously, the larger the proportion of
the system that will be outsourced, the more detailed the design specifications will
need to be so that subcontractors can understand what is needed. Although not uni-
versally agreed upon, the key differences between these development approaches
are listed in Table 1-4, which is based on work by Boehm and Turner (2004). These
differences can be used to help determine which development approach would
work best for a particular project.

Many different individual methodologies come under the umbrella of Agile
Methodologies. Fowler (2003) lists the Crystal family of methodologies, Adaptive
Software Development, Scrum, Feature Driven Development, and others as Agile
Methodologies. Perhaps the best known of these methodologies, however, is
eXtreme Programming, discussed next.

eXtreme Programming

eXtreme Programming is an approach to software development put together by
Beck and Andres (2004). It is distinguished by its short cycles, incremental planning
approach, focus on automated tests written by programmers and customers to monitor
the development process, and reliance on an evolutionary approach to development
thatlasts throughout the lifetime of the system. Key emphases of eXtreme Programming

20 PART I

Object-oriented analysis
and design (OOAD)

Systems development methodologies and
techniques based on objects rather than
data or processes.

Object

A structure that encapsulafes (or packages)
affributes and methods that operate on
those atfributes. An object is an absfraction
of a realworld thing in which data and
processes are placed together to model
the sfructure and behavior of the realworld
object.

Inheritance

The property that occurs when entity
types or object classes are arranged in a
hierarchy and each entity type or object
class assumes the affributes and methods
of its ancestors, that is, those higher up in
the hierarchy. Inheritance allows new but
related classes o be derived from existing
classes.

Object class

A logical grouping of objects that have the
same (or similar) attributes and behaviors
(methods).

FOUNDATIONS FOR SYSTEMS DEVELOPMENT

are its use of two-person programming teams, described later, and having a customer
on-site during the development process. The relevant parts of eXtreme Programming
that relate to design specifications are (1) how planning, analysis, design, and construc-
tion are all fused into a single phase of activity; and (2) its unique way of capturing
and presenting system requirements and design specifications. With eXtreme
Programming, all phases of the life cycle converge into a series of activities based on
the basic processes of coding, testing, listening, and designing.

Under this approach, coding and testing are intimately related parts of the same
process. The programmers who write the code also develop the tests. The emphasis
is on testing those things that can break or go wrong, not on testing everything.
Code is tested very soon after it is written. The overall philosophy behind eXtreme
Programming is that the code will be integrated into the system it is being developed
for and tested within a few hours after it has been written. If all the tests run suc-
cessfully, then development proceeds. If not, the code is reworked until the tests are
successful.

Another part of eXtreme Programming that makes the code-and-test process
work more smoothly is the practice of pair programming. All coding and testing is
done by two people working together to write code and develop tests. Beck says that
pair programming is not one person typing while the other one watches; rather, the
two programmers work together on the problem they are trying to solve, exchanging
information and insight and sharing skills. Compared to traditional coding practices,
the advantages of pair programming include: (1) more (and better) communica-
tion among developers, (2) higher levels of productivity, (3) higher-quality code, and
(4) reinforcement of the other practices in eXtreme Programming, such as the code-
and-test discipline (Beck & Andres, 2004). Although the eXtreme Programming pro-
cess has its advantages, just as with any other approach to systems development, it is
not for everyone and is not applicable to every project.

OBJECT-ORIENTED ANALYSIS AND DESIGN

There is no question that object-oriented analysis and design (OOAD) is becoming
more and more popular (we elaborate on this approach later throughout the book).
OOAD is often called the third approach to systems development, after the process-
oriented and data-oriented approaches. The object-oriented approach combines
data and processes (called methods) into single entities called objects. Objects usually
correspond to the real things an information system deals with, such as customers,
suppliers, contracts, and rental agreements. Putting data and processes together in
one place recognizes the fact that there are a limited number of operations for any
given data structure, and the object-oriented approach makes sense even though
typical systems development keeps data and processes independent of each other.
The goal of OOAD is to make systems elements more reusable, thus improving sys-
tem quality and the productivity of systems analysis and design.

Another key idea behind object orientation is inheritance. Objects are orga-
nized into object classes, which are groups of objects sharing structural and behav-
ioral characteristics. Inheritance allows the creation of new classes that share some of
the characteristics of existing classes. For example, from a class of objects called “per-
son,” you can use inheritance to define another class of objects called “customer.”
Objects of the class “customer” would share certain characteristics with objects of the
class “person”: They would both have names, addresses, phone numbers, and so on.
Because “person” is the more general class and “customer” is more specific, every
customer is a person but not every person is a customer.

As you might expect, a computer programming language is required that can
create and manipulate objects and classes of objects in order to create object-oriented
information systems. Several object-oriented programming languages have been cre-
ated (e.g., G++, Eiffel, and Java). In fact, object-oriented languages were developed

CHAPTER 1 THE SYSTEMS DEVELOPMENT ENVIRONMENT 21

first, and object-oriented analysis and design techniques followed. Because OOAD
is still relatively new, there is little consensus or standardization among the many
OOAD techniques available. In general, the primary task of object-oriented analysis
is identifying objects and defining their structure and behavior and their relation-
ships. The primary tasks of object-oriented design are modeling the details of the
objects’ behavior and communication with other objects so that system requirements
are met, and reexamining and redefining objects to better take advantage of inheri-
tance and other benefits of object orientation.

The object-oriented approach to systems development shares the iterative
development approach of the Agile Methodologies. Some say that the current focus
on agility in systems development is nothing more than the mainstream acceptance
of object-oriented approaches that have been germinating for years, so this similar-
ity should come as no surprise (Fowler, 2003). One of the most popular realizations
of the iterative approach for object-oriented development is the Rational Unified
Process (RUP), which is based on an iterative, incremental approach to systems
development. RUP has four phases: inception, elaboration, construction, and transi-
tion (see Figure 1-11).

In the inception phase, analysts define the scope, determine the feasibility of
the project, understand user requirements, and prepare a software development
plan. In the elaboration phase, analysts detail user requirements and develop a base-
line architecture. Analysis and design activities constitute the bulk of the elaboration
phase. In the construction phase, the software is actually coded, tested, and docu-
mented. In the transition phase, the system is deployed, and the users are trained
and supported. As is evident from Figure 1-11, the construction phase is generally
the longest and the most resource intensive. The elaboration phase is also long, but
less resource intensive. The transition phase is resource intensive but short. The
inception phase is short and the least resource intensive. The areas of the rectangles
in Figure 1-11 provide an estimate of the overall resources allocated to each phase.

Each phase can be further divided into iterations. The software is developed
incrementally as a series of iterations. The inception phase will generally entail
a single iteration. The scope and feasibility of the project is determined at this

Resource

Inception Elaboration Construction Transition

Time

Rational Unified Process
(RUP)

An objectorienfed systems development
methodology. RUP establishes four phases
of development: inception, elaboration,
construction, and fransition. Each phase
is organized info a number of separate
iterations.

FIGURE 1-11
Phases of OOAD-based development

22

PART I

FOUNDATIONS FOR SYSTEMS DEVELOPMENT

stage. The elaboration phase may have one or two iterations and is generally con-
sidered the most critical of the four phases (Kruchten, 2000). The elaboration
phase is mainly about systems analysis and design, although other activities are
also involved. At the end of the elaboration phase, the architecture of the project
should have been developed. The architecture includes a vision of the product, an
executable demonstration of the critical pieces, a detailed glossary and a prelimi-
nary user manual, a detailed construction plan, and a revised estimate of planned
expenditures.

Although the construction phase mainly involves coding, which is accom-
plished in several iterations, revised user requirements could require analysis and
design. The components are developed or purchased and used in the code. As each
executable is completed, it is tested and integrated. At the end of the construction
phase, a beta version of the project is released that should have operational capa-
bilities. The transition phase entails correcting problems, beta testing, user training,
and conversion of the product. The transition phase is complete when the project
objectives meet the acceptance criteria. Once acceptance criteria have been met, the
product can then be released for distribution.

OUR APPROACH TO SYSTEMS DEVELOPMENT

Much of the criticism of the SDLC has been based on abuses of the life cycle per-
spective, both real and imagined. One of the criticisms, one based in reality, is that
reliance on the life-cycle approach forced intangible and dynamic processes, such
as analysis and design, into timed phases that were doomed to fail (Martin, 1999).
Developing software is not like building a bridge, and the same types of engineer-
ing processes cannot always be applied (Fowler, 2003), even though viewing software
development as a science rather than an art has no doubt resulted in vast improve-
ments in the process and the resulting products. Another criticism with its basis in
fact is that life cycle reliance has resulted in massive amounts of process and docu-
mentation, much of which seems to exist for its own sake. Too much process and
documentation does slow down development, hence the streamlining that underlies
the Agile Methodologies and the admonition from Agile developers that source code
is enough documentation. A criticism of the SDLC that is based more on fiction
is that all versions of the SDLC are waterfall-like, with no feedback between steps.
Another false criticism is that a life-cycle approach necessarily limits the involvement
of users in the earliest stages of the process. Yet Agile Methodologies, and eXtreme
Programming in particular, advocate an analysis—design—code—test sequence that is a
cycle (Figure 1-8), and users can be and are involved in every step of this cycle; thus,
cycles in and of themselves do not necessarily limit user involvement.

Whether the criticisms have been based on fact or not, however, it is true that
the traditional SDLC waterfall approach has problems, and we applaud the changes
taking place in the systems development community. These changes are allowing
problems with traditional approaches to be fixed, and without a doubt the result is
better software produced more expertly and more quickly.

However, despite the criticisms of a life-cycle approach to systems analysis and
design, the view of systems analysis and design taking place in a cycle continues to be
pervasive, and, we think, true as well. There are many types of cycles, from the water-
fall to the analysis—design—code—test cycle, and they all capture the iterative nature of
systems development. The waterfall approach may be losing its relevance, but the cycle
in Figure 1-8 is gaining in popularity, and the analysis—design—code—test cycle is embed-
ded in a larger organizational cycle. Although we typically use the terms systems analysis
and design and systems development interchangeably, perhaps it is better to think about
systems analysis and design as being the cycle in Figure 1-8 and systems development as
being the larger cycle in Figure 1-2. The analysis—design—code—test cycle largely ignores
the organizational planning that precedes it and the organizational installation and

CHAPTER 1 THE SYSTEMS DEVELOPMENT ENVIRONMENT

systems maintenance that follow, yet they are all important aspects of the larger systems
development effort. And to us, the best, clearest way to think about both efforts is in
terms of cycles.

Therefore, in this book you will see Figure 1-2 at the beginning of almost every
chapter. We will use our SDLC as an organizing principle in this book, with activities
and processes arranged according to whether they fit under the category of planning,
analysis, design, implementation, or maintenance. To some extent, we will artificially
separate activities and processes so that each one can be individually studied and
understood. Once individual components are clearly understood, it is easier to see
how they fit with other components, and eventually it becomes easy to see the whole.
Just as we may artificially separate activities and processes, we may also construct arti-
ficial boundaries between phases of the SDLC. Our imposition of boundaries should
never be interpreted as hard-and-fast divisions. In practice, as we have seen with the
Agile Methodologies and in the introduction to OOAD, phases and parts of phases
may be combined for speed, understanding, and efficiency. Our intent is to intro-
duce the pieces in a logical manner, so that you can understand all the pieces and
how to assemble them in the best way for your systems development purposes. Yet the
overall structure of the cycle, of iteration, remains throughout. Think of the cycle as

23

an organizing and guiding principle.

SUMMARY

This chapter introduced you to information systems analy-
sis and design, the complex organizational process whereby
computer-based information systems are developed and
maintained. You read about how systems analysis and design
in organizations has changed over the past several decades.
You also learned about the basic framework that guides
systems analysis and design—the systems development life
cycle (SDLC), with its five major phases: planning, analysis,
design, implementation, and maintenance. The SDLC life
cycle has had its share of criticism, which you read about,

and other frameworks have been developed to address the
life cycle’s problems. These approaches include computer-
aided software engineering (CASE) tools and the Agile
Methodologies, the most famous of which is eXtreme
Programming. You were also briefly introduced to object-
oriented analysis and design, an approach that is becoming
more and more popular. All of these approaches share the
underlying idea of iteration, as manifested in the systems
development life cycle and the analysis—design—code—test
cycle of the Agile Methodologies.

KEY TERMS
1.1 Analysis 1.7 Inheritance 1.14 Planning
1.2 Application software 1.8 Logical design 1.15 Rational Unified Process
1.3 Computer-aided software 1.9 Maintenance (RUP)
engineering (CASE) tools 1.10 Object 1.16 Systems analyst
1.4 Design 1.11 Object class 1.17 Systems development life cycle
1.5 Implementation 1.12 Object-oriented analysis and design (SDLC)
1.6 Information systems analysis (OOAD) 1.18 Systems development
and design 1.13 Physical design methodology

Match each of the key terms above with the definition that best
fits it.

The complex organizational process whereby computer-
based information systems are developed and maintained.

Computer software designed to support organizational
functions or processes.

The organizational role most responsible for the analysis
and design of information systems.

A standard process followed in an organization to conduct
all the steps necessary to analyze, design, implement, and
maintain information systems.

The traditional methodology used to develop, maintain,
and replace information systems.

The first phase of the SDLC, in which an organization’s
total information system needs are identified, analyzed,
prioritized, and arranged.

24

PART I

The second phase of the SDLC, in which system require-
ments are studied and structured.

The third phase of the SDLC, in which the description of
the recommended solution is converted into logical and
then physical system specifications.

The part of the design phase of the SDLC in which all
functional features of the system chosen for development
are described independently of any computer platform.

The part of the design phase of the SDLC in which the
logical specifications of the system from logical design are
transformed into technology-specific details from which all
programming and system construction can be accomplished.

The fourth phase of the SDLC, in which the information
system is coded, tested, installed, and supported in the
organization.

The final phase of the SDLC, in which an information sys-
tem is systematically repaired and improved.

Software tools that provide automated support for some
portion of the systems development process.

REVIEW QUESTIONS

FOUNDATIONS FOR SYSTEMS DEVELOPMENT

Systems development methodologies and techniques
based on objects rather than data or processes.

A structure that encapsulates (or packages) attributes
and the methods that operate on those attributes. It is an
abstraction of a real-world thing in which data and pro-
cesses are placed together to model the structure and
behavior of the real-world object.

The property that occurs when entity types or object
classes are arranged in a hierarchy and each entity type
or object class assumes the attributes and methods of its
ancestors—that is, those higher up in the hierarchy. The
property allows new but related classes to be derived from
existing classes.

A logical grouping of objects that have the same (or simi-
lar) attributes and behaviors (methods).

An object-oriented systems development methodology.
This methodology establishes four phases of development,
each of which is organized into a number of separate itera-
tions: inception, elaboration, construction, and transition.

1.19 What is information systems analysis and design? 1.25 Describe how CASE is used to support each phase of the

1.20 How has systems analysis and design changed over the past SDLC.
four decades? 1.26 Explain what is meant by Agile Methodologies.

1.21 List and explain the different phases in the SDLC. 1.27 Whatis eXtreme Programming?

1.22 List and explain some of the problems with the traditional 1.28 When would you use Agile Methodologies versus an
waterfall SDLC. engineering-based approach to development?

1.23 What are CASE tools? 1.29 What is object-oriented analysis and design?

1.24 Describe each major component of a comprehensive CASE
system. Is any component more important than any other?

PROBLEMS AND EXERCISES

1.30 Why is it important to use systems analysis and design 1.33 Compare Figures 1-2 and 1-10. How does Figure 1-10 il-
methodologies when building a system? Why not just lustrate some of the problems of the traditional waterfall
build the system in whatever way appears to be “quick and approach that are not illustrated in Figure 1-2? How does
easy”? What value is provided by using an “engineering” converting Figure 1-10 into a circle (like Figure 1-2) fix
approach? these problems?

1.31 Compare Figures 1-2 and 1-3. What similarities and differ- 1.34 Explain how object-oriented analysis and design differs
ences do you see? from the traditional approach. Why isn’t RUP (Figure 1-11)

1.32 Compare Figures 1-2 and 1-4. Can you match steps in represented as a cycle? Is that good or bad? Explain your

Figure 1-4 with phases in Figure 1-2? How might you
explain the differences between the two figures?

response.

CHAPTER 1

FIELD EXERCISES

THE SYSTEMS DEVELOPMENT ENVIRONMENT 25

1.35 Choose an organization that you interact with regularly
and list as many different “systems” (computer-based or
not) as you can that are used to process transactions, pro-
vide information to managers and executives, help man-
agers and executives make decisions, aid group decision
making, capture knowledge and provide expertise, help
design products and/or facilities, and assist people in com-
municating with one another. Draw a diagram that shows
how these systems interact (or should interact) with one
another. Are these systems well integrated?

1.36 Imagine an information system built without using a systems
analysis and design methodology and without any thinking
about the SDLC. Use your imagination and describe any
and all problems that might occur, even if they seem a bit
extreme or absurd. (The problems you will describe have
probably occurred in one setting or another.)

1.37 Choose a relatively small organization that is just beginning
to use information systems. What types of systems are being
used? For what purposes? To what extent are these systems
integrated with one another? With systems outside the orga-
nization? How are these systems developed and controlled?
Who is involved in systems development, use, and control?

1.88 Interview information systems professionals who use CASE
tools and find out how they use the tools throughout the

REFERENCES

SDLC process. Ask them what advantages and disadvan-
tages they see in using the tools that they do.

1.39 Go to a CASE tool vendor’s website and determine the
product’s price, functionality, and advantages. Try to find
information related to any future plans for the product. If
changes are planned, what changes and/or enhancements
are planned for future versions? Why are these changes
being made?

1.40 Use the web to find out more about the Agile Methodolo-
gies. Write a report on what the movement toward agility
means for the future of systems analysis and design.

1.41 You may want to keep a personal journal of ideas and
observations about systems analysis and design while you
are studying this book. Use this journal to record com-
ments you hear, summaries of news stories or professional
articles you read, original ideas or hypotheses you create,
and questions that require further analysis. Keep your eyes
and ears open for anything related to systems analysis and
design. Your instructor may ask you to turn in a copy of
your journal from time to time in order to provide feed-
back and reactions. The journal is an unstructured set of
personal notes that will supplement your class notes and
can stimulate you to think beyond the topics covered
within the time limitations of most courses.

Beck, K., and C. Andres. 2004. eXtreme Programming eXplained.
Upper Saddle River, NJ: Addison-Wesley.

Boehm, B., and R. Turner. 2004. Balancing Agility and Discipline.
Boston: Addison-Wesley.

Dorfman, M., and R. M. Thayer (eds). 1997. Software Engineering.
Los Alamitos, CA: IEEE Computer Society Press.

Fowler, M. 2003. “The New Methodologies.” December. Avail-
able at http://martinfowler.com/articles/newMethodology.
html. Accessed February 3, 2009.

Fowler, M., and J. Highsmith. 2001. “The Agile Manifesto.”
Available at www.ddj.com/architect/184414755. Accessed
March 19, 2009.

Griss, M. 2003. “Ranking IT Productivity Improvement Strategies.”
Available at http://martin.griss.com/pub/WPGRISSO01.pdf.
Accessed February 3, 2009.

Kay, R. 2002. “QuickStudy: System Development Life Cycle.”
Computerworld, May 14. Available at www.computerworld
.com. Accessed February 3, 2009.

Kruchten, P. 2000. “From Waterfall to Iterative Lifecycle—A
Tough Transition for Project Managers.” Rational Software

White Paper: TP-173 5/00. Available at www.ibm.com/
developerworks/rational. Accessed February 3, 2009.

Martin, R. C. 1999. “Iterative and Incremental Development 1.”
Available at http://www.objectmentor.com/resources/articles/
IIDLpdf. Accessed October 12, 2012.

McDougall, P. 2012. “Cloud Will Create 14 Million Jobs, Study
Says.” InformationWeek, March 5. Available at http://
www.informationweek.com/news/windows/microsoft_
news/232601993. Accessed March 13, 2012.

Mearian, L. 2002. “Merrill Lynch Unit Puts Software Develop-
ment Process to the Test.” Computerworld, October 14. Avail-
able at www.computerworld.com. Accessed February 3,
2009.

Thibodeau, P. 2012. “IT jobs will grow 22% through 2020,
says U.S.” Computerworld, March 29. Available at http://
www.computerworld.com/s/article/print/9225673/
IT_jobs_will_grow_22_through_2020_says_U.S.?taxono
myName=Management+and+Careers&taxonomyld=14.
Accessed March 3, 2012.

http://martinfowler.com/articles/newMethodology.html
http://www.ddj.com/architect/184414755
http://martin.griss.com/pub/WPGRISS01.pdf
http://www.computerworld.com
http://www.ibm.com/developerworks/rational
http://www.objectmentor.com/resources/articles/IIDI.pdf
http://www.informationweek.com/news/windows/microsoft_news/232601993
http://www.informationweek.com/news/windows/microsoft_news/232601993
http://www.computerworld.com
http://www.computerworld.com/s/article/print/9225673/IT_jobs_will_grow_22_through_2020_says_U.S.?taxonomyName=Management+and+Careers&taxonomyId=14
http://www.computerworld.com/s/article/print/9225673/IT_jobs_will_grow_22_through_2020_says_U.S.?taxonomyName=Management+and+Careers&taxonomyId=14
http://www.computerworld.com
http://www.ibm.com/developerworks/rational
http://www.objectmentor.com/resources/articles/IIDI.pdf
http://www.informationweek.com/news/windows/microsoft_news/232601993
http://martinfowler.com/articles/newMethodology.html

Learning Objectives

After studying this chapter, you should be able to
2.1 explain outsourcing,

2.2 describe six different sources of software,

2.3 discuss how to evaluate off-the-shelf software, and

2.4 explain reuse and its role in software development.

Introduction

As you learned in Chapter 1, there was a time, not too
long ago, when no systems analysts and no symbolic com-
puter programming languages existed. Yet people still
wrote and programmed applications for computers. In
Chapter 1 youread about the changes over the last 60-plus
years. Even though today’s systems analyst has dozens of
programming languages and development tools to work
with, you could easily argue that systems development is
even more difficult now than it was 60 years ago. Then,
as well as even more recently, certain issues were decided
for you: If you wanted to write application software, you
did it in-house, and you wrote the software from scratch.
Today there are many different sources of software, and
many of you reading this book will end up working for
firms that produce software, rather than in the informa-
tion systems department of a corporation. But for those
of you who do go on to work in a corporate information
systems department, the focus is no longer exclusively
on in-house development. Instead, the focus will be on
where to obtain the many pieces and components that
you will combine into the application system you have
been asked to create. You and your peers will still write
code, mainly to make all the different pieces work to-
gether, but more and more of your application software
will be written by someone else. Even though you will
not write the code, you will still use the basic structure
and processes of the systems analysis and design life
cycle to build the application systems your organization
demands. The organizational process of systems develop-
ment remains the focus for the rest of the book, but first

26

you need to know more about where software originates
in today’s development environment.

In this chapter, you will learn about the various sources
of software for organizations. The first source considered is
outsourcing, in which all or part of an organization’s infor-
mation systems, their development, and their maintenance
are given over to another organization. You will then read
about six different sources of software: (1) information
technology services firms, (2) packaged software providers,
(8) vendors of enterprise-wide solution software, (4) cloud
computing, (5) open-source software, and (6) the organiza-
tion itself when it develops software in-house. You will learn
about criteria to evaluate software from these different
sources. The chapter closes with a discussion of reuse and
its impact on software development.

SYSTEMS ACQUISITION

Although there will always be some debate about when and
where the first administrative information system was devel-
oped, there is general agreement that the first such system
in the United Kingdom was developed at]. Lyons & Sons.
In the United States, the first administrative information sys-
tem was General Electric’s (GE) payroll system, which was
developed in 1954 (Computer History Museum, 2003). At
that time, and for many years afterward, obtaining an infor-
mation system meant one thing only: in-house development.
The software industry did not even come into existence until
a decade after GE’s payroll system was implemented.

CHAPTER 2 THE ORIGINS OF SOFTWARE 27

Since GE’s payroll system was built, in-house development has become a pro-
gressively smaller piece of all the systems development work that takes place in and
for organizations. Internal corporate information systems departments now spend
a smaller and smaller proportion of their time and effort on developing systems
from scratch. Companies continue to spend relatively little time and money on tra-
ditional software development and maintenance. Instead, they invest in packaged
software, open-source software, and outsourced services. Organizations today have
many choices when seeking an information system. We will start with a discussion of
outsourcing development and operation and then move on to a presentation on the
sources of software.

Outsourcing

If one organization develops or runs a computer application for another orga-
nization, that practice is called outsourcing. Outsourcing includes a spectrum
of working arrangements. At one extreme is having a firm develop and run your
application on its computers—all you do is supply input and take output. A com-
mon example of such an arrangement is a company that runs payroll applications
for clients so that clients do not have to develop an independent in-house pay-
roll system. Instead, they simply provide employee payroll information to the com-
pany, and, for a fee, the company returns completed paychecks, payroll accounting
reports, and tax and other statements for employees. For many organizations, pay-
roll is a very cost-effective operation when outsourced in this way. Another example
of outsourcing would be if you hired a company to run your applications at your
site on your computers. In some cases, an organization employing such an arrange-
ment will dissolve some or all of its information systems (IS) unit and fire all of its
IS employees. Often the company brought in to run the organization’s computing
will rehire many of the organization’s original IS unit employees.

Outsourcing is big business. Some organizations outsource the information
technology (IT) development of many of their IT functions at a cost of billions of
dollars. Most organizations outsource at least some aspect of their information sys-
tems activities. One example of the extent of outsourcing is Shell Oil. In 2008, Shell
signed outsourcing contracts with EDS, T-Systems, and AT&T worth $3.2 billion
USD. In addition, Shell signed application support deals with IBM, Logica, Wipro,
and Accenture. In 2011, Shell outsourced all of its SAP-based human resources and
payroll application management services to Accenture. More than 90,000 Shell em-
ployees in 60 countries around the world use these systems. Accenture delivers these
services through outsourcing centers in India and the Philippines. Individual out-
sourcing vendors, such as EDS, IBM, and Accenture, typically sign large contracts for
their services. These vendors have multiple outsourcing contracts in place with many
different firms all over the world.

Why would an organization outsource its information systems operations? As
we saw in the payroll example, outsourcing may be cost-effective. If a company spe-
cializes in running payroll for other companies, it can leverage the economies of
scale it achieves from running one stable computer application for many organiza-
tions into very low prices. Outsourcing also provides a way for firms to leapfrog their
current position in information systems and to turn over development and opera-
tions to outside staff who possess knowledge and skills not found internally (Ketler
and Willems, 1999). Other reasons for outsourcing include

freeing up internal resources,

increasing the revenue potential of the organization,
reducing time to market,

increasing process efficiencies, and

outsourcing noncore activities.

Outsourcing

The practice of turning over responsibility
for some or all of an organization’s
information systems applications and
operations fo an outside firm.

28

PART I

FOUNDATIONS FOR SYSTEMS DEVELOPMENT

An organization may move to outsourcing and dissolve its entire information
processing unit for political reasons as well, such as overcoming operating problems
the organization faces in its information systems unit. For example, the city of Grand
Rapids, Michigan, hired an outside firm to run its computing center 40 years ago in
order to better manage its computing center employees. Union contracts and civil
service constraints then in force made it difficult to fire people, so the city brought
in a facilities management organization to run its computing operations, and it was
able to getrid of problem employees at the same time. As mentioned earlier, another
reason for total outsourcing is that an organization’s management may feel its core
mission does not involve managing an information systems unit and that it might
achieve more effective computing by turning over all of its operations to a more
experienced, computer-oriented company. Kodak decided in the late 1980s that
it was not in the computer applications business and turned over management of
its mainframes to IBM and management of its personal computers to Businessland
(Applegate and Montealagre, 1991).

Although you have most likely heard about outsourcing in terms of IT jobs from
all over the world going to India, it turns out that the global outsourcing marketplace
is much more complicated. According to a 2014 report by ATKearney (2014), India
is the number one outsourcing nation, while China is close behind, and Malaysia is
third. Despite much turmoil in the overall outsourcing market over the years, the top
three rankings have not changed since ATKearney’s first report on outsourcing in
2003. Not all of the 2014 top 10 outsourcing countries are located in Asia. Although
six are in Asia, two are in Latin America (Mexico and Brazil), one is in Europe
(Bulgaria), and one is in Africa (Egypt). Even the United States is an outsourcing
nation, number 14 on the ATKearney list. In fact, Indian outsourcing firms, such as
Wipro, Infosys, and Tata Consulting, operate offices in the United States. As Indian
firms have become so successful at offshoring, and as currencies have fluctuated, it
has become more expensive for firms to contract with Indian companies, so many
firms have started to look elsewhere. Many US firms have turned to what is called
nearshoring, or contracting with companies in Latin American countries. Many of
these countries are no more than one time zone away, and they maintain some of the
labor cost advantages that are eroding in India (King, 2008a). Mexico is increasingly
seen as a complement to India and other offshore locations and is listed as number
four in the ATKearney 2014 list. It is also becoming more common for firms to dis-
tribute their outsourcing work across vendors in several countries at the same time.

Analysts need to be aware of outsourcing as an alternative. When generating
alternative system development strategies for a system, as an analyst you should con-
sult organizations in your area that provide outsourcing services. It may well be that
at least one such organization has already developed and is running an application
very close to what your users are asking for. Perhaps outsourcing the replacement
system should be one of your alternatives. Knowing what your system requirements
are before you consider outsourcing means that you can carefully assess how well the
suppliers of outsourcing services can respond to your needs. However, should you
decide not to consider outsourcing, you need to determine whether some software
components of your replacement system should be purchased and not built in-house.

Sources of Software

We can group the sources of software into six major categories: information tech-
nology services firms, packaged software producers, enterprise-wide solutions, cloud
computing vendors, open-source software, and in-house developers (Figure 2-1).
These various sources represent points along a continuum of options, with many
hybrid combinations along the way.

Information Technology Services Firms If a company needs an information system
but does not have the expertise or the personnel to develop the system in-house,

CHAPTER 2 THE ORIGINS OF SOFTWARE 29

FIGURE 2-1
Sources of application software

Sources: Middle: Paulista/Fotolia,
Clockwise starting with upper left:
Kamira/Shutterstock; Amit John/
Pearson India Education Services Pvt.
Ltd; Dmitry Kalinovsky/Shutterstock;
mubus/Fotolia; grgroup/Fotolia;

Le Do/Shutterstock

IT Services Firms

Packaged Software
Providers

ERP Providers In-House

and a suitable off-the-shelf system is not available, the company will likely consult
an information technology services firm. IT services firms help companies develop
custom information systems for internal use, or they develop, host, and run applica-
tions for customers, or they provide other services. Note in Table 2-1 that many of
the leading software companies in the world specialize in services, which include
custom systems development. These firms employ people with expertise in the devel-
opment of information systems. Their consultants may also have expertise in a given
business area. For example, consultants who work with banks understand financial

TABLE 2-1 Leading Software Firms and Their Development Specializations

Specialization Example Firms or Websites

IT Services Accenture
Computer Sciences Corporation (CSC)
IBM
HP

Packaged Software Providers Intuit
Microsoft
Oracle
SAP AG
Symantec

Enterprise Software Solutions Oracle
SAP AG

Cloud Computing Amazon.com
Google
IBM
Microsoft

Salesforce.com

Open Source SourceForge.net

30 PARTI FOUNDATIONS FOR SYSTEMS DEVELOPMENT

FIGURE 2-2
A document created in Microsoft's Word

(Source: Microsoft Corporation.)

institutions as well as information systems. Consultants use many of the same meth-
odologies, techniques, and tools that companies use to develop systems in-house.

It may surprise you to see IBM listed as a top global software producer; some
people still think of it as primarily a hardware company. Yet IBM has been moving
away from a reliance on hardware development for many years. The purchase of the
IT consulting arm of PricewaterhouseCoopers by IBM in 2002 solidified its move into
services and consulting. IBM is also well known for its development of web server
and middleware software. Other leading IT services firms include traditional consult-
ing firms, such as Computer Sciences Corp., Accenture, and HP (Hewlett-Packard).
HP, another company formerly focused on hardware, has made the transition to an
IT services firm. In 2008, HP bought EDS, continuing its transition to a services-
oriented company.

Packaged Software Producers The growth of the software industry has been
phenomenal since its beginnings in the mid-1960s. Some of the largest computer
companies in the world are companies that produce software exclusively. A good
example is Microsoft, probably the best-known software company in the world.
Almost 87 percent of Microsoft’s revenue comes from its software sales, mostly for
its Windows operating systems and its personal productivity software, the Microsoft
Office Suite. Also listed in Table 2-1, Oracle is exclusively a software company
known primarily for its database software, but Oracle also makes enterprise sys-
tems. Another company on the list, SAP, is also a software-focused company that
develops enterprise-wide system solutions. You will read more about Oracle and
SAP shortly, in the section on enterprise systems.

Software companies develop what are sometimes called prepackaged or off-the-shelf
systems. Microsoft’s Word (Figure 2-2) and Intuit’s Quicken, QuickPay, and QuickBooks
are popular examples of such software. The packaged software development indus-
try serves many market segments. Their software offerings range from general, broad-
based packages, such as productivity tools, to very narrow, niche packages, such as
software to help manage a day care center. Software companies develop software to run
on many different computer platforms, from microcomputers to large mainframes.
The companies range in size from just a few people to thousands of employees.

- =] ’ MSALHe.Chapterl. doc [Compatibility Mode] - Ward T M - B x
m HOME INSERT DESIGN PAGE LAYOUT REFERENCES MAILINGS REVIEW VIEW POF Microsoft sccount =
- T i ! B e e . M Fnd -
- = 3 v | |3 -lEE .
b TimesNewfo =16 - | A" & A2~ @ LT | 4aBhcel AQBDC AsBBCCI AaBbCel AaSbCeD | i
-] %5 Replace
Paste - x - . N (2 3 30 2RE-T - Emphasts eading T Moemal fong uitithe t
S o FormatPainter | (B £ U - abe x, X v-A- EE=EE= = L] Emphasts Heading 1 Heem: Strong Subtithe [3] | 1 gypper
Clipboard ¥ Fant G Pacagraph o Styles] Editing ~

[CHAPTER TWO
The Origins of Software

Learning Objectives
After studying this chapter, you should be able to:

m Explain outsourcing.

m Deseribe six different sousces of software.

= Discuss how to evaluate off-the-shelf software,

» Explain reuse and its role in software development.
Introduction
As you learned i Chapter 1, there was a time, not too leng ago, when there were no systems
analysts and no symbolic computer programming languages. Yet people still wrote and pro-
grammed applications for computers. You read in Chapter 1 about how things have changed over
the last 50-plus years. Even though today’s systems analyst has dozens of programeving lan-

Euagss and development tools to work with, vou could easily argue that systems development is

PAGEL OF37 5916 WORD

CHAPTER 2 THE ORIGINS OF SOFTWARE 31

Software companies consult with system users after the initial software design
has been completed and an early version of the system has been built. The systems
are then tested in actual organizations to determine whether there are any problems
or if any improvements can be made. Until testing is completed, the system is not
offered for sale to the public.

Some off-the-shelf software systems cannot be modified to meet the specific,
individual needs of a particular organization. Such application systems are some-
times called turnkey systems. The producer of a turnkey system will make changes
to the software only when a substantial number of users ask for a specific change.
However, other off-the-shelf application software can be modified or extended, by
the producer or by the user, to more closely fit the needs of the organization. Even
though many organizations perform similar functions, no two organizations do the
same thing in quite the same way. A turnkey system may be good enough for a certain
level of performance, but it will never perfectly match the way a given organization
does business. A reasonable estimate is that off-the-shelf software can at best meet
70 percent of an organization’s needs. Thus, even in the best case, 30 percent of the
software system does not match the organization’s specifications.

Enterprise Solutions Software As mentioned in Chapter 1, many firms have chosen
complete software solutions, called enterprise solutions or enterprise resource plan-
ning (ERP) systems, to support their operations and business processes. These ERP
software solutions consist of a series of integrated modules. Each module supports
an individual, traditional business function, such as accounting, distribution, manu-
facturing, or human resources. The difference between the modules and traditional
approaches is that the modules are integrated to focus on business processes rather
than on business functional areas. For example, a series of modules will support
the entire order entry process, from receiving an order, to adjusting inventory, to
shipping to billing, to after-the-sale service. The traditional approach would use dif-
ferent systems in different functional areas of the business, such as a billing system
in accounting and an inventory system in the warehouse. Using enterprise software
solutions, a firm can integrate all parts of a business process in a unified information
system. All aspects of a single transaction occur seamlessly within a single informa-
tion system, rather than as a series of disjointed, separate systems focused on busi-
ness functional areas.

The benefits of the enterprise solutions approach include a single repository of
data for all aspects of a business process and the flexibility of the modules. A single
repository ensures more consistent and accurate data, as well as less maintenance.
The modules are flexible because additional modules can be added as needed once
the basic system is in place. Added modules are immediately integrated into the
existing system. However, there are disadvantages to enterprise solutions software.
The systems are very complex, so implementation can take a long time to complete.
Organizations typically do not have the necessary expertise in-house to implement
the systems, so they must rely on consultants or employees of the software vendor,
which can be very expensive. In some cases, organizations must change how they do
business in order to benefit from a migration to enterprise solutions.

Several major vendors provide enterprise solution software. The best known
is probably SAP AG, the German firm mentioned earlier, known for its flagship
product R/ 3. SAP stands for Systems, Applications, and Products in Data Processing.
SAP AG was founded in 1972, but most of its growth has occurred since 1992. Since
2010, SAP has been one of the largest suppliers of software in the world. The other
major vendor of enterprise solutions is Oracle Corp., a US-based firm, perhaps
better known for its database software. Oracle captured a large share of the ERP
market through its own financial systems and through the acquisition of other ERP
vendors. At the end of 2004, Oracle acquired PeopleSoft, Inc., a US firm founded
in 1987. PeopleSoft began with enterprise solutions that focused on human re-
sources management and expanded to cover financials, materials management,

Enterprise resource planning
(ERP) systems

A system that infegrates individual
traditional business functions info a series of
modules so that a single fransaction occurs
seamlessly within a single information
system rather than several separate systems.

32 PARTI FOUNDATIONS FOR SYSTEMS DEVELOPMENT

FIGURE 2-3
SAP’s Business ByDesign, a product
designed for medium-sized companies

(Source: www.sap.com/usa/solutions/

Sme/Businessbydesign/Flash/bsm/A1S.

html. © Copyright SAP AG. All rights
reserved.)

Cloud computing

The provision of computing resources,
including applications, over the Internet,
so customers do not have fo invest in the
computing infrastructure needed to run and
maintain the resources.

s BUSINESS Ap, L
s

Executive
Management
Support
Meet Your
Compliance Company Financial
Management Goals Management
Facilitate Full Optimize Your
Compliance Financials
[Supplier Customer
-\‘ Relationship Relationship
Management Management
Empower Smarter Focus On Your
i Purchasing y Customears
|
\ Drive Manage
1 Project Your
\‘-‘ Success Workforce
% Project Human
%\ N Management Im\::u’:“ Resources
\\ % Supply Chaln fientysenen
- Supply
- . Chain
\\\ Managoment
SUrgy, .]99096
. LT,
‘"“m"t SERVICES AND ¥

distribution, and manufacturing before Oracle acquired them. Just before being
purchased by Oracle, PeopleSoft had boosted its corporate strength in 2003
through acquiring another ERP vendor, JD Edwards. Together, SAP and Oracle
control about 36 percent of the ERP market (Compare Business Products, 2014).
Because the higher end of the market has become saturated with ERP systems,
most ERP vendors are looking to medium and small businesses for growth. For
example, SAP’s offering for medium and small businesses is called SAP Business
ByDesign (Figure 2-3).

Cloud Computing Another method for organizations to obtain applications is to
rent them or license them from third-party providers who run the applications at
remote sites. Users have access to the applications through the Internet or through
virtual private networks. The application provider buys, installs, maintains, and
upgrades the applications. Users pay on a per-use basis or they license the software,
typically month to month. Although this practice has been known by many different
names over the years, today it is called cloud computing. Cloud computing refers to
the provision of applications over the Internet, where customers do not have to invest
in the hardware and software resources needed to run and maintain the applications.
You may have seen the Internet referred to as a cloud in other contexts, which comes
from how the Internet is depicted on computer network diagrams. A well-known
example of cloud computing is Google Apps, where users can share and create docu-
ments, spreadsheets, and presentations (Figure 2-4). Another well-known example is
Salesforce.com, which provides customer relationship management software online.
Cloud computing encompasses many areas of technology, including software as a
service (often referred to as SaaS), which includes Salesforce.com, and hardware as
a service, which includes Amazon Web Services and allows companies to order server
capacity and storage on demand.

Microsoft and IDC predicted that cloud computing would create 14 million
new jobs by 2015 and that the total global market for cloud computing would reach
$1.1 wrillion USD that year (McDougall, 2012). The companies most likely to profit

http://www.sap.com/usa/solutions/Sme/Businessbydesign/Flash/bsm/A1S.html
http://www.sap.com/usa/solutions/Sme/Businessbydesign/Flash/bsm/A1S.html
http://www.sap.com/usa/solutions/Sme/Businessbydesign/Flash/bsm/A1S.html

CHAPTER 2 THE ORIGINS OF SOFTWARE

) [MO0Cs & Beyoad KIS 2L % !! s . ‘
e o111 2Py BB GRC Mstoe helEe_oZE0L gkl bIPu fedaslidesid.ptd

e/ decs googlecomigresents @ O Search we + &=
MOOCs & Beyond ICIS 2013 pptx | heriesrge@gnalcom - |
Fie EGL View lInsen Sio: Formal Amange Tools Table Help Last eci was 2 minutes ago DI Present = Comenenes

+ e @ & [Tl alG- ™~ - B wckoround.. | Layowt- Theme.. Transstion.. 2

Given the cuts to higher education,
and rising tuition, what is
important to U.S. state legislators
and taxpayers? MOOCs?

JowaA STATE UNIVERSITY

COLLEGE OF BUSINESS

Click to add notes

immediately are those that can quickly adjust their product lines to meet the needs
of cloud computing. These include such well-known names as IBM, which has built
multiple cloud computing centers worldwide; Microsoft, which in 2008 announced
its Azure platform to support the development and operation of business applica-
tions and consumer services on its own servers; and Amazon.com, which provides
storage and capacity from its own servers to customers.

As these growth forecasts indicate, taking the cloud computing route has its
advantages. The top three reasons for choosing to go with cloud computing, all of
which result in benefits for the company, are (1) freeing internal IT staff, (2) gaining
access to applications faster than via internal development, and (3) achieving lower-
cost access to corporate-quality applications. Especially appealing is the ability to gain
access to large and complex systems without having to go through the expensive and
time-consuming process of implementing the systems themselves in-house. Getting
your computing through a cloud also makes it easier to walk away from an unsatisfac-
tory systems solution. Other reasons include cost effectiveness, speed to market, and
better performance (Moyle & Kelley, 2011).

IT managers do have some concerns about cloud computing, however. The
primary concern is over security. Concerns over security are based on storing com-
pany data on machines one does not own and that others can access. In fact, the top
two reasons for not using cloud services are concerns about unauthorized access to
proprietary information and unauthorized access to customer information (Moyle &
Kelley, 2011). Another concern is reliability. Some warn that the cloud is actually a
network of networks, and as such, it is vulnerable to unexpected risks due to its com-
plexity (kfc, 2012). Still another concern is compliance with government regulations,
such as the Sarbanes-Oxley Act. Experts recommend a three-step process for secure
migration to the cloud (Moyle & Kelley, 2011). First, have the company’s security
experts involved early in the migration process, so that a vendor who understands the
company’s security and regulatory requirements can be selected. Second, set realistic
security requirements. Make sure the requirements are clearly spelled out as part of
the bidding process. Third, do an honest risk assessment. Determine which data will
be migrated and pay attention to how it will be managed by the cloud vendor. Once
migration has occurred, it is important for companies to continue to monitor their
data and systems and actively work with the vendor to maintain security.

FIGURE 2-4

George.

33

A presentation edited in Google Apps
Reprinted by permission from Joey F.

34

PART I

FOUNDATIONS FOR SYSTEMS DEVELOPMENT

Open-Source Software Open-source software is unlike the other types of software
you have read about so far. Open-source software is different because it is freely
available, not just the final product but the source code itself. It is also different
because it is developed by a community of interested people instead of by employees
of a particular company. Open-source software performs the same functions as
commercial software, such as operating systems, e-mail, database systems, web
browsers, and so on. Some of the most well-known and popular open-source soft-
ware names are Linux, an operating system; mySQL, a database system; and Firefox,
a web browser. Open source also applies to software components and objects. Open
source is developed and maintained by communities of people, and sometimes these
communities can be very large. Developers often use common web resources, such
as SourceForge.net, to organize their activities. As of January 2105, SourceForge.
net hosted 430,000 projects and had over 3.7 million registered users. There is no
question that the open-source movement would not be having the success it enjoys
without the availability of the Internet for providing access and organizing develop-
ment activities.

If the software is free, you might wonder how anybody makes any money by
developing open-source software. Companies and individuals can make money
with open source in two primary ways: (1) by providing maintenance and other
services or (2) by providing one version of the software free and selling a more fully
featured version. Some open-source solutions have more of an impact on the soft-
ware industry than others. Linux, for example, has been very successful in the
server software market, where it is estimated to have as much as 36 percent of the
market share (W3Techs, 2015). In the desktop operating systems market, Linux
has about 1 percent market share. Other open-source software products, such as
mySQL, have also been successful, and open source’s share of the software industry
seems destined to continue to grow.

In-House Development We have talked about several different types of external
organizations that serve as sources of software, but in-house development remains
an option. In-house development has become a progressively smaller piece of all sys-
tems development work that takes place in and for organizations. As you read earlier
in this chapter, internal corporate information systems departments now spend a
smaller and smaller proportion of their time and effort on developing systems from
scratch. In-house development can lead to a larger maintenance burden than other
development methods, such as packaged applications. A study by Banker, Davis, and
Slaughter found that using a code generator as the basis for in-house development
was related to an increase in maintenance hours, whereas using packaged applica-
tions was associated with a decrease in maintenance effort.

Of course, in-house development need not entail development of all of
the software that will constitute the total system. Hybrid solutions involving
some purchased and some in-house software components are common. If you
choose to acquire software from outside sources, this choice is made at the end of
the analysis phase. The choice between a package and an external supplier will be
determined by your needs, not by what the supplier has to sell. As we will discuss,
the results of your analysis study will define the type of product you want to buy
and will make working with an external supplier much easier, more productive,
and worthwhile. Table 2-2 compares the six different software sources discussed
in this section.

Choosing Oft-the-Shelf Software

Once you have decided to purchase off-the-shelf software rather than write some or
all of the software for your new system, how do you decide what to buy? There are
several criteria to consider, and special criteria may arise with each potential software

CHAPTER 2 THE ORIGINS OF SOFTWARE 35

TABLE 2-2 Comparison of Six Different Sources of Software Components

When to Go to This Type of
Producers Organization for Software Internal Staffing Requirements
IT services firms When task requires custom support Internal staff may be needed,
and system can't be built internally depending on application
or system needs to be sourced
Packaged software When supported task is generic Some IS and user staff to define
producers requirements and evaluate
packages
Enterprise-wide For complete systems that cross Some internal staff necessary
solutions vendors functional boundaries but mostly need consultants
Cloud computing For instant access to an application; Few; frees up staff for other
when supported task is generic IT work
Open-source When supported task is generic Some IS and user staff to define
software but cost is an issue requirements and evaluate
packages
In-house developers ~ When resources and staff are Internal staff necessary though
available and system must be built staff size may vary

from scratch

purchase. For each criterion, an explicit comparison should be made between the
software package and the process of developing the same application in-house. The
most common criteria include the following:

Cost

Functionality
Vendor support
Viability of vendor
Flexibility
Documentation
Response time
Ease of installation

These criteria are presented in no particular order. The relative importance of the
criteria will vary from project to project and from organization to organization. If you
had to choose two criteria that would always be among the most important, those
two would probably be vendor viability and vendor support. You do not want to get
involved with a vendor that might not be in business tomorrow. Similarly, you do not
want to license software from a vendor with a reputation for poor support. How you
rank the importance of the remaining criteria will very much depend on the specific
situation in which you find yourself.

Cost involves comparing the cost of developing the same system in-house with
the cost of purchasing or licensing the software package. You should include a com-
parison of the cost of purchasing vendor upgrades or annual license fees with the
costs you would incur to maintain your own software. Costs for purchasing and
developing in-house can be compared based on economic feasibility measures (e.g.,
a present value can be calculated for the cash flow associated with each alternative).

Functionality refers to the tasks the software can perform and the mandatory,
essential, and desired system features. Can the software package perform all or just
some of the tasks your users need? If only some, can it perform the necessary core
tasks? Note that meeting user requirements occurs at the end of the analysis phase
because you cannot evaluate packaged software until user requirements have been
gathered and structured. Purchasing application software is not a substitute for con-
ducting the systems analysis phase; rather, purchasing software is part of one design
strategy for acquiring the system identified during analysis.

As we said earlier, vendor support refers to whether vendor can provide support,
and how much it can provide. Support occurs in the form of assistance with installing

36

PART I

FOUNDATIONS FOR SYSTEMS DEVELOPMENT

the software, training user and systems staff on the software, and providing help as
problems arise after installation. Recently, many software companies have signifi-
cantly reduced the amount of free support they will provide customers, so the cost to
use telephone, on-site, fax, or computer bulletin board support facilities should be
considered. Related to support is the vendor’s viability. You do not want to get stuck
with software developed by a vendor that might go out of business soon. This latter
point should not be minimized. The software industry is quite dynamic, and innova-
tive application software is created by entrepreneurs working from home offices—the
classic cottage industry. Such organizations, even with outstanding software, often
do not have the resources or business management ability to stay in business very
long. Further, competitive moves by major software firms can render the products
of smaller firms outdated or incompatible with operating systems. One software firm
we talked to while developing this book was struggling to survive just trying to make
its software work on any supposedly Windows PC (given the infinite combination of
video boards, monitors, BIOS chips, and other components). Keeping up with hard-
ware and system software changes may be more than a small firm can handle, and
good off-the-shelf application software can be lost.

Flexibility refers to how easy it is for you, or the vendor, to customize the soft-
ware. If the software is not very flexible, your users may have to adapt the way they
work to fit the software. Are they likely to adapt in this manner? Purchased software
can be modified in several ways. Sometimes the vendor will be willing to make cus-
tom changes for you, if you are willing to pay for the redesign and programming.
Some vendors design the software for customization. For example, the software may
include several different ways of processing data and, at installation time, the cus-
tomer chooses which to initiate. Also, displays and reports may be easily redesigned
if these modules are written in a fourth-generation language. Reports, forms, and
displays may be easily customized using a process whereby your company name and
chosen titles for reports, displays, forms, column headings, and so forth are selected
from a table of parameters you provide. You may want to employ some of these same
customization techniques for systems developed in-house so that the software can be
easily adapted for different business units, product lines, or departments.

Documentation includes the user’s manual as well as technical documentation.
How understandable and up-to-date is the documentation? What is the cost for mul-
tiple copies, if required? Response time refers to how long it takes the software pack-
age to respond to the user’s requests in an interactive session. Another measure of
time would be how long it takes the software to complete running a job. Finally, ease
of installation is a measure of the difficulty of loading the software and making it
operational.

Of course, the criteria for software acquisition will vary with the type of system
you are acquiring. For example, if you are thinking about licensing an ERP system,
you will certainly take all of the prior criteria into account, but you will also want to
investigate criteria that are specific to ERP systems. Verville and colleagues (2005)
studied organizations that had acquired ERP systems to discover what the critical
factors were for success. They found 10 success factors, with 5 related to the acquisi-
tion process, and 5 related to the people in the process. They found the acquisition
process had to be highly planned and structured, and it had to be rigorous. For the
process to be successful, nothing could be overlooked during planning. It was impor-
tant that two of the five success factors related to the process were completed before
ERP vendors were contacted. These two factors were determining all of the system
requirements and establishing the selection and evaluation criteria. These two fac-
tors helped the organizations compose clear descriptions of their needs and evaluate
bids from vendors. The fifth processrelated criterion was obtaining accurate infor-
mation. Information sources needed to be verified and cross-validated.

The other five success factors dealt with the people involved in the acquisition
process. The first factor was clear and unambiguous authority. The person in charge
of the process needed to be objective and a strong leader. Second, the composition

CHAPTER 2 THE ORIGINS OF SOFTWARE 37

of the acquisition team was important. The team needed to be diverse, with each
member having a particular skill set that was complementary to those of the other
team members. Third, it was considered important to approach the relationship with
the vendor as a partnership, as opposed to an adversarial or neutral relationship.
Given the complexity and cost of ERP systems, members of the acquiring organiza-
tion would be working with the vendors for several years, so a comfortable working
relationship was essential. Fourth, future users of the ERP system were active partici-
pants in the acquisition process. Lastly, the fifth success factor related to people in
the process was user buy-in. In the companies studied, user buy-in often translated
into user acceptance of the system and even enthusiasm and excitement about it.

Validating Purchased Software Information

One way to get all of the information you want about a software package is to collect it
from the vendor. Some of this information may be contained in the software documen-
tation and technical marketing literature. Other information can be provided upon
request. For example, you can send prospective vendors a questionnaire, asking specific
questions about their packages. This may be part of a request for proposal (RFP) or a
request for quote (RFQ) process your organization requires when major purchases are
made. Space does not permit us to discuss the topic of RFPs and RFQs here; you may
wish to refer to purchasing and marketing texts if you are unfamiliar with such processes
(additional references about RFPs and RFQs are found at the end of this chapter).

There is, of course, no replacement for actually using the software yourself
and running it through a series of tests based on your software selection criteria.
Remember to test not only the software, but also the documentation, training
materials, and even the technical support facilities. One requirement you can place
on prospective software vendors as part of the bidding process is that they install
(free or at an agreed-upon cost) their software for a limited amount of time on your
computers. This way you can determine how their software works in your environ-
ment, not in some optimized environment they have for demonstration purposes.

One of the most reliable and insightful sources is other users of the software.
Vendors will usually provide a list of customers (remember, they will naturally tell you
about satisfied customers, so you may have to probe for a cross section of customers)
and people who are willing to be contacted by prospective customers. And here is
where your personal network of contacts, developed through professional groups,
college friends, trade associations, or local business clubs, can be a resource; do not
hesitate to find some contacts on your own. Such current or former customers can
provide a depth of insight on the use of a package at their organizations.

To gain a range of opinions about possible packages, you can use independent
software testing and abstracting services that periodically evaluate software and col-
lect user opinions. Such surveys are available for a fee either as subscription services
or on demand (two popular services are Auerbach Publishers and DataPro); occa-
sionally, unbiased surveys appear in trade publications. Often, however, articles in
trade publications, even software reviews, are actually seeded by the software manu-
facturer and are not unbiased.

If you are comparing several software packages, you can assign scores for each
package on each criterion and compare the scores using the quantitative method we
demonstrate in Chapter 4 for comparing alternative system design strategies.

REUSE

Reuse is the use of previously written software resources in new applications. Because
so many bits and pieces of applications are relatively generic across applications, it
seems intuitive that great savings can be achieved in many areas if those generic
bits and pieces do not have to be written anew each time they are needed. Reuse

Request for proposal (RFP)
A document provided to vendors that asks
them fo propose hardware and sysfem
software that will meet the requirements of
a new sysfem.

Reuse

The use of previously written software
resources, especially objects and
components, in new applications.

38

PART I

FOUNDATIONS FOR SYSTEMS DEVELOPMENT

should increase programmer productivity because being able to use existing soft-
ware for some functions means they can perform more work in the same amount of
time. Reuse should also decrease development time, minimizing schedule overruns.
Because existing pieces of software have already been tested, reusing them should
also result in higher-quality software with lower defect rates, decreasing mainte-
nance costs.

Although reuse can conceivably apply to many different aspects of software,
typically it is most commonly applied to two different development technologies:
object-oriented and component-based development. You were briefly introduced to
object-oriented development in Chapter 1. For example, consider an object class
created to model an employee. The object class Employee would contain both the
data about employees and the instructions necessary for calculating payroll for a
variety of job types. The object class could be used in any application that dealt with
employees, but if changes had to be made in calculating payroll for different types
of employees, the changes would have to be made only to the object class and not to
the various applications that used it. By definition, using the Employee object class in
more than one application constitutes reuse.

Component-based development is similar to object-oriented development in
that the focus is on creating general-purpose pieces of software that can be used
interchangeably in many different programs. Components can be as small as objects
or as large as pieces of software that handle single business functions, such as cur-
rency conversion. The idea behind component-based development is the assembly of
an application from many different components at many different levels of complex-
ity and size. Many vendors are working on developing libraries of components that
can be retrieved and assembled, as needed, into desired applications.

Some evidence suggests that reuse can be effective, especially for object classes.
For example, one laboratory study found that reuse of object class libraries resulted
in increased productivity, reduced defect density, and reduced rework (Basili et al.,
1996). For HP, a reuse program resulted in cutting time to market for certain prod-
ucts by a factor of three or more, from 18 months to less than 5 months (Griss,
2003). However, for reuse to work in an organizational setting, many different issues
must be addressed. Technical issues include the current lack of a methodology for
creating and clearly defining and labeling reusable components for placement in a
library, and the small number of reusable and reliable software resources currently
available. Key organizational issues include the lack of commitment to reuse, as well
as the lack of proper training and rewards needed to promote it, the lack of organi-
zational support for institutionalizing reuse, and the difficulty in measuring the eco-
nomic gains from reuse. Royce (1998) argues that, due to the considerable costs of
developing a reusable component, most organizations cannot compete economically
with established commercial organizations that focus on selling components as their
main line of business. Success depends on being able to leverage the cost of compo-
nents across a large user and project base (Figure 2-5). There are also key legal and
contractual issues concerning the reuse of object classes and components originally
used in other applications (Kim and Stohr, 1998).

When an organization’s management decides to pursue reuse as a strategy, it is
important for the organization to match its approach to reuse with its strategic busi-
ness goals (Griss, 2003). The benefits of reuse grow as more corporate experience is
gained from it, but so do the costs and the amount of resources necessary for reuse
to work well. Software reuse has three basic steps: abstraction, storage, and recontex-
tualization (Grinter, 2001). Abstraction involves the design of a reusable piece of soft-
ware, starting from existing software assets or from scratch. Storage involves making
software assets available for others to use. Although it sounds like a simple problem,
storage can actually be very challenging. The problem is not simply putting software
assets on a shelf; the problem is correctly labeling and cataloging assets so that others
can find the ones they want to use. Once an asset has been found, recontextualiza-
tion becomes important. This involves making the reusable asset understandable to

CHAPTER 2 THE ORIGINS OF SOFTWARE 39

Many-project solution: High value per unit investment

Development
Cost and
Schedule
Resources

}

5-project solution: 125% more cost and
150% more time

T 2-project solution: 50% more cost and 100% more time

1-project solution

>

Number of Projects Using Reusable Assets

developers who want to use it in their systems. Software is complex, and a software
asset developed for a particular system under system-specific circumstances may not at
all be the asset it appears to be. What appears to be a generic asset called “customer”
may actually be something quite different, depending on the context in which it was
developed. It may often appear to be easier to simply build your own assets rather
than invest the time and energy it takes to establish a good understanding of software
someone else has developed. A key part of a reuse strategy, as mentioned previously,
is establishing rewards, incentives, and organizational support for reuse to help make
it more worthwhile than developing your own assets.

According to Griss (2003), an organization can take one of four approaches
to reuse (Table 2-3). The ad hoc approach to reuse is not really an approach at
all, at least from an official organizational perspective. With this approach, indi-
viduals are free to find or develop reusable assets on their own, and there are few,
if any, organizational rewards for reusing assets. Storage is not an issue, because
individuals keep track of and distribute their own software assets. For such an ad
hoc, individually driven approach, it is difficult to measure any potential benefits
to the company.

Another approach to reuse is facilitated reuse. With this approach, developers are
not required to practice reuse, but they are encouraged to do so. The organization
makes available some tools and techniques that enable the development and sharing

TABLE 2-3 Four Approaches to Reuse

Approach Reuse Level Cost Policies and Procedures
Ad hoc None to low Low None.
Facilitated Low Low Developers are encouraged fo reuse but are not

required to do so.

Managed Moderate Moderate Development, sharing, and adoption of reusable
assets are mandated; organizational policies
are established for documentation, packaging,
and certification.

Designed High High Reuse is mandated; policies are put in place
so that reuse effectiveness can be measured;
code must be designed for reuse during initial
development, regardless of the application
it is originally designed for; there may be a
corporate office for reuse.

(Source: Based on Flashline, Inc. and Griss, 2003.)

FIGURE 2-5
Investments necessary to achieve
reusable components

(Source: Royce, Walker, Software Project
Management: A Unified Framework, 1st ed.,
©1998. Reprinted and Electronically
reproduced by permission of Pearson
Education, Inc. Upper Saddle River,

New Jersey.)

of reusable assets, and one or more employees may be assigned the role of evangelist
to publicize and promote the program. Very little is done to track the quality and use
of reusable assets, however, and the overall corporate investment is small.

Managed reuse is a more structured, and more expensive, mode of managing
software reuse. With managed reuse, the development, sharing, and adoption of
reusable assets is mandated. The organization establishes processes and policies for
ensuring that reuse is practiced and that the results are measured. The organization
also establishes policies and procedures for ensuring the quality of its reusable assets.
The focus is on identifying existing assets that can be potentially reused from various
sources, including from utility asset libraries that come with operating systems, from
companies that sell assets, from the open-source community, from internal reposito-

The most expensive and extensive approach to reuse is designed reuse. In addition
to mandating reuse and measuring its effectiveness, the designed reuse approach
takes the extra step of mandating that assets be designed for reuse as they are being
designed for specific applications. The focus is more on developing reusable assets
than on finding existing assets that might be candidates for reuse. A corporate reuse
office may be established to monitor and manage the overall methodology. Under
such an approach, as much as 90 percent of software assets may be reused across dif-

Each approach to reuse has its advantages and disadvantages. No single
approach is a silver bullet that will solve the reuse puzzle for all organizations and
for all situations. Successful reuse requires an understanding of how reuse fits within
larger organizational goals and strategies, as well as an understanding of the social
and technical world into which the reusable assets must fit.

40 PART I FOUNDATIONS FOR SYSTEMS DEVELOPMENT
ries, from scouring existing legacy code, and so on.
ferent applications.

SUMMARY

As a systems analyst, you must be aware of where you can
obtain software that meets some or all of an organization’s
needs. You can obtain application (and system) software
from information technology services firms, packaged
software providers, vendors of enterprise-wide solution
software, cloud computing vendors, and open-source soft-
ware providers, as well as from internal systems develop-
ment resources, including the reuse of existing software
components. You can even hire an organization to handle

KEY TERMS

all of your systems development needs, which is called
outsourcing. You must also know the criteria to use when
choosing among off-the-shelf software products. These cri-
teria include cost, functionality, vendor support, vendor
viability, flexibility, documentation, response time, and
ease of installation. Requests for proposals are one way
you can collect more information about system software,
its performance, and its costs.

2.1 Cloud computing 2.3 Outsourcing
2.2 Enterprise resource planning

(ERP) systems

Match each of the key terms above with the definition that best
fits it.

The practice of turning over responsibility of some or all
of an organization’s information systems applications and
operations to an outside firm.

A system that integrates individual traditional business
functions into a series of modules so that a single transac-
tion occurs seamlessly within a single information system,
rather than several separate systems.

2.5 Reuse

2.4 Request for proposal (RFP)

A document that is provided to vendors to ask them to
propose hardware and system software that will meet the
requirements of your new system.

The use of previously written software resources, especially
objects and components, in new applications.

The provision of computing resources, including applica-
tions, over the Internet so customers do not have to invest
in the computing infrastructure needed to run and main-
tain computing resources.

REVIEW QUESTIONS

CHAPTER 2 THE ORIGINS OF SOFTWARE 41

2.6 Describe and compare the various sources of software.

2.7 How can you decide among various off-the-shelf software
options? What criteria should you use?

2.8 What is an RFP, and how do analysts use one to gather infor-
mation on hardware and system software?

2.9 What methods can a systems analyst employ to verify vendor
claims about a software package?

PROBLEMS AND EXERCISES

2.10 What are ERP systems? What are the benefits and disadvan-
tages of such systems as a design strategy?

2.11 Explain reuse and its advantages and disadvantages.

2.12 Compare and contrast the four approaches to reuse.

2.13 Research how to prepare an RFP.

2.14 Review the criteria for selecting off-the-shelf software pre-
sented in this chapter. Use your experience and imagination
and describe other criteria that are or might be used to select
off-the-shelf software in the real world. For each new crite-
rion, explain how use of this criterion might be functional
(i.e., it is useful to use this criterion), dysfunctional, or both.

2.15 In the section on choosing off-the-shelf software, eight
criteria are proposed for evaluating alternative packages.

FIELD EXERCISES

Suppose the choice was between alternative custom soft-
ware developers rather than prewritten packages. What cri-
teria would be appropriate to select and compare among
competing bidders for custom development of an applica-
tion? Define each of these criteria.

2.16 How might the project team recommending an ERP design
strategy justify its recommendation as compared with other
types of design strategies?

2.17 Interview businesspeople who participate in the purchase
of off-the-shelf software in their organizations. Review
with them the criteria for selecting off-the-shelf software
presented in this chapter. Have them prioritize the list of
criteria as they are used in their organization and provide
an explanation of the rationale for the ranking of each cri-
terion. Ask them to list and describe any other criteria that
are used in their organization.

2.18 Obtain copies of actual RFPs used for information systems
developments and/or purchases. If possible, obtain RFPs

REFERENCES

from public and private organizations. Find out how they are
used. What are the major components of these proposals? Do
these proposals seem to be useful? Why or why not? How and
why do RFPs from public and private organizations differ?

2.19 Contact an organization that has implemented or is imple-
menting an integrated ERP application. Why did it choose
this design strategy? How has it managed this development
project differently from prior large projects? What organi-
zational changes have occurred due to this design strategy?
How long did the implementation last, and why?

Applegate, L. M., and R. Montealegre. 1991. “Eastman Kodak
Company: Managing Information Systems through Stra-
tegic Alliances.” Harvard Business School case 9-192-030.
Cambridge, MA: President and Fellows of Harvard College.

ATKearney. 2014. “A Wealth of Choices: From Anywhere on
Earth to No Location at All.” Available at http://www
.atkearney.com/research-studies/global-services-location-
index. Accessed February 21, 2015.

Banker, R. D., G. B. Davis, and S. A. Slaughter. 1998. “Software
Development Practices, Software Complexity, and Software
Maintenance Performance: A Field Study.” Management
Science 44(4): 433-50.

Basili, V. R., L. C. Briand, and W. L. Melo. 1996. “How Reuse
Influences Productivity in Object-Oriented Systems.” Com-
munications of the ACM 39(10): 104-16.

Compare Business Products. 2014. “The Top Ten ERP Vendors.”
Available at http://www.comparebusinessproducts.com/
resources/item/the-top-ten-erp-vendors-2015. Accessed
February 21, 2015.

Computer History Museum. 2003. Timeline of Computer
History. Available at www.computerhistory.org. Accessed
February 14, 2009.

Grinter, R. E. 2001. “From Local to Global Coordination:
Lessons from Software Reuse.” In Proceedings of Group 01,
144-53. Boulder, CO: Association for Computing Machin-
ery SIGGROUP.

Griss, M. 2003. “Reuse Comes in Several Flavors.” Flashline white
paper. Available at www.flashline.com. Accessed February
10, 2009.

Ketler, K., and J. R. Willems. 1999. “A Study of the Outsourcing
Decision: Preliminary Results.” Proceedings of SIGCPR 99,
New Orleans, LA: 182-89.

kfc. 2012. “The Hidden Risk of a Meltdown in the Cloud.”
Technology Review. Available at http://www.technologyre-
view.com/printer_{friendly_blog.aspx?id=27642. Accessed
April 17, 2012.

Kim, Y., and E. A. Stohr. 1998. “Software Reuse: Survey and
Research Directions.” Journal of MIS 14(4): 113—47.

http://www.atkearney.com/research-studies/global-services-locationindex
http://www.comparebusinessproducts.com/resources/item/the-top-ten-erp-vendors-2015
http://www.computerhistory.org
http://www.flashline.com
http://www.technologyre-view.com/printer_friendly_blog.aspx?id=27642
http://www.technologyre-view.com/printer_friendly_blog.aspx?id=27642
http://www.atkearney.com/research-studies/global-services-locationindex
http://www.atkearney.com/research-studies/global-services-locationindex
http://www.comparebusinessproducts.com/resources/item/the-top-ten-erp-vendors-2015

42 PART I

King, L. 2010. “Shell Standardising Operations in $3bn Saving
Drive.” Computerworld UK, February 4. Available at http://
www.computerworlduk.com/news/applications/18669/.
Accessed January 11, 2012.

King, R. 2008a. “The New Economics of Outsourcing.” Business-
Week online, April 7. Available at http://www.businessweek
.com/stories/2008-04-07/the-new-economics-ofoutsourc-
ingbusinessweek-business-news-stock-market-and-financial-
advice. Accessed August 25, 2012.

McDougall, P. 2012. “Cloud Will Create 14 Million Jobs, Study
Says.” InformationWeek, March 5. Available at http://
www.informationweek.com/news/windows/microsoft_
news/232601993. Accessed March 13, 2012.

Moyle, E., and D. Kelley. 2011. “Cloud Security: Understand the
Risks Before You Make the Move.” InformationWeek Analytics.
Available at http://analytics.informationweek.com. Accessed
April 14, 2012.

FOUNDATIONS FOR SYSTEMS DEVELOPMENT

Nguyen, A. 2012. “Shell Completes Transition of HR
Application Services to Accenture.” Computerworld UK,
January 25. From http://www.computerworld.com/s/
article/print/9223159/Shell_completes_transition_of_
HR_application_services_to_Accenture. Accessed Janu-
ary 11, 2012.

Royce, W. 1998. Software Project Management: A Unified Framework.
Boston: Addison-Wesley.

Verville, J., C. Bernadas, and A. Halingten. 2005. “So You’re
Thinking of Buying an ERP? Ten Critical Factors for Suc-
cessful Acquisition.” Journal of Enterprise Information Manage-
ment 18(6), 665-77.

W5Techs, 2015. “Usage Statistics and Market Share of Linux for
Websites.” Available at http://w3techs.com/technologies/
details/os-linux/all/all. Accessed on February 21, 2015.

http://www.computerworlduk.com/news/applications/18669/
http://www.computerworlduk.com/news/applications/18669/
http://www.businessweek.com/stories/2008-04-07/the-new-economics-ofoutsourcingbusinessweek-business-news-stock-market-and-financialadvice
http://www.informationweek.com/news/windows/microsoft_news/232601993
http://www.informationweek.com/news/windows/microsoft_news/232601993
http://analytics.informationweek.com
http://www.computerworld.com/s/article/print/9223159/Shell_completes_transition_of_HR_application_services_to_Accenture
http://w3techs.com/technologies/details/os-linux/all/all
http://www.businessweek.com/stories/2008-04-07/the-new-economics-ofoutsourcingbusinessweek-business-news-stock-market-and-financialadvice
http://www.informationweek.com/news/windows/microsoft_news/232601993
http://www.computerworld.com/s/article/print/9223159/Shell_completes_transition_of_HR_application_services_to_Accenture
http://www.computerworld.com/s/article/print/9223159/Shell_completes_transition_of_HR_application_services_to_Accenture
http://w3techs.com/technologies/details/os-linux/all/all

PETRI PETRIE ELECTRONICS
ELECTRONI

Chapter 2: The Origins of Software

Jim Watanabe looked around his new office. He couldn’t
believe that he was the assistant director of information
technology at Petrie Electronics, his favorite consumer
electronics retail store. He always bought his new DVDs
and video games for his Xbox 360 at Petrie. In fact, he
bought his Blu-ray player and his Xbox 360 at Petrie,
along with his surround sound system and his 40-inch flat-
screen HD LED TV. And now he worked there, too. The
employee discount was a nice perk1 of his new job, but
he was also glad that his technical and people skills were
finally recognized by the people at Petrie. He worked
for five years at Broadway Entertainment Company as a
senior systems analyst, and it was clear that he was not
going to be promoted there. He was really glad he posted
his résumé on Monster.com and that now he had a bigger
salary and a great job with more responsibility at Petrie.

Petrie Electronics started as a single electronics store
in 1984 in San Diego, California. The store was started by
Jacob Rosenstein in a strip mall. It was named after Rob
Petrie, the TV writer played by Dick Van Dyke in the TV
show of the same name. Rosenstein always liked that show.
When he had grown the store to a chain of 13 locations in
the Southern California area, the business became too much
for Rosenstein to handle. He sold out in 1992, for a hand-
some profit, to the Matsutoya Corporation, a huge Japanese
conglomerate that saw the chain of stores as a place to sell
its many consumer electronics goods in the United States.

Matsutoya aggressively expanded the chain to 218
stores nationwide by the time they sold it in 2002, for a
handsome profit, to Sam and Harry’s, a maker and seller
of ice cream. Sam and Harry’s was looking for a way to
diversify and invest the considerable cash they made
creating and selling ice cream, with flavors named after
actors and actresses, like their best-selling Lime Neeson
and Jim Carrey-mel. Sam and Harry’s brought in pro-
fessional management to run the chain, and since they
bought it, they had added 15 more stores, including 1
in Mexico and 3 in Canada. Even though they originally
wanted to move the headquarters to their home-base state
of Delaware, Sam and Harry decided to keep Petrie head-
quartered in San Diego.

The company had made some smart moves and had done
well, Jim knew, but he also knew that competition was
fierce. Petrie competitors included big electronics retail
chains like BestBuy. In California, Fry’s was a ferocious
competitor. Other major players in the arena included the
electronics departments of huge chains like Walmart and
Target and online vendors like Amazon.com. Jim knew
that part of his job in IT was to help the company grow and
prosper and beat the competition—or at least survive.

lperquisite

CHAPTER 2 THE ORIGINS OF SOFTWARE 43

Just then, as Jim was trying to decide if he needed a big-
ger TV, Ella Whinston, the CEO at Petrie, walked into his
office. “How’s it going, Jim? Joe keeping you busy?” Joe
was Joe Swanson, Jim’s boss, the director of IT. Joe was
away for the week, at a meeting in Tucson, Arizona. Jim
quickly pulled his feet off his desk.

“Hi, Ella. Oh, yeah, Joe keeps me busy. I've got to get
through the entire corporate strategic IT plan before he
gets back—he’s going to quiz me—and then there’s the
new help desk training we're going to start next week.”

“I didn’t know we had a strategic IT plan,” Ella teased.
“Anyway, what I came in here for is to give you some good
news. [want you to be the project manager for a project
that’s crucial to our corporate survival.”

“Me?” Jim said, “But I just got here.”

“Who better than you? You have a different perspective,
new ideas. You aren’t chained down by the past and by
the Petrie way of doing things, like the rest of us. Not that
it matters, since you don’t have a choice. Joe and I both
agree that you're the best person for the job.”

“So,” Jim asked, “what’s the project about?”

“Well,” Ella began, “the executive team has decided that
the number one priority we have right now is to not only
survive but to thrive and prosper, and the way to do that
is to develop closer relationships with our customers. The
person on the executive team who’s even more excited
about this than me is John Smith, head of marketing. We
want to attract new customers, like all of our competitors.
But also like our competitors, we want to keep our cus-
tomers for life, kind of like a frequent-flier program, but
better. Better for us and for our loyal customers. And we
want to reward most the customers who spend the most.
We're calling the project ‘No Customer Escapes.”

“I hope that’s only an internal name,” Jim joked.
“Seriously, I can see how something like this would
be good for Petrie, and I can see how IT would play an
important, no, crucial role in making something like this
happen. So, what’s the next step in getting the project
approved?”

Case Questions

2.20 How do information systems projects get started in
organizations?

2.21 How are organizational information systems related
to company strategy? How does strategy affect the
information systems a company develops and uses?

2.22 Research customer loyalty programs in retail firms.
How common are they? What are their primary
features?

2.23 What do you think Jim’s next step would be? Why?

2.24 Why would a systems analyst new to a company be
a good choice to lead an important systems develop-
ment effort?

N\ Pl

Learning Objectives

After studying this chapter, you should be able to

3.1 explain the process of managing an information
systems project, including project initiation, project
planning, project execution, and project
closedown,

3.2 describe how to represent and schedule project
plans using Gantt charts and network diagrams, and

3.3 explain how commercial project management
software packages can be used to assist in
representing and managing project schedules.

Introduction

In Chapters 1 and 2, we introduced the five phases of
the systems development life cycle (SDLC) and explained
how an information systems project moves through those
five phases, in some cases repeatedly. In this chapter,
we focus on the systems analyst’s role as project man-
ager of an information systems project. Throughout the
SDLC, the project manager is responsible for initiat-
ing, planning, executing, and closing down the systems
development project. Project management is arguably
the most important aspect of an information systems
development project. Effective project management
helps to ensure that systems development projects meet
customer expectations and are delivered within budget
and time constraints.

Today, there is a shift in the types of projects most
firms are undertaking, which makes project manage-
ment much more difficult and even more critical to
project success (Fuller et al., 2008; Schiff, 2014a). For ex-
ample, in the past, organizations focused much of their
development on very large, custom-designed, stand-alone
applications. Today, much of the systems development ef-
fort in organizations focuses on implementing packaged
software such as enterprise resource planning (ERP)
and data warehousing systems. Existing legacy applica-
tions are also being modified so that business-to-business
transactions can occur seamlessly over the Internet. New
web-based interfaces are being added to existing legacy
systems so that a broader range of users, often distributed
globally, can access corporate information and systems.
Additionally, software developed by global outsourcing

44

partners that must be integrated into an organization’s
existing portfolio of applications is now common practice
(Overby, 2013). Working with vendors to supply applica-
tions, with customers or suppliers to integrate systems, or
with a broader and more diverse user community requires
that project managers be highly skilled. Consequently, it is
important that you gain an understanding of the project
management process; this will become a critical skill for
your future success.

In this chapter, we focus on the systems analyst’s role
in managing information systems projects and will refer
to this role as the project manager. The first section will
provide the background for Pine Valley Furniture (PVF),
a manufacturing company that we will visit throughout
the remainder of the book. We will then provide you with
an understanding of the project manager’s role and the
project management process. The discussion then turns
to techniques for reporting project plans using Gantt
charts and network diagrams. The chapter will conclude
with a discussion of the use of commercially available proj-
ect management software that can be used to assist with a
wide variety of project management activities.

PINE VALLEY FURNITURE
COMPANY BACKGROUND

PVF manufactures high-quality wood furniture and dis-
tributes it to retail stores throughout the United States.
Its product lines include dinette sets, stereo cabinets,

CHAPTER 3 MANAGING THE INFORMATION SYSTEMS PROJECT

wall units, living room furniture, and bedroom furniture. In the early 1980s, PVF’s
founder, Alex Schuster, started to make and sell custom furniture in his garage. Alex
managed invoices and kept track of customers by using file folders and a filing cabi-
net. By 1984, business expanded and Alex had to rent a warehouse and hire a part-
time bookkeeper. PVF’s product line had multiplied, sales volume had doubled, and
staff had increased to 50 employees. By 1990, PVF moved into its third and present
location. Due to the added complexity of the company’s operations, Alex reorga-
nized the company into the following functional areas:

¢ Manufacturing, which was further subdivided into three separate functions—
Fabrication, Assembling, and Finishing

Sales

Orders

Accounting

Purchasing

Alex and the heads of the functional areas established manual information
systems, such as accounting ledgers and file folders, which worked well for a time.
Eventually, however, PVF selected and installed a network server to automate invoic-
ing, accounts receivable, and inventory control applications.

When the applications were first computerized, each separate application had
its own individual data files tailored to the needs of each functional area. As is typical
in such situations, the applications closely resembled the manual systems on which
they were based. Three computer applications at PVF are depicted in Figure 3-1:
order filling, invoicing, and payroll. In the late 1990s, PVF formed a task force to study
the possibility of moving to a database approach. After a preliminary study, manage-
ment decided to convert its information systems to such an approach. The company
upgraded its network server and implemented a centralized database management
system. Today, PVF has successfully deployed an integrated, company-wide database
and has converted its applications to work with the database. However, PVF is continu-
ing to grow at a rapid rate, putting pressure on its current application systems.

The computer-based applications at PVF support its business processes. When
customers order furniture, their orders must be processed appropriately: Furniture
must be built and shipped to the right customer and the right invoice mailed to the

)

PINE
VALLEY
FURNITURE

Orders Department Accounting Department Payroll Department

Program Program Program Program Program Program Program
A B C A B A B

Customer
Master
File

Customer
Master
File

Inventory Back Inventory
Master Order Pricing
File File File

FIGURE 3-1

Three computer applications at PVF: order filling, invoicing, and payroll

Hoffer, Jeffrey A.; Venkataraman, Ramesh; Topi, Heikki, Modern Database Management, 11th Ed., ©2013,
p- 8. Reprinted and electronically reproduced by permission of Pearson Education, Inc., New York, NY.

> Order Filling € Invoicing Payroll
— System . System System
t \4 ¢

Employee

Master
File

45

46 PART I

Project manager

A systems analyst with a diverse set of
skills—management, leadership, technical,
conflict management, and customer
relationship—who is responsible for
initiating, planning, executing, and closing
down a project.

Project

A planned undertaking of related activities
to reach an objective that has a beginning
and an end.

s | PINE
VALLEY
= FURNITURE

Deliverable
An end product of an SDLC phase.

FOUNDATIONS FOR SYSTEMS DEVELOPMENT

right address. Employees have to be paid for their work. Given these tasks, most of
PVF’s computer-based applications are located in the accounting and financial areas.
The applications include order filling, invoicing, accounts receivable, inventory con-
trol, accounts payable, payroll, and general ledger. At one time, each application had
its own data files. For example, there was a customer master file, an inventory master
file, a back-order file, an inventory pricing file, and an employee master file. The
order filling system used data from three files: customer master, inventory master,
and back order. Today, however, all systems are designed and integrated through
a company-wide database in which data are organized around entities, or subjects,
such as customers, invoices, and orders.

PVF, like many firms, decided to develop its application software in-house; that
is, it hired staff and bought the computer hardware and software necessary to build
application software suited to its own needs. (Other methods used to obtain appli-
cation software were discussed in Chapter 2.) Although PVF continues to grow at a
rapid rate, market conditions are becoming extremely competitive, especially with
the advent of the Internet and the web. Let’s see how a project manager plays a key
role in developing a new information system for PVF.

MANAGING THE INFORMATION SYSTEMS PROJECT

Project management is an important aspect of the development of information sys-
tems and a critical skill for a systems analyst. The focus of project management is to
ensure that systems development projects meet customer expectations and are deliv-
ered within budget and time constraints.

The project manager is a systems analyst with a diverse set of skills——manage-
ment, leadership, technical, conflict management, and customer relationship—who
is responsible for initiating, planning, executing, and closing down a project. As a
project manager, your environment is one of continual change and problem solving.
In some organizations, the project manager is a very experienced systems analyst,
whereas in others, both junior and senior analysts are expected to take on this role,
managing parts of a project or actively supporting a more senior colleague who
assumes the project manager role. Understanding the project management process
is a critical skill for your future success.

Creating and implementing successful projects requires managing the
resources, activities, and tasks needed to complete the information systems project.
A project is a planned undertaking of a series of related activities to reach an objec-
tive that has a beginning and an end. The first question you might ask yourself is
“Where do projects come from?” and, after considering all the different things that
you could be asked to work on within an organization, “How do I know which proj-
ects to work on?” The ways in which each organization answers these questions vary.

In the rest of this section, we describe the process followed by Juanita Lopez
and Chris Martin during the development of PVF’s Purchasing Fulfillment System.
Juanita works in the Order department, and Chris is a systems analyst.

Juanita observed problems with the way orders were processed and reported:
Sales growth had increased the workload for the Manufacturing department, and the
current systems no longer adequately supported the tracking of orders. It was becom-
ing more difficult to track orders and get the right furniture and invoice to the right
customers. Juanita contacted Chris, and together they developed a system that cor-
rected these Order department problems.

The first deliverable, or end product, produced by Chris and Juanita was a System
Service Request (SSR), a standard form PVF uses for requesting systems development
work. Figure 3-2 shows an SSR for a purchasing fulfillment system. The form includes
the name and contact information of the person requesting the system, a statement of
the problem, and the name and contact information of the liaison and sponsor.

CHAPTER 3

Pine Valley Furniture
System Service Request

REQUESTED BY Juanita Lopez DATE

October 1, 2017

DEPARTMENT Purchasing, Manufacturing Support
LOCATION Headquarters, 1-322
CONTACT Tel: 4-3267 FAX: 4-3270 e-mail: jlopez

TYPE OF REQUEST
[X1

[]
[]

URGENCY
New System [] Immediate — Operations are impaired or
opportunity lost

System Enhancement [] Problems exist, but can be worked around
System Error Correction [X] Business losses can be tolerated until new
system installed

PROBLEM STATEMENT

Sales growth at PVF has caused greater volume of work for the manufacturing support unit within Purchasing. Further,
more concentration on customer service has reduced manufacturing lead times, which puts more pressure on purchasing
activities. In addition, cost-cutting measures force Purchasing to be more aggressive in negotiating terms with vendors,
improving delivery times, and lowering our investments in inventory. The current modest systems support for
Manufacturing/Purchasing is not responsive to these new business conditions. Data are not available, information cannot
be summarized, supplier orders cannot be adequately tracked, and commodity buying is not well supported. PVF is
spending too much on raw materials and not being responsive to manufacturing needs.

SERVICE REQUEST
| request a thorough analysis of our current operations with the intent to design and build a completely new information
system. This system should handle all purchasing transactions, support display and reporting of critical purchasing data,

and assist purchasing agents in commodity buying.

IS LIAISON Chris Martin (Tel: 4-6204 FAX: 4-6200 e-mail: cmartin)

SPONSOR Sal Divario, Director, Purchasing

------------------------- TO BE COMPLETED BY SYSTEMS PRIORITY BOARD
Request approved Assigned to
Start date

Recommend revision
Suggest user development
Reject for reason

This request was then evaluated by the Systems Priority Board of PVF. Because
all organizations have limited time and resources, not all requests can be approved.
The board evaluates development requests in relation to the business problems or
opportunities the system will solve or create; it also considers how the proposed proj-
ect fits within the organization’s information systems architecture and long-range
development plans. The review board selects those projects that best meet overall or-
ganizational objectives (we learn more about organizational objectives in Chapter 4).
In the case of the Purchasing Fulfillment System request, the board found merit in
the request and approved a more detailed feasibility study. A feasibility study, which
is conducted by the project manager, involves determining if the information system
makes sense for the organization from an economic and operational standpoint. The
study takes place before the system is constructed. Figure 3-3 is a graphical view of
the steps followed during the project initiation of the Purchasing Fulfillment System.

In summary, systems development projects are undertaken for two primary rea-
sons: to take advantage of business opportunities and to solve business problems.
Taking advantage of an opportunity might mean providing an innovative service
to customers through the creation of a new system. For example, PVF may want to
create a website so that customers can easily access its catalog and place orders at any
time. Solving a business problem could involve modifying the way an existing system
processes data so that more accurate or timely information is provided to users. For
example, a company such as PVF may create a password-protected intranet site that
contains important announcements and budget information. Of course, projects
are not always initiated for the aforementioned rational reasons (taking advantage

MANAGING THE INFORMATION SYSTEMS PROJECT

47

FIGURE 3-2

System Service Request for Purchasing
Fulfillment System with name and contact
information of the person requesting the
system, a statement of the problem, and
the name and contact information of the
liaison and sponsor

Feasibility study

A study that defermines if the proposed
information system makes sense for the
organization from an economic and
operational standpoint.

48 PART I FOUNDATIONS FOR SYSTEMS DEVELOPMENT

FIGURE 3-3

A graphical view of the five steps
followed during the project initiation of
the Purchasing Fulfillment System

Sources: Top to bottom: mast3r/
Shutterstock; sheff/Shutterstock;
wavebreakmedia/Shutterstock; Rob
Marmion/123rf; wavebreakmedia/
Shutterstock

Project management
A controlled process of initiating, planning,
executing, and closing down a project.

@ Juanita observed problems with the existing
purchasing system.

@ Juanita contacted Chris within the IS development
group to initiate a System Service Request.

@ SSR was reviewed and approved by Systems
Priority Board.

Steering committee was assigned to oversee project.

@ Detailed project plan was developed and executed.

of business opportunities or solving business problems). For example, in some in-
stances, organizations and government undertake projects to spend resources, to at-
tain or pad budgets, to keep people busy, or to help train people and develop their
skills. Our focus in this chapter is not on how and why organizations identify projects
but on the management of projects once they have been identified.

Once a potential project has been identified, an organization must determine
the resources required for its completion. This is done by analyzing the scope of
the project and determining the probability of successful completion. After getting
this information, the organization can then determine whether taking advantage of
an opportunity or solving a particular problem is feasible within time and resource
constraints. If deemed feasible, a more detailed project analysis is then conducted.
As you will see, the ability to determine the size, scope, and resource requirements of
a project is just one of the many skills that a project manager must possess. A project
manager is often thought of as a juggler keeping aloft many balls, which reflect the
various aspects of a project’s development, as depicted in Figure 3-4.

To successfully orchestrate the construction of a complex information system, a
project manager must have interpersonal, leadership, and technical skills. Table 3-1
lists the project manager’s common skills and activities. Note that many of the skills
are related to personnel or general management, not simply technical skills. Table 3-1
shows that not only does an effective project manager have varied skills, but he or
she is also the most instrumental person to the successful completion of any project.

The remainder of this chapter will focus on the project management process,
which involves four phases:

1. Initiating the project

2. Planning the project

3. Executing the project

4. Closing down the project

CHAPTER 3 MANAGING THE INFORMATION SYSTEMS PROJECT 49

Customer and
Management
Expectations
Documentation
and
Communication

Technological
Change

FIGURE 3-4
A project manager juggles numerous
activities

Source: ra2 studio/Fotolia

Systems Time and

Development Resource
Life Cycle Constraints

Project
Management

Organizational
Change and
Complexity

Contractors Managing
and Vendors People

Methodologies
and Tools

Several activities must be performed during each of these four phases. Following
this formal project management process greatly increases the likelihood of project

Success.

TABLE 3-1 Common Activities and Skills of a Project Manager

Activity Description

Skill

Leadership Influencing the activities of others toward the
attainment of a common goal through the use of
intelligence, personality, and abilities

Management Getting projects completed through the effective
utilization of resources

Customer relations Working closely with customers to ensure that
project deliverables meet expectations
Technical problem Designing and sequencing activities to attain
solving project goals

Conflict management Managing conflict within a project team to assure
that conflict is not too high or too low

Team management Managing the project team for effective team
performance
Risk and change Identifying, assessing, and managing the risks and

management day-to-day changes that occur during a project

Communication; liaison between management, users, and
developers; assigning activities; monitoring progress

Defining and sequencing activities; communicating
expectations; assigning resources fo activities; monitoring
outcomes

Interpreting system requests and specifications; site
preparation and user training; contact point for customers

Interpreting system requests and specifications; defining
activities and their sequence; making trade-offs between
alternative solutions; designing solutions to problems

Problem solving; smoothing out personality differences;
compromising; goal setting

Communication within and between teams; peer evaluations;
conflict resolution; team building; selfFmanagement

Environmental scanning; risk and opportunity identification
and assessment; forecasting; resource redeployment

50 PART I FOUNDATIONS FOR SYSTEMS DEVELOPMENT

s | PINE
VALLEY
= FURNITURE

Project initiation

The first phase of the project management
process in which acfivities are performed to
assess the size, scope, and complexity of
the project and to establish procedures to
support later project activifies.

FIGURE 3-5
Six project initiation activities

Initiating a Project

During project initiation, the project manager performs several activities to assess
the size, scope, and complexity of the project and to establish procedures to support
subsequent activities. Depending on the project, some initiation activities may be
unnecessary and some may be very involved. The types of activities you will perform
when initiating a project are summarized in Figure 3-5 and described next.

1. Establishing the project initiation team. This activity involves organizing an initial
core of project team members to assist in accomplishing the project initiation
activities (Chau et al., 2012; Verma, 1996; 1997). For example, during the Pur-
chasing Fulfillment System project at PVF, Chris Martin was assigned to support
the Purchasing department. It is a PVF policy that all initiation teams consist of at
least one user representative, in this case Juanita Lopez, and one member of the
information systems (IS) development group. Therefore, the project initiation
team consisted of Chris and Juanita; Chris was the project manager.

2. Establishing a relationship with the customer. A thorough understanding of your cus-
tomer builds stronger partnerships and higher levels of trust. At PVF, manage-
ment has tried to foster strong working relationships between business units (like
Purchasing) and the IS development group by assigning a specific individual to
work as a liaison between both groups. Because Chris had been assigned to the
Purchasing unit for some time, he was already aware of some of the problems
with the existing purchasing systems. PVF’s policy of assigning specific individ-
uals to each business unit helped to ensure that both Chris and Juanita were
comfortable working together prior to the initiation of the project. Many orga-
nizations use a similar mechanism for establishing relationships with customers.

3. Establishing the project initiation plan. This step defines the activities required to
organize the initiation team while it is working to define the goals and scope of
the project (Abdel-Hamid et al., 1999). Chris’s role was to help Juanita translate
her business requirements into a written request for an improved information
system. This required the collection, analysis, organization, and transformation
of alot of information. Because Chris and Juanita were already familiar with each
other and their roles within a development project, they next needed to define
when and how they would communicate, define deliverables and project steps,
and set deadlines. Their initiation plan included agendas for several meetings.
These steps eventually led to the creation of their SSR form.

4. Establishing management procedures. Successful projects require the development of
effective management procedures. Within PVF, many of these management pro-
cedures had been established as standard operating procedures by the Systems
Priority Board and the IS development group. For example, all project develop-
ment work is charged back to the functional unit requesting the work. In other or-
ganizations, each project may have unique procedures tailored to its needs. Yet, in
general, when establishing procedures, you are concerned with developing team
communication and reporting procedures, job assignments and roles, project

Project Initiation

@ Establishing the Project Initiation Team
@ Establishing a Relationship with the Customer
@ Establishing the Project Initiation Plan
o Establishing Management Procedures

@ Establishing the Project Management
Environment and Project Workbook

Developing the Project Charter

CHAPTER 3

change procedures, and determining how project funding and billing will be han-
dled. It was fortunate for Chris and Juanita that most of these procedures were
already established at PVF, allowing them to move on to other project activities.

. Establishing the project management environment and project workbook. The focus of
this activity is to collect and organize the tools that you will use while managing
the project and to construct the project workbook. Diagrams, charts, and system
descriptions provide much of the project workbook contents. Thus, the project
workbook serves as a repository for all project correspondence, inputs, outputs,
deliverables, procedures, and standards established by the project team (Rettig,
1990; Dinsmore and Cabanis-Brewin, 2006). The project workbook can be stored
as an online electronic document or in a large three-ring binder. The project
workbook is used by all team members and is useful for project audits, orienta-
tion of new team members, communication with management and customers,
identifying future projects, and performing post-project reviews. The establish-
ment of a workbook and the diligent recording of all project information are two
of the most important activities you will perform as project manager.

Figure 3-6 shows the project workbook for the Purchasing Fulfillment Sys-

tem on the PVF intranet. Keeping the project workbook online has many advan-
tages for keeping the project team on track and efficient. Online documents can
be easily accessed by all team members. Additionally, everyone is always working
with the most up-to-date information. The best feature of using the web as your
repository is that it enables project members and customers to review a project’s
status and all related information continually.
. Developing the project charter. The project charter is a short (typically one page),
high-level document prepared for the customer that describes what the project
will deliver and outlines many of the key elements of the project. A project
charter can vary in the amount of detail it contains, but it often includes the
following elements:

® Project title and date of authorization
® Project manager name and contact information

Pine Valley Furniture
Information Systems Development Group
Project: Purchasing Fulfillment System

. Project overview

. Initiation plan and SSR

. Project scope and risks
Management procedures
Data descriptions

. Process descriptions
Team correspondence

. Project charter

. Project schedule

1
2
3
4.
5.
6
7.
8
9

Logged in: Chris Martin

MANAGING THE INFORMATION SYSTEMS PROJECT

51

Project workbook

An online or hard-copy repository for all
project correspondence, inputs, outputs,
deliverables, procedures, and standards
that is used for performing project

audits, orienting new team members,
communicating with management and
customers, identifying future projects, and
performing postproject reviews.

Project charter

A short document prepared for the
customer during project inifiation that
describes what the project will deliver and
outlines generally at a high level all work
required fo complete the project.

FIGURE 3-6

The project workbook for the Purchasing
Fulfillment System project contains nine
key elements

Source: A-R-T /Shutterstock

52 PART I FOUNDATIONS FOR SYSTEMS DEVELOPMENT

FIGURE 3-7
A Project Charter for a Proposed
Information Systems Project

¢ Customer name and contact information

® Projected start and completion dates

® Key stakeholders, project role, and responsibilities
® Project objectives and description

e Key assumptions or approach

¢ Signature section for key stakeholders

The project charter ensures that both you and your customer gain a common
understanding of the project. It is also a very useful communication tool; it helps to
announce to the organization that a particular project has been chosen for develop-
ment. A sample project charter is shown in Figure 3-7.

Project initiation is complete once these six activities have been performed.
Before moving on to the next phase of the project, the work performed during
project initiation is reviewed at a meeting attended by management, customers, and
project team members. An outcome of this meeting is a decision to continue, modify,

Pine VG”ey Furniture Prepared: November 2, 2017
Project Charter

Project Name: Customer Tracking System

Project Manager: Jim Woo (jwoo@pvf.com)

Customer: Marketing

Project Sponsor: Jackie Judson (jjudson@pvf.com)

Project Start/End (projected): 10/2/17-2/1/18

Project Overview:

This project will implement a customer tracking system for the marketing department. The
purpose of this system is fo automate the ... fo save employee time, reduce errors, have
more timely information

Obijectives:

* Minimize data entry errors
* Provide more timely information
L]

Key Assumptions:

System will be built in house
Interface will be a web browser

System will access customer database

Stakeholders and Responsibilities:

Stakeholder Role Responsibility Signatures

Jackie Judson VP Marketing Project Vision, Resources Jaclls futhon

Alex Datta ClO Monitoring, Resources Alex Datta

Jim Woo Project Manager Planning, Monitoring, i Woo
Executing Project

James Jordan Director of Sales System Functionality James Jordan

Mary Shide VP Human Resources Staff Assignments Mary Shide

mailto:jwoo@pvf.com
mailto:jjudson@pvf.com

CHAPTER 3 MANAGING THE INFORMATION SYSTEMS PROJECT 53

or abandon the project. In the case of the Purchasing Fulfillment System project at
PVF, the board accepted the SSR and selected a project steering committee to moni-
tor project progress and to provide guidance to the team members during subsequent
activities. If the scope of the projectis modified, itmaybe necessary to return to project
initiation activities and collectadditional information. Once a decision is made to con-
tinue the project, a much more detailed project plan is developed during the project
planning phase.

Planning the Project

The next step in the project management process is project planning. Research has
found a positive relationship between effective project planning and positive project
outcomes (Guinan et al., 1998; Kirsch, 2000). Project planning involves defining
clear, discrete activities and the work needed to complete each activity within a sin-
gle project. It often requires you to make numerous assumptions about the availabil-
ity of resources such as hardware, software, and personnel. It is much easier to plan
nearer-term activities than those occurring in the future. In actual fact, you often
have to construct longer-term plans that are more general in scope and nearer-term
plans that are more detailed. The repetitive nature of the project management pro-
cess requires that plans be constantly monitored throughout the project and period-
ically updated (usually after each phase), based upon the most recent information.

Figure 3-8 illustrates the principle that nearer-term plans are typically more
specific and firmer than longer-term plans. For example, it is virtually impossible to
rigorously plan activities late in the project without first completing the earlier activi-
ties. Also, the outcome of activities performed earlier in the project is likely to affect
later activities. This means that it is very difficult, and very likely inefficient, to try to
plan detailed solutions for activities that will occur far into the future.

As with the project initiation process, varied and numerous activities must be
performed during project planning. For example, during the Purchasing Fulfillment
System project, Chris and Juanita developed a 10-page plan. However, project plans
for very large systems may be several hundred pages in length. The types of activities
that you can perform during project planning are summarized in Figure 3-9 and are
described in the following list:

1. Describing project scope, alternatives, and feasibility. The purpose of this activity
is to understand the content and complexity of the project. Within PVF’s sys-
tems development methodology, one of the first meetings must focus on defin-
ing a project’s scope. Although project scope information was not included in
the SSR developed by Chris and Juanita, it was important that both shared the

High -
E
7}
o
2 Medium
c
c
o}
o

Low -

L Il Il
1 Week 1 Month 6 Months

Out Out Out
Planning Horizon

Project planning

The second phase of the project
management process that focuses on
defining clear, discrete activities and the
work needed to complete each activity
within a single project.

s | PINE
VALLEY
< FURNITURE

FIGURE 3-8
Level of project planning detail should be
high in the short term, with less detail as
time goes on

54 PART I FOUNDATIONS FOR SYSTEMS DEVELOPMENT

FIGURE 3-9
Ten project planning activities

Work breakdown structure
The process of dividing the project into
manageable fasks and logically ordering
them to ensure a smooth evolution between
tasks.

Gantt chart

A graphical representation of a project
that shows each fask as a horizontal bar
whose length is proportional fo its time for
completion.

Project Planning

@ Describing Project Scope, Alternatives,
and Feasibility

@ Dividing the Project into Manageable Tasks

@ Estimating Resources and Creating a
Resource Plan

0 Developing a Preliminary Schedule

@ Developing a Communication Plan

e Determining Project Standards and Procedures
@ Identifying and Assessing Risk

e Creating a Preliminary Budget

e Developing a Project Scope Statement

@ Setting a Baseline Project Plan

same vision for the project before moving too far along. During this activity, you
should reach agreement on the following questions:

¢ What problem or opportunity does the project address?
¢ What are the quantifiable results to be achieved?

¢ What needs to be done?

¢ How will success be measured?

¢ How will we know when we are finished?

After defining the scope of the project, your next objective is to identify
and document general alternative solutions for the current business problem or
opportunity. You must then assess the feasibility of each alternative solution and
choose which to consider during subsequent SDLC phases. In some instances,
off-the-shelf software can be found. It is also important that any unique prob-
lems, constraints, and assumptions about the project be clearly stated.

. Dividing the project into manageable tasks. This is a critical activity during the proj-

ect planning process. Here, you must divide the entire project into manageable
tasks and then logically order them to ensure a smooth evolution between tasks.
The definition of tasks and their sequence is referred to as the work breakdown
structure (PMBOK, 2013; Project Management Institute, 2002). Some tasks may
be performed in parallel, whereas others must follow one another sequentially.
Task sequence depends on which tasks produce deliverables needed in other
tasks, when critical resources are available, the constraints placed on the project
by the client, and the process outlined in the SDLC.

For example, suppose that you are working on a new development project
and need to collect system requirements by interviewing users of the new system
and reviewing reports they currently use to do their job. A work breakdown for
these activities is represented in a Gantt chart in Figure 3-10. A Gantt chart is a
graphical representation of a project that shows each task as a horizontal bar
whose length is proportional to its time for completion. Different colors, shades,
or shapes can be used to highlight each kind of task. For example, those ac-
tivities on the critical path (defined later) may be in red and a summary task
could have a special bar. Note that the black horizontal bars—rows 1, 2, and 6 in
Figure 3-10—represent summary tasks. Planned versus actual times or progress
for an activity can be compared by parallel bars of different colors, shades, or
shapes. Gantt charts do not (typically) show how tasks must be ordered (prece-
dence), but simply show when an activity should begin and end. In Figure 3-10,
the task duration is shown in the second column by days, “d,” and necessary prior

CHAPTER 3 MANAGING THE INFORMATION SYSTEMS PROJECT 55

B H B e 117+ B Brbomiaral o FIGURE 3-10
TAEE FESOURCE REPTRT FROUECT WEW Walarizh, loa & fenlariss) = - . .
i e o D me - mEE e Gantt chart showing project tasks,
e s BT U DA %R Mol v et e ek S Ve duration times for those tasks, and
T T .~ predecessors
i |,';-,."E,,ing- R I 0% - - - - . T T (Source: Microsoft Corporation.)
< Interview 6 days 0% ¥ T b
Design Interview Farm 1 day 0% -
Schedule Appointments 1day3 0% | |
Conduct Interviews 4 days 4 0%
« Review Current Reports. 2.5 days % - | |
Coliect Reporis 0.5 days D% B |
Review Repors 2days7 Ov6; E—— 1= - = !
Summarize Results Zdays38 0%]

E
E
3

tasks are noted in the third column as predecessors. Most project management
software tools support a broad range of task durations, including minutes, hours,
days, weeks, and months. As you will learn in later chapters, the SDLC consists of
several phases that you will need to break down into activities. Creating a work
breakdown structure requires that you decompose phases into activities—sum-
mary tasks—and activities into specific tasks. For example, Figure 3-10 shows that
the activity Interviewing consists of three tasks: design interview form, schedule
appointments, and conduct interviews.

Defining tasks in too much detail will make the management of the project un-
necessarily complex. You will develop the skill of discovering the optimal level of de-
tail for representing tasks through experience. For example, it may be very difficult
to list tasks that require less than one hour of time to complete in a final work break-
down structure. Alternatively, choosing tasks that are too large in scope (e.g., several
weeks long) will not provide you with a clear sense of the status of the project or of
the interdependencies between tasks. What are the characteristics of a “task”? A task

® can be done by one person or a well-defined group,

* has asingle and identifiable deliverable (the task is, however, the process of
creating the deliverable),

¢ has a known method or technique,

* has well-accepted predecessor and successor steps, and

® is measurable so that the percentage completed can be determined.

3. Estimating resources and creating a resource plan. The goal of this activity is to estimate
resource requirements for each project activity and to use this information to cre-
ate a project resource plan. The resource plan helps assemble and deploy resources
in the most effective manner. For example, you would not want to bring additional
programmers onto the project at a rate faster than you could prepare work for them.
Project managers use a variety of tools to assist in making estimates of project size
and costs. The most widely used method is called COCOMO (COnstructive COst COCOMO
MOdel), which uses parameters that were derived from prior projects of differing The Constructive Cost Model (COCOMO)
complexity (Boehm et al., 2000). COCOMO uses these different parameters to pre- |5 9" aviomated software esfimation model
dict human resource requirements for basic, intermediate, and very complex systems. that uses hisiorical p'r0|ecT dola ojd'currem

’ ’ as well as future project characterisfics to
People are the most important, and expensive, part of project resource esfimate project cosfs.

planning. Project time estimates for task completion and overall system quality

are significantly influenced by the assignment of people to tasks. It is important

to give people tasks that allow them to learn new skills. It is equally important

to make sure that project members are not “in over their heads” or working on

a task that is not well suited to their skills. Resource estimates may need to be

revised based upon the skills of the actual person (or people) assigned to a par-

ticular activity. Figure 3-11 indicates the relative programming speed versus the

56 PARTI FOUNDATIONS FOR SYSTEMS DEVELOPMENT

FIGURE 3-11

Trade-offs between the quality of the
program code versus the speed of
programming

Network diagram
A diagram that depicis project tasks and
their interrelationships.

FIGURE 3-12

A network diagram illustrates tasks with
rectangles (or ovals) and the relationships
and sequences of those activities with
arrows

(Source: Microsoft Corporation.)

High |

<<

§ Brenda

© L

>

S

]
(¢}

Low [~

Il Il Il
Short =—————3 Long

Time of Programming a Task

relative programming quality of three programmers. The figure suggests that
Carl should not be assigned tasks in which completion time is critical and that
Brenda should be assigned tasks in which high quality is most vital.

One approach to assigning tasks is to assign a single task type (or only a few
task types) to each worker for the duration of the project. For example, you could
assign one worker to create all computer displays and another to create all system
reports. Such specialization ensures that both workers become efficient at their
own particular tasks. A worker may become bored if the task is too specialized or
is long in duration, so you could assign workers to a wider variety of tasks. How-
ever, this approach may lead to lowered task efficiency. A middle ground would be
to make assignments with a balance of both specialization and task variety. Assign-
ments depend on the size of the development project and the skills of the project
team. Regardless of the manner in which you assign tasks, make sure that each
team member works only on one task at a time. Exceptions to this rule can occur
when a task occupies only a small portion of a team member’s time (e.g., testing
the programs developed by another team member) or during an emergency.

. Developing a preliminary schedule. During this activity, you use the information on

tasks and resource availability to assign time estimates to each activity in the work
breakdown structure. These time estimates will enable you to create target start-
ing and ending dates for the project. Target dates can be revisited and modified
until a schedule is produced that is acceptable to the customer. Determining an
acceptable schedule may require that you find additional or different resources
or that the scope of the project be changed. The schedule may be represented as
a Gantt chart, as illustrated in Figure 3-10, or as a network diagram, as illustrated
in Figure 3-12. A network diagram is a graphical depiction of project tasks and

B H 5 z BTN Al T Baciiesnacty febasie i1 - Brmaet Prdesicnal T -

3
]
<
5
£

Rl - eeowe R ot

nepect Mowe Mode ek Siminasy Mrestone el st

CHAPTER 3 MANAGING THE INFORMATION SYSTEMS PROJECT 57

their interrelationships. As with a Gantt chart, each type of task can be high-
lighted by different features on the network diagram. The distinguishing feature
of a network diagram is that the ordering of tasks is shown by connecting tasks—
depicted as rectangles or ovals—with their predecessor and successor tasks. However,
the relative size of a node (representing a task) or a gap between nodes does not
imply the task’s duration. Only the individual task items are drawn on a network dia-
gram, which is why the summary tasks 1, 2, and 6—the black bars—from Figure 3-10
are not shown in Figure 3-12. We describe both of these charts later in this chapter.

. Developing a communication plan. The goal of this activity is to outline the communi-
cation procedures among management, project team members, and the customer.
The communication plan includes when and how written and oral reports will be
provided by the team, how team members will coordinate work, what messages will
be sent to announce the project to interested parties, and what kinds of informa-
tion will be shared with vendors and external contractors involved with the project.
It is important that free and open communication occur among all parties with re-
spect to proprietary information and confidentiality with the customer (Fuller et al.,
2008; Kettelhut, 1991; Kirsch, 2000; Vaidyanathan, 2013;Verma, 1996). When de-
veloping a communication plan, numerous questions must be answered in order
to assure that the plan is comprehensive and complete, including the following:

® Who are the stakeholders for this project?

* What information does each stakeholder need?

* When, and at what interval, does this information need to be produced?

* What sources will be used to gather and generate this information?

e Who will collect, store, and verify the accuracy of this information?

® Who will organize and package this information into a document?

¢ Who will be the contact person for each stakeholder should any questions arise?

¢ What format will be used to package this information?

¢ What communication medium will be most effective for delivering this infor-
mation to the stakeholder?

Once these questions are answered for each stakeholder, a comprehensive
communication plan can be developed. In this plan, a summary of communica-
tion documents, work assignments, schedules, and distribution methods will be
outlined. Additionally, a project communication matrix can be developed that
provides a summary of the overall communication plan (see Figure 3-13). This
matrix can be easily shared among team members, and verified by stakeholders
outside the project team, so that the right people are getting the right informa-
tion at the right time, and in the right format.

. Determining project standards and procedures. During this activity, you will spec-
ify how various deliverables are produced and tested by you and your project
team. For example, the team must decide which tools to use, how the standard
SDLC might be modified, which SDLC methods will be used, documentation
styles (e.g., type fonts and margins for user manuals), how team members will re-
port the status of their assigned activities, and terminology. Setting project stan-
dards and procedures for work acceptance is a way to ensure the development
of a high-quality system. Also, it is much easier to train new team members when
clear standards are in place. Organizational standards for project management
and conduct make the determination of individual project standards easier and
the interchange or sharing of personnel among different projects feasible.

. Identifying and assessing risk. The goal of this activity is to identify sources of
project risk and estimate the consequences of those risks (Wideman, 1992).
Risks might arise from the use of new technology, prospective users’ resistance
to change, availability of critical resources, competitive reactions or changes in
regulatory actions due to the construction of a system, or team member inexperi-
ence with technology or the business area. You should continually try to identify
and assess project risk.

PART I

FOUNDATIONS FOR SYSTEMS DEVELOPMENT

Stakeholder Document Format Team Contact Date Due

Team Members Project Status Report Project Intranet Juan First Monday of Month
Kim

Management Project Status Report Hard Copy Juan First Monday of Month

Supervisor Kim

User Group Project Status Report Hard Copy James First Monday of Month
Kim

Internal IT Staff Project Status Report E-Mail Jackie First Monday of Month
James

IT Manager Project Status Report Hard Copy Juan First Monday of Month
Jeremy

Contract Programmers | Software Specifications| E-Mail/Project Intranet | Jordan October 1, 2017
Kim

Training Subcontractor | Implementation and Hard Copy Jordan January 7, 2018

Training Plan James

FIGURE 3-13

The project communication matrix
provides a high-level summary of the
communication plan

Project execution

The third phase of the project management
process in which the plans created in

the prior phases (project initiation and
planning) are put into action.

The identification of project risk is required to develop PVF’s new Purchas-
ing Fulfillment System. Chris and Juanita met to identify and describe possible
negative outcomes of the project and their probabilities of occurrence. Although
we list the identification of risks and the outline of project scope as two discrete
activities, they are highly related and often concurrently discussed.

8. Creating a preliminary budget. During this phase, you need to create a preliminary
budget that outlines the planned expenses and revenues associated with your
project. The project justification will demonstrate that the benefits are worth
these costs. Figure 3-14 shows a cost-benefit analysis for a new development proj-
ect. This analysis shows net present value calculations of the project’s benefits
and costs as well as a return on investment and cash flow analysis. We discuss
project budgets fully in Chapter 5.

9. Developing a Project Scope Statement. An important activity that occurs near the end
of the project planning phase is the development of the Project Scope Statement.
Developed primarily for the customer, this document outlines work that will be done
and clearly describes what the project will deliver. The Project Scope Statement is
useful to make sure that you, the customer, and other project team members have a
clear understanding of the intended project size, duration, and outcomes.

10. Setting a Baseline Project Plan. Once all of the prior project planning activities have
been completed, you will be able to develop a Baseline Project Plan. This baseline
plan provides an estimate of the project’s tasks and resource requirements and is
used to guide the next project phase—execution. As new information is acquired
during project execution, the baseline plan will continue to be updated.

At the end of the project planning phase, a review of the Baseline Project Plan
is conducted to double-check all information in the plan. As with the project initia-
tion phase, it may be necessary to modify the plan, which means returning to prior
project planning activities before proceeding. As with the Purchasing Fulfillment
System project, you may submit the plan and make a brief presentation to the project
steering committee at this time. The committee can endorse the plan, ask for modifi-
cations, or determine that it is not wise to continue the project as currently outlined.

Executing the Project

Project execution puts the Baseline Project Plan into action. Within the context of
the SDLC, project execution occurs primarily during the analysis, design, and imple-
mentation phases. During the development of the Purchasing Fulfillment System,

CHAPTER 3 MANAGING THE INFORMATION SYSTEMS PROJECT 59

L= e
HOME INSERT PAGELAYOUT FORMULAS DATA REVIEW VIEW Fost PDF Valacich, Joe § - fralacich) ~
3 .- = = 1 - -1 =N -
rh il - ca s =g 2 BwepTet Genersl - |I-T|,— [_",4 = & o m év ?Y i
Faste < | Bl s r = . .4y s +3 m Condtionsl Formatas Cell lnsert Delete Format Sort & Find &
o s (BT U-|H A EE=E £ [E Mege & Center § - % o Pl R % g B et ey
Clipooard & Font i Angnment o Mumber o Sayles Cells Edring ~
Ad3 - I v
A B c 8] E F G H | 4 =
1| £ i Foasibilty Analh
el w
2
] ‘Years from Today
9 & L & F i & TOTALS
10 |Build New System S0 585,000 85,000 585,000 SB5,000 585,000
11 |Discount Rate (12%) Lan 22 ikl a7 AETEE FFH
12 |PV of Benefits 50 575,893 357,761 $60,501 554,019 548,231
13
14 | MOV o Bhalitlng Moeww S) it 50 §75,893 $142,654 5204156 5258175 8306406 $306.406
16
16 | Sstine COSTE (575,000)
17
18 |Continue Maintaining Existing System
19 |Recurring Costs ($35000) ($35000) ($35000) ($35000) ($35,000)
20) | Discount Rate (12%) L asss am 78 =l TR
21 PV of Recuring Costs 50 (831,250) (827 802) (§24912) ($22243) ($19.860)
22
23 | MV AW COSTE ($75,000) ($106.250) ($134,152) ($159,064) ($181,307) ($201,167) ($201,167)
24
25
26 | (e AEY 5105.238
27
28 |ROI = Overall NPV | NPV of Costs 52.31%
29
30 |Year of Project & 7 2 g i
3 | Break-Lien, 5
32 |Yearly NPV Cash Flow (§75,000} 544,843 39 860 835,580 831,778 528.3M
33 | Overall NPV Cash Flow (75,000} ($30,357) $9,503 $45,092 $76,867 $105.239

34
35
36
ar
a8
39

break-even ratio = (yearly NPV cash flow - general NPY cash flow) / yearly NPV cash flow
Break-oven ocours iy 1.8 pears.

He: Al dolle decl ot dob

* Sheat] Sheetz Shest3 Shestd Shests Sheet Sheet? Shestd Sh ..) i 3

Chris Martin was responsible for five key activities during project execution. These
activities are summarized in Figure 3-15 and described in the remainder of this
section:

1.

Executing the Baseline Project Plan. As project manager, you oversee the execution
of the baseline plan. This means that you initiate the execution of project ac-
tivities, acquire and assign resources, orient and train new team members, keep
the project on schedule, and ensure the quality of project deliverables. This is a
formidable task, but a task made much easier through the use of sound project
management techniques. For example, as tasks are completed during a project,
they can be “marked” as completed on the project schedule. In Figure 3-16, tasks
3 and 7 are marked as completed by showing 100 percent in the “% Complete”
column; task 8 is marked as being partially completed. Members of the project
team will come and go. You are responsible for initiating new team members by
providing them with the resources they need and helping them assimilate into
the team. You may want to plan social events, regular team project status meet-
ings, team-level reviews of project deliverables, and other group events to mold
the group into an effective team.

Project Execution

@ Executing the Baseline Project Plan

@ Monitoring Project Progress against the
Baseline Project Plan

@ Managing Changes to the Baseline Project Plan
o Maintaining the Project Workbook

@ Communicating the Project Status

FIGURE 3-14
A financial cost and benefit analysis for
a systems development project

(Source: Microsoft Corporation.)

FIGURE 3-15
Five project execution activities

60 PART I FOUNDATIONS FOR SYSTEMS DEVELOPMENT

FIGURE 3-16

Gantt chart with tasks 3 and 7
completed, and task 8 partially
completed

(Source: Microsoft Corporation.)

£
E
#

Bacuraraie fbsiies017 - Broywet Profesticnsl TR

- mTH e Y
ManuMh Surtn nepect Woe hase Tk Siminany brestine Lo
Sl Sl - -
! It -
. : [HE
Teak Wi - E ron = _-"'.erc'-.\ | B0 et « = W J. w4
' | Defining Requirements | 6days 24%
“ Interview 6 days 7% | | | T
Design Interview Farm 1 day 100% _—
Schedule Appaintments 1day3 0% | "El Y | |
Conduct intersiens 4days 4 0% |
« Review Current Reports. 2.5 days 40% _— | |
Collzct Reporis 0.5 days 100% = |
Review Repeors Zdmys 7 258% = = B =
Summarize Results Zdays 38 0% | | | =

2. Monitoring project progress against the Baseline Project Plan. While you execute the

Baseline Project Plan, you should monitor your progress. If the project gets
ahead of (or behind) schedule, you may have to adjust resources, activities, and
budgets. Monitoring project activities can result in modifications to the current
plan. Measuring the time and effort expended on each activity will help you im-
prove the accuracy of estimations for future projects. It is possible, with project
schedule charts such as Gantt charts, to show progress against a plan, and it is
easy with network diagrams to understand the ramifications of delays in an ac-
tivity. Monitoring progress also means that the team leader must evaluate and
appraise each team member, occasionally change work assignments or request
changes in personnel, and provide feedback to the employee’s supervisor.

. Managing changes to the Baseline Project Plan. You will encounter pressure to make

changes to the baseline plan. At PVF, policies dictate that only approved changes
to the project specification can be made and all changes must be reflected in the
baseline plan and project workbook, including all charts. For example, if Juanita
suggests a significant change to the existing design of the Purchasing Fulfillment
System, a formal change request must be approved by the steering committee.
The request should explain why changes are desired and describe all possible ef-
fects on prior and subsequent activities, project resources, and the overall project
schedule. Chris would have to help Juanita develop such a request. This informa-
tion allows the project steering committee to more easily evaluate the costs and
benefits of a significant midcourse change.

In addition to changes occurring through formal request, changes may also
occur from events outside your control. In fact, numerous events may initiate a
change to the Baseline Project Plan, including the following possibilities:

A slipped completion date for an activity

A bungled activity that must be redone

The identification of a new activity that becomes evident later in the project
An unforeseen change in personnel due to sickness, resignation, or
termination

When an event occurs that delays the completion of an activity, you typi-
cally have two choices: devise a way to get back on schedule or revise the plan.
Devising a way to get back on schedule is the preferred approach because no
changes to the plan will have to be made. The ability to head off and smoothly
work around problems is a critical skill that you need to master.

As you will see later in this chapter, project schedule charts are very helpful
in assessing the impact of change. Using such charts, you can quickly see if the
completion time of other activities will be affected by changes in the duration of

CHAPTER 3 MANAGING THE INFORMATION SYSTEMS PROJECT 61

a given activity or if the whole project completion date will change. Often you
will have to find a way to rearrange the activities because the ultimate project
completion date may be rather fixed. There may be a penalty to the organization
(even legal action) if the expected completion date is not met.

4. Maintaining the project workbook. As in all project phases, maintaining complete
records of all project events is necessary. The workbook provides the documen-
tation new team members require to assimilate project tasks quickly. It explains
why design decisions were made and is a primary source of information for pro-
ducing all project reports.

5. Communicating the project status. The project manager is responsible for keeping
all stakeholders—system developers, managers, and customers—abreast of the
project status. In other words, communicating the project status focuses on the
execution of the project communication plan and the response to any ad hoc in-
formation requests by stakeholders. A broad variety of methods can be used to
distribute information, each with strengths and weaknesses. Some methods are
easier for the information sender, but more difficult or less convenient for the
receiver. With the maturing digital networks and the Internet, more and more
digital communication is being exchanged. Procedures for communicating proj-
ect activities vary from formal meetings to informal hallway discussions. Some
procedures are useful for informing others of the project’s status, others are bet-
ter for resolving issues, and still others are better for keeping permanent records
of information and events. Two types of information are routinely exchanged
throughout the project: work results—the outcomes of the various tasks and activi-
ties that are performed to complete the project—and the project plan—the formal
comprehensive document that is used to execute the project; it contains numer-
ous items including the project charter, project schedule, budgets, and risk plan.
Table 3-2 lists numerous communication procedures, their level of formality, and
their most likely use. Whichever procedure you use, frequent communication
helps to ensure project success (Kettelhut, 1991; Kirsch, 2000; Verma, 1996).

This section outlined your role as the project manager during the execution of
the Baseline Project Plan. The ease with which the project can be managed is signifi-
cantly influenced by the quality of prior project phases. If you develop a high-quality
project plan, it is much more likely that the project will be successfully executed.
The next section describes your role during project closedown, the final phase of the
project management process.

TABLE 3-2 Project Team Communication Methods

Procedure Formality Use
Project workbook High Inform
Permanent record
Meetings Medium to high Resolve issues
Seminars and workshops Low to medium Inform
Project newsletters Medium to high Inform
Status reports High Inform
Specification documents High Inform
Permanent record
Minutes of meetings High Inform
Permanent record
Bulletin boards Low Inform
Memos Medium to high Inform
Brown bag lunches Low Inform
Hallway discussions Low Inform

Resolve issues

62 PART I FOUNDATIONS FOR SYSTEMS DEVELOPMENT

Project Closedown
@ Closing Down the Project
@ Conducting Postproject Reviews

@ Closing the Customer Contract

FIGURE 3-17

Three project closedown activities

Project closedown

The final phase of the project management
process that focuses on bringing a project
fo an end.

Closing Down the Project

The focus of project closedown is to bring the project to an end. Projects can con-
clude with a natural or unnatural termination. A natural termination occurs when
the requirements of the project have been met—the project has been completed
and is a success. An unnatural termination occurs when the project is stopped be-
fore completion (Keil et al., 2000). Several events can cause an unnatural termi-
nation of a project. For example, it may be learned that the assumption used to
guide the project proved to be false, that the performance of the systems or devel-
opment group was somehow inadequate, or that the requirements are no longer
relevant or valid in the customer’s business environment. The most likely reasons
for the unnatural termination of a project relate to running out of time or money,
or both. Regardless of the project termination outcome, several activities must be
performed: closing down the project, conducting post-project reviews, and closing the
customer contract. Within the context of the SDLC, project closedown occurs after the
implementation phase. The system maintenance phase typically represents an ongoing
series of projects, each of which must be individually managed. Figure 3-17 summa-
rizes the project closedown activities that are described more fully in the remainder
of this section:

1. Closing down the project. During closedown, you perform several diverse activi-
ties. For example, if you have several team members working with you, project
completion may signify job and assignment changes for some members. You will
likely be required to assess each team member and provide an appraisal for per-
sonnel files and salary determination. You may also want to provide career advice
to team members, write letters to superiors praising special accomplishments of
team members, and send thank-you letters to those who helped but were not
team members. As project manager, you must be prepared to handle possible
negative personnel issues such as job termination, especially if the project was
not successful. When closing down the project, it is also important to notify all
interested parties that the project has been completed and to finalize all project
documentation and financial records so that a final review of the project can be
conducted. You should also celebrate the accomplishments of the team. Some
teams will hold a party, and each team member may receive memorabilia (e.g., a
T=shirt with “I survived the X project”). The goal is to celebrate the team’s effort
to bring a difficult task to a successful conclusion.

2. Conducting postproject reviews. Once you have closed down the project, final re-
views of the project should be conducted with management and customers. The
objective of these reviews is to determine the strengths and weaknesses of project
deliverables, the processes used to create them, and the project management
process. It is important that everyone understands what went right and what went
wrong in order to improve the process for the next project. Remember, the sys-
tems development methodology adopted by an organization is a living guideline
that must undergo continual improvement.

3. Closing the customer contract. The focus of this final activity is to ensure that all
contractual terms of the project have been met. A project governed by a contrac-
tual agreement is typically not completed until agreed to by both parties, often in
writing. Thus, it is imperative that you gain agreement from your customer that
all contractual obligations have been met and that further work is either their
responsibility or covered under another SSR or contract.

Closedown is a very important activity. A project is not complete until it is closed,
and it is at closedown that projects are deemed a success or failure. Completion also
signifies the chance to begin a new project and to apply what you have learned. Now
that you have an understanding of the project management process, the next sec-
tion describes specific techniques used in systems development for representing and
scheduling activities and resources.

CHAPTER 3

REPRESENTING AND SCHEDULING PROJECT PLANS

A project manager has a wide variety of techniques available for depicting and docu-
menting project plans. These planning documents can take the form of graphical
or textual reports, although graphical reports have become most popular for depict-
ing project plans. The most commonly used methods are Gantt charts and network
diagrams. Because Gantt charts do not (typically) show how tasks must be ordered
(precedence) but simply show when a task should begin and when it should end,
they are often more useful for depicting relatively simple projects or subparts of a
larger project, showing the activities of a single worker, or monitoring the progress
of activities compared to scheduled completion dates (Figure 3-18). Recall that a net-
work diagram shows the ordering of activities by connecting a task to its predecessor
and successor tasks. Sometimes a network diagram is preferable; other times a Gantt

B H : " BT PNE ¥ H
[e R S G) VR Tlecah s Gaancien = O
EH E sesouecelaage - Al 41 :--1\ SFIhbGh Mo HQRRh = Timesals q '_:E\: *:1. 7 rmeine T T ke Whnmaes v —_1
o gl Bt (LETar T oo = = s
I e, = Fhee & 7 I . L
o DB tstai + e Y [Nt e T B i | Y o 5 A arsse
Pomna T DHrer Wt T et o i Pl it Gt Wiedea N =
Wik i et [-

Lo W

' | Requiremsnis Collsction 5whks,

Mon 514117 Fri /217
Bwks Mon&S5MT FriTi4171
Gwks. Mon 8517 Fri TH4/17 1
2wks, Mon 77T Fri7/2B11723

Sereen Design
Report Design
Database Design

User Documentation 5.5 wks Mon 7/3117 Wed 9/6/17 4
Programming Swks! Mon 73117 Frigni7 4 | |
Testing 3wks. Mon @417 Fri@/221176
Instaliation Fri 9281775 | |

1wk Mon 8/25/17

GANTT CHAIL

B e e = Frtfac e if w2407 - osfurt Brafreiiznal T - °x
| R R Vassihlem b falicil - £ = x
= | T [t E 1w “]Ii T _"‘I | At INEHanigm) = Timescals Q = g it = =T —— ,:|
7 e My - B Titer |INohiter = 117 0 2 i , [luehin W = fminge Al rs
L~ g 20 (e i+ B - it HATg = gl pime i ronitey [TV g

Tk viemt s Seli b Ui ez .

e Colertion

[Lutaboaw Yiaige
Siart Won 6/S/7 10 2 | AT MORTATAT D & # 4T
Eif AT CUr G Finizh: Fri 7720717 Dur 2 s L e
= Rar- et

NETWORK G148

.. — ¥
Trr T ntasian

B Wi TR 5
Finiah W $18/10 2,838 whs

=3

Tesling
[EER
HlT D 3vds

A

e A i
T ANLE Du 1wk

MANAGING THE INFORMATION SYSTEMS PROJECT

63

FIGURE 3-18

Graphical diagrams that depict project
plans

(a) A Gantt chart

(b) A network diagram

(Source: Microsoft Corporation.)

64

FIGURE 3-19

A screen from Microsoft Project for
Windows summarizes all project
activities, their durations in weeks, and
their scheduled starting and ending dates

PART I

(Source: Microsoft Corporation.)

Resources

Any person, group of people, piece
of equipment, or material used in
accomplishing an activity.

Critical path scheduling

A scheduling technique whose order and
duration of a sequence of task activities
directly affect the completion date of a
project.

FOUNDATIONS FOR SYSTEMS DEVELOPMENT

B H S

A WESOUNCE SERDAT

™ Fishbarh [NoHghih = Timescls .
EH I frtee] 17 i f}“ Ih"_: rr.t‘
F e ichpey |ING L] - Proes fas
[T | _— saut . - BT ST v——
d Swhks Mon 5117 Fri 62117 Owks Dwks | !
* " Sereen Design Swhks Mon&/5M1T Fri 74171 O whs Dwks | = = |
Report Cesign Bwks, Mon 8517 Fri TH41T 1 0 wks 0 whs 'hIL:
Database Design 2 wks Mon THTAT Fri7i2811723 0 wks 0 wks | h
User Documentation 5.5 wks Mon T/31/17 Wed 9817 4 25wks 25wks E
Programming Swhks Mon 7131117 Frigfi17 4 0 wks 0 wks | ! 1-:,L
Testing 3whks Mon @417 Fri9221786 0 whks 0 whks
Frigi2eM7 7.5 0 owks 0 whs |

Installation 1wk Mon 925117

£

chart more easily shows certain aspects of a project. Here are the key differences be-
tween these two charts:

® Gantt charts visually show the duration of tasks, whereas a network diagram visu-
ally shows the sequence dependencies between tasks.

® Gantt charts visually show the time overlap of tasks, whereas a network diagram
does not show time overlap but does show which tasks could be done in parallel.

* Some forms of Gantt charts can visually show slack time available within an earli-
est start and latest finish duration. A network diagram shows this by data within
activity rectangles.

Project managers also use textual reports that depict resource utilization by
task, complexity of the project, and cost distributions to control activities. For ex-
ample, Figure 3-19 shows a screen from Microsoft Project for Windows that summa-
rizes all project activities, their durations in weeks, and their scheduled starting and
ending dates. Most project managers use computer-based systems to help develop
their graphical and textual reports. Later in this chapter, we discuss these automated
systems in more detail.

A project manager will periodically review the status of all ongoing project task
activities to assess whether the activities will be completed early, on time, or late. If
early or late, the duration of the activity, depicted in column 2 of Figure 3-19, can
be updated. Once changed, the scheduled start and finish times of all subsequent
tasks will also change. Making such a change will also alter a Gantt chart or network
diagram used to represent the project tasks. The ability to easily make changes to
a project is a very powerful feature of most project management environments. It
enables the project manager to determine easily how changes in task duration affect
the project completion date. It is also useful for examining the impact of “what if”
scenarios of adding or reducing resources, such as personnel, for an activity.

Representing Project Plans

Project scheduling and management require that time, costs, and resources be con-
trolled. Resources are any person, group of people, piece of equipment, or material
used in accomplishing an activity. Network diagramming is a critical path scheduling
technique used for controlling resources. A critical path refers to a sequence of task
activities whose order and durations directly affect the completion date of a project.

CHAPTER 3
Write Test
Programs Programs
Design
System

£

Install
System

Write
Documentation

A network diagram is one of the most widely used and best-known scheduling meth-
ods. You would use a network diagram when tasks

are well defined and have a clear beginning and end point,
can be worked on independently of other tasks,

are ordered, and

serve the purpose of the project

A major strength of network diagramming is its ability to represent how comple-
tion times vary for activities. Because of this, it is more often used than Gantt charts
to manage projects such as information systems development, where variability in the
duration of activities is the norm. Network diagrams are composed of circles or rect-
angles representing activities and connecting arrows showing required work flows, as
illustrated in Figure 3-20.

Calculating Expected Time Durations Using PERT

One of the most difficult and most error-prone activities when constructing a project
schedule is the determination of the time duration for each task within a work break-
down structure. It is particularly problematic to make these estimates when there is a
high degree of complexity and uncertainty about a task. PERT (Program Evaluation
Review Technique) is a technique that uses optimistic, pessimistic, and realistic time
estimates to calculate the expected time for a particular task. This technique can
help you to obtain a better time estimate when there is some uncertainty as to how
much time a task will require to be completed.

The optimistic (0) and pessimistic (p) times reflect the minimum and maximum
possible periods of time for an activity to be completed. The realistic (r) time, or most
likely time, reflects the project manager’s “best guess” of the amount of time the activ-
ity actually will require for completion. Once each of these estimates is made for an ac-
tivity, an expected time (ET) can be calculated. Because the expected completion time
should be closest to the realistic (7) time, it is typically weighted four times more than
the optimistic (o) and pessimistic (p) times. Once you add these values together, it must
be divided by six to determine the E7. This equation is shown in the following formula:

o+ 4r+ p
6

ET =

where

ET= expected time for the completion for an activity
o= optimistic completion time for an activity
r=realistic completion time for an activity
p = pessimistic completion time for an activity

For example, suppose that your instructor asked you to calculate an expected
time for the completion of an upcoming programming assignment. For this assign-
ment, you estimate an optimistic time of two hours, a pessimistic time of eight hours,

MANAGING THE INFORMATION SYSTEMS PROJECT

65

FIGURE 3-20

A network diagram showing activities
(represented by circles) and sequence of
those activities (represented by arrows)

PERT (Program Evaluation
Review Technique)

A technique that uses optimistic,
pessimistic, and realistic fime estimates to
calculate the expected time for a particular
task.

66

PART I

FOUNDATIONS FOR SYSTEMS DEVELOPMENT

PINE
VALLEY
FURNITURE

and a most likely time of six hours. Using PERT, the expected time for complet-
ing this assignment is 5.67 hours. Commercial project management software such
as Microsoft Project assists you in using PERT to make expected time calculations.
Additionally, many commercial tools allow you to customize the weighting of optimis-
tic, pessimistic, and realistic completion times.

Constructing a Gantt Chart and Network Diagram
at Pine Valley Furniture

Although PVF has historically been a manufacturing company, it has recently en-
tered the direct sales market for selected target markets. One of the fastest grow-
ing of these markets is economically priced furniture suitable for college students.
Management has requested that a new Sales Promotion Tracking System (SPTS) be
developed. This project has already successfully moved through project initiation and
is currently in the detailed project planning stage, which corresponds to the SDLC
phase of project initiation and planning. The SPTS will be used to track purchases
by college students for the next fall semester. Students typically purchase low-priced
beds, bookcases, desks, tables, chairs, and dressers. Because PVF does not normally
stock a large quantity of lower-priced items, management feels that a tracking system
will help provide information about the college-student market that can be used for
follow-up sales promotions (e.g., a midterm futon sale).

The project is to design, develop, and implement this information system be-
fore the start of the fall term in order to collect sales data at the next major buying
period. This deadline gives the project team 24 weeks to develop and implement the
system. The Systems Priority Board at PVF wants to make a decision this week based
on the feasibility of completing the project within the 24-week deadline. Using PVF’s
project planning methodology, the project manager, Jim Woo, knows that the next
step is to construct a Gantt chart and network diagram of the project to represent
the Baseline Project Plan so that he can use these charts to estimate the likelihood of
completing the project within 24 weeks. A major activity of project planning focuses
on dividing the project into manageable activities, estimating times for each, and
sequencing their order. Here are the steps Jim followed to do this:

1. Identify each activity to be completed in the project. After discussing the new SPTS
with PVF’s management, sales, and development staff, Jim identified the follow-
ing major activities for the project:

® Requirements collection

® Screen design

e Report design

¢ Database construction

¢ User documentation creation
¢ Software programming

¢ System testing

¢ System installation

2. Determine time estimates and calculate the expected completion time for each activity. After
identifying the major project activities, Jim established optimistic, realistic, and
pessimistic time estimates for each activity. These numbers were then used to cal-
culate the expected completion times for all project activities, as described pre-
viously using PERT. Figure 3-21 shows the estimated time calculations for each
activity of the SPTS project.

3. Determine the sequence of the activities and precedence relationships among all activities by
constructing a Gantt chart and network diagram. This step helps you to understand
how various activities are related. Jim starts by determining the order in which
activities should take place. The results of this analysis for the SPTS project are
shown in Figure 3-22. The first row of this figure shows that no activities precede

CHAPTER 3 MANAGING THE INFORMATION SYSTEMS PROJECT 67

TIME ESTIMATE EXPECTED TIME (ET)
(in weeks) o+4r+p

ACTIVITY) r p 6

1. Requirements Collection 1 5 g 5

2. Screen Design 5 6 7 6

3. Report Design 3 6 g 6

4. Database Design 1 2 3 2

5. User Documentation 2 6 7 6.5

6. Programming 4 5 6 ©

7. Testing 1 3)

8. Installation 1 1 1

requirements collection. Row 2 shows that screen design must be preceded by
requirements collection. Row 4 shows that both screen and report design must
precede database construction. Thus, activities may be preceded by zero, one, or
more activities.

Using the estimated time and activity sequencing information from
Figures 3-21 and 3-22, Jim can now construct a Gantt chart and network diagram
of the project’s activities. To construct the Gantt chart, a horizontal bar is drawn
for each activity that reflects its sequence and duration, as shown in Figure 3-23.
The Gantt chart may not, however, show direct interrelationships between activi-
ties. For example, the fact that the database design activity begins right after the
screen design and report design bars finish does not imply that these two activi-
ties must finish before database design can begin. To show such precedence rela-
tionships, a network diagram must be used. The Gantt chart in Figure 3-23 does,
however, show precedence relationships.

Network diagrams have two major components: arrows and nodes. Arrows

reflect the sequence of activities, whereas nodes reflect activities that con-
sume time and resources. A network diagram for the SPTS project is shown
in Figure 3-24. This diagram has eight nodes labeled 1 through 8.
. Determine the critical path. The critical path of a network diagram is represented
by the sequence of connected activities that produce the longest overall time
period. All nodes and activities within this sequence are referred to as being “on”
the critical path. The critical path represents the shortest time in which a project
can be completed. In other words, any activity on the critical path that is delayed
in completion delays the entire project. Nodes not on the critical path, however,
can be delayed (for some amount of time) without delaying the final completion
of the project. Nodes not on the critical path contain slack time and allow the
project manager some flexibility in scheduling.

PRECEDING
ACTIVITY ACTIVITY
1. Requirements Collection —
2. Screen Design 1
3. Report Design 1
4. Database Design 2,3
5. User Documentation 4
6. Programming 4
7. Testing 6
8. Installation 5,7

FIGURE 3-21
Estimated time calculations for the SPTS
project

Critical path
The shortest time in which a project can be
completed.

Slack time
The amount of fime that an activity can be
delayed without delaying the project.

FIGURE 3-22
Sequence of activities within the SPTS
project

68 PART I FOUNDATIONS FOR SYSTEMS DEVELOPMENT

FIGURE 3-23

Gantt chart that illustrates the sequence
and duration of each activity of the

SPTS project

(Source: Microsoft Corporation.)

FIGURE 3-24

A network diagram that illustrates the
activities (circles) and the sequence

(arrows) of those activities

B H : FART TSNS Srofacs St adin-2817 . Boslurt Srafpaticers]
A MESOUNE HPDAT MONCT Wi R ;

& A

=

|1_ D & mework Degrem =
.) EH
Enart Loape -

= &] ML A i ruhben INsHQuR - Tl = —
-f;l II:_I arh [Nz Hait Q S
G Gtk Tahion (LT R . kol
- c - LRcesiphy INolmig) -

Taem Fotiin Celarbed

Fmne et fases

T AT bk UGTAT amd T T 15 TS
L, W =| Duwme o s sral i BT oW 8T nov.% (i T i

. T —
' | Reguiremenis Collsction Swhks Mon 5:'1.'17 Fri 62117

Sereen Design Bwks Mon 8517 Fri 74171
Report Cesign Bwks. Mon 8517 Fri TH41T 1
Database Design 2whks Man 7THTAT Fri7/i28i1723
\User Documentstion 5.5wks Mon T/21/17 Wed 9/6/17 4
Programming Swks! Mon 73117 Frigni7 4
Testing 3wks Mon @417 Fri 922176

Installation 1wk Mon9/26817 Frigi261775

GANTT CHAILT

Figure 3-25 shows the network diagram that Jim constructed to determine the
critical path and expected completion time for the SPTS project. To determine the
critical path, Jim calculated the earliest and latest expected completion time for each
activity. He found each activity’s earliest expected completion time (Tg) by summing
the estimated time (ET) for each activity from left to right (i.e., in precedence order),
starting at activity 1 and working toward activity 8. In this case, T for activity 8 is equal to
22 weeks. If two or more activities precede an activity, the largest expected completion
time of these activities is used in calculating the new activity’s expected completion
time. For example, because activity 8 is preceded by both activities 5 and 7, the largest
expected completion time between 5 and 7 is 21, so Ty for activity 8 is 21 + 1, or 22.
The earliest expected completion time for the last activity of the project represents the
amount of time the project should take to complete. Because the time of each activ-
ity can vary, however, the projected completion time represents only an estimate. The
project may in fact require more or less time for completion.

The latest expected completion time (Tp) refers to the time in which an activ-
ity can be completed without delaying the project. To find the values for each activ-
ity’s Ty, Jim started at activity 8 and set Ty, equal to the final Ty (22 weeks). Next,
he worked right to left toward activity 1 and subtracted the expected time for each
activity. The slack time for each activity is equal to the difference between its latest
and earliest expected completion times (T, — Tg). Figure 3-26 shows the slack time
calculations for all activities of the SPTS project. All activities with a slack time equal
to zero are on the critical path. Thus, all activities except activity 5 are on the critical
path. Part of the diagram in Figure 3-25 shows two critical paths, between activities
1-2-4 and 1-3-4, because both of these parallel activities have zero slack.

In addition to the possibility of having multiple critical paths, there are actu-
ally two possible types of slack. Free slack refers to the amount of time a task can be

Screen User
Design Documentation Installation
Requirements Database
Collection §< |
Report Design Programming Testing

CHAPTER 3 MANAGING THE INFORMATION SYSTEMS PROJECT 69

Te=11 Te=185 Te=22
T, =11 T, =21 T =22
=13 (s)—>(s)

T =13 ET=55 ET =1

Te=18 Te=21

ET=2 TL::18 @TL=21
ET=6 ET=5 ET=3

=3 Critical Path ——3 Noncritical Path

delayed without delaying the early start of any immediately following tasks. Total slack
refers to the amount of time a task can be delayed without delaying the completion
of the project. Understanding free and total slack allows the project manager to bet-
ter identify where trade-offs can be made if changes to the project schedule need
to be made. For more information on understanding slack and how it can be used
to manage tasks see Project Management: Process, Technology and Practice, by Ganesh
Vaidyanathan (2013).

USING PROJECT MANAGEMENT SOFTWARE

A wide variety of automated project management tools is available to help you man-
age a development project. New versions of these tools are continuously being de-
veloped and released by software vendors. Most of the available tools have a set of
common features that include the ability to define and order tasks, assign resources
to tasks, and easily modify tasks and resources. Project management tools are available
to run on IBM-compatible personal computers, the Macintosh, and larger mainframe
and workstation-based systems. These systems vary in the number of task activities sup-
ported, the complexity of relationships, system processing and storage requirements,
and, of course, cost. Prices for these systems can range from a few hundred dollars
for personal computer-based systems to more than $100,000 for large-scale, multi-
project systems. Yet a lot can be done with systems such as Microsoft Project as well
as public domain and shareware systems. For example, numerous shareware project
management programs (e.g., OpenProj, Bugzilla, and eGroupWare) can be down-
loaded from the web (e.g., at www.download.com). Because these systems are continu-
ously changing, you should comparison shop before choosing a particular package.
We now illustrate the types of activities you would perform when using project
management software. Microsoft Project for Windows is a project management sys-
tem that has received consistently high marks in computer publication reviews (see
www.microsoft.com and search for “project”—also, if you search the web, there are

SLACK
ACTIVITY Te T T -Te ON CRITICAL PATH

1 5 5 0 4
2 11 11 0 4
3 11 11 0 4
4 13 13 0 4
5 18.5 21 2.5

6 18 18 0 4
7 21 21 0 v
8 22 22 0 4

FIGURE 3-25

A network diagram for the SPTS project
showing estimated times for each activity
and the earliest and latest expected
completion time for each activity

FIGURE 3-26

Activity slack time calculations for the
SPTS project; all activities except number
5 are on the critical path

http://www.download.com
http://www.microsoft.com

70 PART I FOUNDATIONS FOR SYSTEMS DEVELOPMENT

a0 PINE
VALLEY
*— FURNITURE

o

FIGURE 3-27
Establishing a project starting date in
Microsoft Project for Windows

(Source: Microsoft Corporation.)

many very useful tutorials for improving your Microsoft Project skills). When using
this system to manage a project, you need to perform at least the following activities:

¢ Establish a project starting or ending date.
* Enter tasks and assign task relationships.
e Select a scheduling method to review project reports.

Establishing a Project Start Date

Defining the general project information includes obtaining the name of the project
and the project manager, and the starting or ending date of the project. Starting
and ending dates are used to schedule future activities or backdate others (see the
following) based on their duration and relationships with other activities. An ex-
ample from Microsoft Project for Windows of the data entry screen for establishing
a project starting or ending date is shown in Figure 3-27. This screen shows PVF’s
Purchasing Fulfillment System project. Here, the starting date for the project is
Monday, November 6, 2017.

Entering Tasks and Assigning Task Relationships

The next step in defining a project is to define project tasks and their relation-
ships. For the Purchasing Fulfillment System project, Chris defined 11 tasks to be
completed when he performed the initial system analysis activities for the project
(task 1—Start Analysis Phase—is a summary task that is used to group related tasks).
The task entry screen, shown in Figure 3-28, is similar to a financial spreadsheet
program. The user moves the cursor to a cell with arrow keys or the mouse and then
simply enters a textual Name and a numeric Duration for each activity. Scheduled
Start and Scheduled Finish are automatically entered based on the project start date
and duration. To set an activity relationship, the ID number (or numbers) of the
activity that must be completed before the start of the current activity is entered into
the Predecessors column. Additional codes under this column make the precedence
relationships more precise. For example, consider the Predecessor column for ID 6.
The entry in this cell says that activity 6 cannot start until one day before the finish of
activity 5. (Microsoft Project provides many different options for precedence and de-
lays, as demonstrated in this example, but discussion of these is beyond the scope of
our coverage.) The project management software uses this information to construct
Gantt charts, network diagrams, and other project-related reports.

§ : AT THANT OO
[R e S T R ilecan st Gaancien = O o
— = an T
m L B2 [4 ®E | T, T st e e v

1 . 5 E tiadrie frajest
fubinjen g, o Smes CuteedlncBeees BRI Cange S

mtomaan Lies Brgeds ¢ WarargTime erogect

it btk ey et

= e Bt = penh = Frattacanntn =/ 1
Men 11/6/17 T

PRSP o

i e

Ureervizw of Furchasing
Tiesalnp Physical IFDE
Develop Logical DFCs
Davalop BB Cagrams
Tntsgrativn Prickie (0
Intarvdeus

rehasiag FUTIlirent Systern-2017" n ¥

| Fumetaes | Foniige]

S dnts: | ban 1107 [i
vl eedn | Sendan v o
183 Sassion E by (a3
Develop Altzmative Cirections totesupe Contor riess "
salacticn & Justficaticd Dezarients]
st loe Rviees Mesiing L

Revtew Mecting B

GANTT CHAIL

CHAPTER 3 MANAGING THE INFORMATION SYSTEMS PROJECT 71

W : e ot 317 - * - H FIGURE 3-28
Il o rsosc 0w maicr | i [l alezch e towecicht - T & % E . .
= — _ — ntering tasks and assigning task
& e o= G B, L5 it [ma e & . L . .
e o i il Elwdmeomerr Sl relationships in Microsoft project for
mhoran Wk Bretss 0 ok Time ot .
sl e i W e - . - Windows
D | it | D e Bt = Penh = Pratsnnnts = 1 = Lfr 1S o T3 RE Wy e a1 U . .
o A i MR TR (Source: Microsoft Corporation.)
+ Grervien of Furchasing Sdws WeallAl7 RV = 0
Tiwunlaf Physical IFDE ey Mem WAMT Tue1URAT 3 |
Develop Logical DFCs. 21doys Mon 11/27/17 Mon 12711117 IF-2 days. i il
Dovalop EH Dhagrams v davs L1 Moa 1T AR5 days i |
+ Intugrstivnt Pribieen 10 Sdayy Mo 12011417 Tri 131577 5F5-1 thay Bk)
T " Gdavs 7 Mon 1272517 5 4
H 7 days Wed 130T ThuT3214T FRRT days b’
s Deyzlop Altemative Cirections Gz TueilISNT Tue 12018 78 T
) Salacticn & Justification =days Wad 1318 lug Lidf18 ; S—
e Mapsne lor Review Mesling A ey W 1110118 M 1715415 10 o)
2 Reew Mecting O days Tue 1716718 Tue 1/16/18 11F8=1day B

GANTT CHEAIL

Selecting a Scheduling Method to Review Project Reports

Once information about all the activities for a project has been entered, it is very
easy to review the information in a variety of graphical and textual formats using dis-
plays or printed reports. For example, Figure 3-28 shows the project information in a
Gantt chart screen, whereas Figure 3-29 shows the project information in a network
diagram. You can easily change how you view the information by making a selection
from the View menu shown in Figure 3-29.

As mentioned earlier, interim project reports to management will often compare
actual progress with plans. Figure 3-30 illustrates how Microsoft Project shows progress
with a solid line within the activity bar. In this figure, task 2 has been completed and task
3 is almost completed (at 75 percent completed), but there remains a small percentage
of work, as shown by the incomplete solid lines within the bar for this task. Assuming
that this screen represents the status of the project on Thursday, November 11, 2016,
the third activity is approximately on schedule, but the second activity is behind its ex-
pected completion date. Tabular reports can summarize the same information.

[i AL 7 - B . T - nox
PDAT PAOIECT AR PRl Halazch e fowincich) - T8 & %
T WhiESn Tinck = = [i) ey B b « E ks
TRmER R CFET Bt
e et
R md e S g [-G S IR S S PR e S "
3 r— A it e
sehe e BT nises Fransmes “sting -
Dysriew ot Furchating
AT AR LT Z
it S e — P Ravie Mg
Tl T U B A |
e Al et e |
b so
5 T T
= T MOR LT I & St Mon LEAEL D 7
i Finigh: Mon 187117 Dur: 11 dsys Finis Won 125/ Dur & davs i
=1 Ber :
Z
- D Integranizn Rrotiem &
Sl X e M L I 6 a
Fitish oo $277 D07 dugs gl T e i
Bes: Bax; —

FIGURE 3-29
Viewing project information as a
network diagram in Microsoft Project for

. Windows

(Source: Microsoft Corporation.)

72 PART I

FIGURE 3-30

Gantt chart showing progress of activities
(right frame) versus planned activities (left
frame)

A | MEEOUNCE ERODAT PAOIECT

(Source: Microsoft Corporation.)

FART AT OIS B eeteem 317 - G

FOUNDATIONS FOR SYSTEMS DEVELOPMENT

PR Halazich e fwicich - 1

MaiEanTisek = B [
mes o WS SEE W= Y 53 Bt ' e
& ome Wumiely furn port Mevn Mode Toek Simmar Silebnne elpeie hoimatine - teml
it Senemistoee - = - 2 e Lemene
sehe e ek nises Fransme -
[re—— S—— famuary
— S ik [| 1073 |14 LI [0S L6 43 M @AT 33 | Al | 4T L
e Monilfsfi) Tosifiefi8 .
Sdays Mo 11017 Hl 100013 f——
Tiwunlap Physical IFDE Ay Mem WAIT TueRAT 3 —_—
Develop Logical OFCs 21 days Mon 11/27/17 . Mon 12117 3F-ldeys -
op EH Ciagrams rdaws L AR5 days e]
Intsgratiors Prsbieen 10 Sy T 5P by i
Gdays © i
1A Sessioe) 7 ey EFEez daye b
Develop Altemative Cirections £ days Tue LH26/17 TE L o1
salatticn & Justification = days Wad L3184 lug 13118 & : b
Praspines low Rwises blesling Addaes Wl 1010018 Mon1ASHE 10
Hevlew Mecting Odavs Tue 2/16:18 Tue 1/16/18 1iF5=1day B

GANTT CHAIL

A AT WANLAL AT

This brief introduction to project management software has only scratched the
surface to show you the power and the features of these systems. Other features that
are widely available and especially useful for multiperson projects relate to resource
usage and utilization. Resource-related features enable you to define characteristics
such as standard costing rates and daily availability via a calendar that records holi-
days, working hours, and vacations. These features are particularly useful for billing
and estimating project costs. Often, resources are shared across multiple projects,
which could significantly affect a project’s schedule.

Depending on how projects are billed within an organization, assigning and bill-
ing resources to tasks can be a very time-consuming activity for most project managers.
The features provided in these powerful tools can greatly ease the planning and man-

aging of projects so that project and management resources are effectively utilized.

SUMMARY

The focus of this chapter was on managing information
systems projects and the role of the project manager in
this process. A project manager has both technical and
managerial skills and is ultimately responsible for deter-
mining the size, scope, and resource requirements for
a project. Once a project is deemed feasible by an orga-
nization, the project manager ensures that the project
meets the customer’s needs and is delivered within budget
and time constraints. To manage the project, the project
manager must execute four primary activities: project ini-
tiation, project planning, project execution, and project
closedown. The focus of project initiation is on assessing
the size, scope, and complexity of a project and on estab-
lishing procedures to support later project activities. The
focus of project planning is on defining clear, discrete
activities and the work needed to complete each activity.
The focus of project execution is on putting the plans

developed in project initiation and planning into action.
Project closedown focuses on bringing the project to an
end.

Gantt charts and network diagrams are powerful
graphical techniques used in planning and controlling
projects. Both Gantt charts and network diagram schedul-
ing techniques require that a project have activities that
can be defined as having a clear beginning and end, can
be worked on independently of other activities, are or-
dered, and are such that their completion signifies the
end of the project. Gantt charts use horizontal bars to
represent the beginning, duration, and ending of an ac-
tivity. Network diagramming is a critical path scheduling
method that shows the interrelationships among activi-
ties. Critical path scheduling refers to planning methods
whereby the order and duration of the project’s activities
directly affect the completion date of the project. These

CHAPTER 3

charts show when activities can begin and end, which
activities cannot be delayed without delaying the whole
project, how much slack time each activity has, and prog-
ress against planned activities. A network diagram’s ability
to use probability estimates in determining critical paths
and deadlines makes it a widely used technique for very
complex projects.

KEY TERMS

MANAGING THE INFORMATION SYSTEMS PROJECT 73

A wide variety of automated tools for assisting the
project manager is available. Most tools have a set of com-
mon features, including the ability to define and order
tasks, assign resources to tasks, and modify tasks and re-
sources. Systems vary regarding the number of activities
supported, the complexity of relationships, processing
and storage requirements, and cost.

3.1 COCOMO 3.8 PERT (Program Evaluation Review 3.14 Project management

3.2 Ciritical path Technique) 3.15 Project manager

3.3 Ciritical path scheduling 3.9 Project 3.16 Project planning

3.4 Deliverable 3.10 Project charter 3.17 Project workbook

3.5 Feasibility study 3.11 Project closedown 3.18 Resources

3.6 Gantt chart 3.12 Project execution 3.19 Slack time

3.7 Network diagram 3.13 Project initiation 3.20 Work breakdown structure

Match each of the key terms above with the definition that best
fits it.

A systems analyst with a diverse set of skills—management,
leadership, technical, conflict management, and customer
relationship—who is responsible for initiating, planning,
executing, and closing down a project.

A planned undertaking of related activities to reach an ob-

jective that has a beginning and an end.
An end product of an SDLC phase.

A study that determines if the proposed information sys-
tem makes sense for the organization from an economic
and operational standpoint.

A controlled process of initiating, planning, executing,
and closing down a project.

The first phase of the project management process in
which activities are performed to assess the size, scope, and
complexity of the project and to establish procedures to
support later project activities.

An online or hard-copy repository for all project corre-
spondence, inputs, outputs, deliverables, procedures, and
standards.

The second phase of the project management process that
focuses on defining clear, discrete activities and the work
needed to complete each activity within a single project.

The process of dividing the project into manageable tasks
and logically ordering them to ensure a smooth evolution
between tasks.

A graphical representation of a project that shows each
task as a horizontal bar whose length is proportional to its
time for completion.

A diagram that depicts project tasks and their inter-
relationships.

The third phase of the project management process in
which the plans created in the prior phases are put into
action.

The final phase of the project management process that
focuses on bringing a project to an end.

Any person, group of people, piece of equipment, or mate-
rial used in accomplishing an activity.

A scheduling technique whose order and duration of a se-
quence of task activities directly affect the completion date
of a project.

The shortest time in which a project can be completed.

The amount of time that an activity can be delayed without
delaying the entire project.

A technique that uses optimistic, pessimistic, and realistic
time estimates to calculate the expected completion time
for a particular task.

An automated software estimation model that uses histori-
cal project data and current as well as future project char-
acteristics to estimate project costs.

A short document prepared for the customer during proj-
ect initiation that describes what the project will deliver
and outlines, generally at a high level, all work required to
complete the project.

74

PART I

REVIEW QUESTIONS

FOUNDATIONS FOR SYSTEMS DEVELOPMENT

3.21 Contrast the following terms: 3.27 List various project team communication methods and de-
a. Critical path scheduling, Gantt, network diagramming, scribe an example of the type of information that might be
slack time shared among team members using each method.
b. Project, project management, project manager 3.28 Describe the activities performed by the project manager
c. Project initiation, project planning, project execution, during project closedown.
project closedown 3.29 What characteristics must a project have in order for criti-
d. Project workbook, resources, work breakdown structure cal path scheduling to be applicable?
3.22 Discuss the reasons why organizations undertake informa- 3.30 Describe the steps involved in making a Gantt chart.
t t ts.
fon systems proj echs 3.31 Describe the steps involved in making a network diagram.
3.23 List and describe t kills and activities of ¢ j-
2 18t and descrpe the CoMmmOon ski’s and activiies ot a proy 3.32 In which phase of the SDLC does project planning typically
ect manager. Which skill do you think is most important? > In which phase d ect . 5
occur? In which phase does project management occur:
Why?
3.24 Describe the activities performed by the project manager 3.33 What are some reasons why one activity may have to pres
. e cede another activity before the second activity can begin?
during project initiation. | .
In other words, what causes precedence relationships be-
3.25 Describe the activities performed by the project manager tween project activities?
during project planning.
3.26 Describe the activities performed by the project manager
during project execution.
PROBLEMS AND EXERCISES
3.34 Which of the four phases of the project management pro- 3.40 A project has been defined to contain the following list of
cess do you feel is most challenging? Why? activities along with their required times for completion.
3.35 What are some sources of risk in a systems analysis and
design project and how does a project manager cope with Activity No. Immediate Activity ~ Time (weeks) Predecessors
risk during the stages of project management? 1 Collect requirements 3
3.36 Search computer magazines or the web for recent reviews 2 Anquze processes 2 1
of project management software. Which packages seem 3 Analyze data 2 2
to be most popular? What are the relative strengths and 4 Design processes 6 2
weakl'iesses of each s‘oftwa(lir'e pack;lge? What advice would 5 Design data 3 3
you give to someone intending to buy project management 6 Design screens 5 3.4
software for his or her PC? Why? .
) 7 Design reports 4 4,5
3.37 Suppose that you have been contrac.ted by aJewell?l store 8 Program 5 6,7
to manage a project to create a new inventory tracking sys- 9 Test and document 7 7
tem. Describe your initial approach to the project. What 10 Install 9 80
should your first activity be? What information would you nsta !
? i ?
needs To ?vhom might yO.u_ need to speak:) a. Draw a network diagram for the activities.
3.38 Can a project have two critical paths? Why or why not? Give b. Calculate the earliest expected completion time.
a brief example to illustrate your point. c. Show the critical path.
3.39 Calculate the expected time for the following activities. d. What would happen if activity 6 were revised to take six
weeks instead of two weeks?
. Opiimisﬁc Most Likely Pess.imisﬁc ExRected 3.41 Construct a Gantt chart for the project defined in Problem
Activity Time Time Time Time and Fxercise 3-40.
A 3 7 11 3.42 Look again at the activities outlined in Problem and Exer-
B 5 9 13 cise 3-40. Assume that your team is in its first week of the
C 1 2 9 project and has discovered that each of the activity dura-
D 2 3 16 tion estimates is wrong. Activity 2 will take only two weeks
E 2 4 18 to complete. Activities 4 and 7 will each take three times
F 3 4 11 longer than anticipated. All other activities will take twice
G 1 4 7 as long to complete as previously estimated. In addition, a
H 3 4 5 new activity, number 11, has been added. It will take one
| 5 4 12 week to complete, and its immediate predecessors are
] 4 7 o activities 10 and 9. Adjust the network diagram and recal-

culate the earliest expected completion times.

3.43

3.44

3.45

CHAPTER 3

Construct a Gantt chart and network diagram for a
project you are or will be involved in. Choose a project
of sufficient depth from work, home, or school. Identify
the activities to be completed, determine the sequence
of the activities, and construct a diagram reflecting
the starting times, ending times, durations, and prece-
dence (network diagram only) relationships among all
activities. For your network diagram, use the procedure
in this chapter to determine time estimates for each
activity and calculate the expected time for each activity.
Now determine the critical path and the early and late
starting and finishing times for each activity. Which
activities have slack time?

For the project you described in Problem and Exercise
3-43, assume that the worst has happened. A key team
member has dropped out of the project and has been
assigned to another project in another part of the coun-
try. The remaining team members are having personal-
ity clashes. Key deliverables for the project are now due
much earlier than expected. In addition, you have just
determined that a key phase in the early life of the proj-
ect will now take much longer than you had originally
expected. To make matters worse, your boss absolutely
will not accept that this project cannot be completed by
this new deadline. What will you do to account for these
project changes and problems? Begin by reconstructing
your Gantt chart and network diagram and determining
a strategy for dealing with the specific changes and prob-
lems just described. If new resources are needed to meet
the new deadline, outline the rationale that you will use
to convince your boss that these additional resources are
critical to the success of the project.

Assume that you have a project with seven activities labeled
A-G (below). Derive the earliest completion time (or early
finish—EF), latest completion time (or late finish—LF),
and slack for each of the following tasks (begin at time =
0). Which tasks are on the critical path? Draw a Gantt chart
for these tasks.

Preceding Expected Critical
Activity Event Duration EF LF Slack Path?
A — 5
B A 3
C A 4
D C 6
E B,C 4
F D 1
G D EF 5
3.46 Draw a network diagram for the tasks shown in Problem

3.47

and Exercise 3-45. Highlight the critical path.

Assume you have a project with ten activities labeled A—],
as shown. Derive the earliest completion time (or early fin-
ish—EF), latest completion time (or late finish—LF), and
slack for each of the following tasks (begin at time = 0).
Which tasks are on the critical path? Highlight the critical
path on your network diagram.

MANAGING THE INFORMATION SYSTEMS PROJECT

75

Preceding Expected Critical
Activity Event Duration EF LF Slack Path?
A — 4
B A 5
C A 6
D A 7
E A, D o)
F C,E 5
G D, E 4
H E 3
| F G 4
J H, I 5
3.48 Draw a Gantt chart for the tasks shown in Problem and

3.49

Exercise 3-47.

Assume you have a project with 10 activities labeled A—].
Derive the earliest completion time (or early finish—EF),
latest completion time (or late finish—LF), and slack for
each of the following tasks (begin at time = 0). Which tasks
are on the critical path? Draw both a Gantt chart and a net-
work diagram for these tasks, and make sure you highlight
the critical path on your network diagram.

Preced-
ing Expected Critical
Activity Event Duration EF LF Slack Path?
A — 3
B A 1
C A 2
D B, C 5
E C 3
F D 2
G E, F 3
H F,G 5
| G, H 5
J | 2
3.50 Make a list of the tasks that you performed when design-

3.51

3.52

3.53

ing your schedule of classes for this term. Develop a table
showing each task, its duration, preceding event(s), and
expected duration. Develop a network diagram for these
tasks. Highlight the critical path on your network diagram.

Fully decompose a project you've done in another course
(e.g., a semester project or term paper). Discuss the level
of detail where you stopped decomposing and explain why.

Create a work breakdown structure based on the decompo-
sition you carried out for Problem and Exercise 3-51.

Working in a small group, pick a project (it could be any-
thing, such as planning a party, writing a group term pa-
per, developing a database application, etc.) and then write
the various tasks that need to be done to accomplish the
project on Post-it Notes (one task per Post-it Note). Then
use the Post-it Notes to create a work breakdown structure
(WBS) for the project. Was it complete? Add missing tasks
if necessary. Were some tasks at a lower level in the WBS
than others? What was the most difficult part of doing this?

76 PART I

FIELD EXERCISES

FOUNDATIONS FOR SYSTEMS DEVELOPMENT

3.54 Identify someone who manages an information systems
project in an organization. Describe to him or her each of
the skills and activities listed in Table 3-1. Determine which
items he or she is responsible for on the project. Of those
he or she is responsible for, determine which are more
challenging and why. Of those he or she is not responsible
for, determine why not and identify who is responsible for
these activities. What other skills and activities, not listed in
Table 3-1, is this person responsible for in managing this
project?

3.55 Identify someone who manages an information systems
project in an organization. Describe to him or her each
of the project planning elements in Figure 3-9. Determine
the extent to which each of these elements is part of that
person’s project planning process. If that person is not able
to perform some of these planning activities, or if he or she
cannot spend as much time on any of these activities as he
or she would like, determine what barriers are prohibitive
for proper project planning.

3.56 Identify someone who manages an information systems
project (or other team-based project) in an organization.
Describe to him or her each of the project team communi-
cation methods listed in Table 3-2. Determine which types
of communication methods are used for team communica-
tion and describe which he or she feels are best for com-
municating various types of information.

3.57 Identify someone who manages an information systems
project in an organization. Describe to him or her each of
the project execution elements in Figure 3-13. Determine

REFERENCES

the extent to which each of these elements is part of that
person’s project execution process. If that person does not
perform some of these activities, or if he or she cannot
spend much time on any of these activities, determine what
barriers or reasons prevent performing all project execu-
tion activities.

3.58 Interview a sample of project managers. Divide your sam-
ple into two small subsamples: one for managers of infor-
mation systems projects and one for managers of other
types of projects. Ask each respondent to identify personal
leadership attributes that contribute to successful project
management and explain why these are important. Sum-
marize your results. What seem to be the attributes most
often cited as leading to successful project management,
regardless of the type of project? Are there any consistent
differences between the responses in the two subsamples?
If so, what are these differences? Do they make sense to
you? If there are no apparent differences between the
responses of the two subsamples, why not? Are there no
differences in the skill sets necessary for managing infor-
mation systems projects versus managing other types of
projects?

3.59 Observe a real information systems project team in action
for an extended period of time. Keep a notebook as you
watch individual members performing their individual tasks,
as you review the project management techniques used by
the team’s leader, and as you sit in on some of their meet-
ings. What seem to be the team’s strengths and weaknesses?
What are some areas in which the team can improve?

Abdel-Hamid, T. K., K. Sengupta, and C. Swett. 1999. “The
Impact of Goals on Software Project Management: An Ex-
perimental Investigation.” MIS Quarterly 23(4): 531-55.

Boehm, B. W,, and R. Turner. 2000. Software Cost Estimation with
COCOMO II. Upper Saddle River, NJ: Prentice Hall.

Chua, C., W. K. Lim, C. Soh, and S. K. Sia. 2012. “Enacting Clan
Control in Complex IT Projects: A Social Capital Perspec-
tive.” MIS Quarterly 35(2): 577-600.

Dinsmore, P. C., and J. Cabanis-Brewin. 2006. The AMA Handbook
of Project Management: Vol. 1. New York: AMACOM. Ameri-
can Management Association.

Florentine, S. 2015. “8 Skills to Look for in IT Project Manag-
ers.” CIO.com. http://www.cio.com/article/2866081/
careers-staffing/8-skills-to-look-for-in-it-project-managers.
html. Accessed February 14, 2015.

Florentine, S. 2014. “How to Create High-Performing Project
Management Teams.” CIO.com. http://www.cio.com/
article/2375821/project-management/how-to-create-high-
performing-project-management-teams.html. Access Febru-
ary 14, 2015.

Fuller, M. A., J. S. Valacich, and J. F. George. 2008. Information
Systems Project Management. Upper Saddle River, NJ: Prentice
Hall.

George, J. F.,, D. Batra, J. S. Valacich, and J. A. Hoffer. 2007.
Object-Oriented Analysis and Design, 2nd ed. Upper Saddle
River, NJ: Prentice Hall.

Guinan, P.], J. G. Cooprider, and S. Faraj. 1998. “Enabling Soft-
ware Development Team Performance During Require-
ments Definition: A Behavioral Versus Technical Approach.”
Information Systems Research 9(2): 101-25.

Keil, M., B. C. Y. Tan, K. K. Wei, T. Saarinen, V. Tuunainen, and
A. Wassenaar, 2000. “A Cross-Cultural Study on Escalation
of Commitment Behavior in Software Projects.” MIS Quar-
terly 24(2): 631-64.

Kettelhut, M. C. 1991. “Avoiding Group-Induced Errors in Systems
Development.” Journal of Systems Management 42(12): 13-17.

Kirsch, L. J. 2000. “Software Project Management: An Integrated
Perspective for an Emerging Paradigm.” In R. W. Zmud
(ed.), Framing the Domains of IT Management: Projecting the
Future from the Past, 285-304. Cincinnati, OH: Pinnaflex Ed-
ucational Resources.

Overby, S. 2013. “Does a Hybrid Offshore IT Outsourcing Model
Make Sense for Your Company?”. CIO.com. http://www.cio.
com/article/2380395/outsourcing/does-a-hybrid-offshore-it-
outsourcing-model-make-sense-for-your-company-.html. Ac-
cessed February 14, 2015.

http://www.cio.com/article/2866081/careers-staffing/8-skills-to-look-for-in-it-project-managers.html
http://www.cio.com/article/2375821/project-management/how-to-create-highperforming-project-management-teams.html
http://www.cio.com/article/2380395/outsourcing/does-a-hybrid-offshore-itoutsourcing-model-make-sense-for-your-company-.html
http://www.cio.com/article/2866081/careers-staffing/8-skills-to-look-for-in-it-project-managers.html
http://www.cio.com/article/2866081/careers-staffing/8-skills-to-look-for-in-it-project-managers.html
http://www.cio.com/article/2375821/project-management/how-to-create-highperforming-project-management-teams.html
http://www.cio.com/article/2380395/outsourcing/does-a-hybrid-offshore-itoutsourcing-model-make-sense-for-your-company-.html

CHAPTER 3

PMBOK. 2013. A Guide to the Project Management Body of Know!l-
edge, bth. ed. Newtown Square, PA: Project Management
Institute.

Project Management Institute. 2002. Work Breakdown Structures.
Newton Square, PA: Project Management Institute.

Rettig, M. 1990. “Software Teams.” Communications of the ACM
33(10): 23-27.

Royce, W. 1998. Software Project Management. Boston:
Addison-Wesley.

Schiff, J. L. 2014a. “9 Secrets to Project Management Success.”
CIO.com. http://www.cio.com/article /2599794 / project-
management/9-secrets-to-project-management-success.
html. Accessed February 14, 2015.

MANAGING THE INFORMATION SYSTEMS PROJECT 77

Schiff. J. L. 2014b. “11 Project Management Tips for Setting and
Managing Expectations.” CIO.com. http://www.cio.com/
article/2378680/project-management/11-project-man-
agement-tips-for-setting-and-managing-expectations.html.
Accessed February 14, 2015.

Vaidyanathan, G. 2013. Project Management: Process, Technology
and Practice. Upper Saddle River, NJ: Prentice Hall.

Verma, V. K. 1996. Human Resource Skills for the Project Manager.
Newton Square, PA: Project Management Institute.

Verma, V. K. 1997. Managing the Project Team. Newton Square, PA:
Project Management Institute.

Wideman, R. M. 1992. Project and Program Risk Management. New-
ton Square, PA: Project Management Institute.

http://www.cio.com/article/2599794/projectmanagement/9-secrets-to-project-management-success.html
http://www.cio.com/article/2378680/project-management/11-project-management-tips-for-setting-and-managing-expectations.html
http://www.cio.com/article/2378680/project-management/11-project-management-tips-for-setting-and-managing-expectations.html

X

N L~

Learning Objectives

After studying this section, you should be able to

3A.1 describe the unique characteristics of an OOSAD
project.

ect-O
Analysis and Design

Unique Characteristics

rie

ik

nted

Project Management
 — “m— I

of an OOSAD Project

In this chapter, we have described how projects are man-
aged when using a structured development approach. These
concepts and techniques are very robust to a broad range of
projects and development approaches. However, when de-
veloping a system using a more iterative design approach—
such as prototyping or object-oriented analysis and design—
there are some additional issues to consider. In this section,
we will discuss some unique characteristics of these types of
projects (see Fuller et al., 2008; George et al., 2007).

When a system is developed using an iterative
approach, it means that, over the duration of the project,
a portion of the final system is constructed during each it-
eration phase. In this way, the system evolves incrementally
so that by the last iteration of the project, the entire system
is completed (see Figure 3-31). In order for the system to
evolve in this manner, the project manager must under-
stand several unique characteristics of an OOSAD project.

DEFINE THE SYSTEM AS A SET
OF COMPONENTS

In order to manage the project as a series of iterations, the
project manager must subdivide the overall system into a
set of components; when combined, this set will yield the
entire system (see Figure 3-32). Each of these separate sys-
tem components is often referred to as a “vertical slice” of
the overall system; this is a key feature of the system that can
be demonstrated to users. Alternatively, each slice should
not be a subsystem that spans “horizontally” throughout
the entire system because these horizontal slices typically

78

do not focus on a specific system feature, nor are they typi-
cally good for demonstration to users. Basically, each verti-
cal slice represents a use case of the system (see Chapter 7
for more information on use case diagrams). Also, note in
Figure 3-32 that project management and planning is an
activity that continues throughout the life of the project.
One outcome of defining the overall system as a collec-
tion of components is the likelihood that the components
constructed earlier in the project will require greater rework
than those developed later in the project. For example, dur-
ing the early stages of the project, missing components or
a lack of understanding of key architectural features will
require that components developed early in the project be
modified substantially as the project moves forward in order
to integrate these components into a single comprehensive
system successfully. This means that rework is a natural part
of an OOSAD project and that one should not be overly con-
cerned when this occurs. It is simply a characteristic of the
iterative and incremental development process of OOSAD.

Complete Hard Problems First

Another characteristic of the OOSAD approach is that it
tackles the hard problems first. In classic structured systems
development, a hard problem, such as choosing the physi-
cal implementation environment, is addressed late in the
development process. As a result, following a classic systems
development approach tends to result in putting oft making
some of the key systems architectural decisions until late in
the project. This approach is sometimes problematic because
such decisions often determine whether a project is a success

CHAPTER 3 MANAGING THE INFORMATION SYSTEMS PROJECT 79

Iteration 1 Iteration 2 O O O Iteration N

Ja
—vy

000

Evolving Prototypes OO0 Completed System

>
Start of Project End of Project

or a failure. On the other hand, addressing hard problems as early as possible allows
the difficult problems to be examined before substantial resources have been expended.
This mitigates project risk.

In addition, completing the harder problems associated with the systems archi-
tecture as early as possible helps in completing all subsequent components because
most will build upon these basic architectural capabilities. (With some projects, the
hardest components depend upon simpler components. In these cases, one must
complete the simpler slices first before moving to the harder ones. Nonetheless, focus
should be placed on the hard problems as soon as possible.) From a project planning
perspective, this means that there is a natural progression and ordering of compo-
nents over the life of the project. The initial iteration or two must focus on the system
architecture such as the database or networking infrastructure. Once the architec-
ture is completed, core system capabilities, such as creating and deleting records, are
implemented. After the core system components are completed, detailed system fea-
tures are implemented that help to fine-tune key system capabilities. During the final
iteration phases, the primary focus is on activities that bring the project to a close
(e.g., interface refinement, user manuals, and training; see Figure 3-33).

Iterations

AN

4 N

—_

I
4 : 5 N

| | | |

| | | |

| | | |

i i i i i

Ongoing Project Management and Planning
| | |

—_—l
|

Slices
/\

00O

| Jusuodwo)
2 Wauodwon
€ uauodwon
 Jusuodwon
G jusuodwo)
9 suodwon
/ Jusuodwo)
8 usuodwon
6 Jusuodwo)
01 jusuodwo)
1| Jusuodwon)
2| suodwo)
|- N usuodwo)
N 1usuodwo)

o

FIGURE 3-31
During the OOSAD process, the system
evolves incrementally over the life of the

project

Start of Project End of Project

>

FIGURE 3-32
Object-oriented development
projects are developed using
ongoing management and
evolving system functionality

80 PARTI FOUNDATIONS FOR SYSTEMS DEVELOPMENT

FIGURE 3-33

The focus and ordering of
system components change
over the life of the project

Focus

N

Iterations

AN

4 h

| | | | | | |
| | | | | | |
1 | 2 | 3 | 4 | 5 | 6 | | N
i i i i i i i
<z : LOngoing Project Management and Planning s—————3
| | | | | | |
o|lo| o O | o
sle glelslgle|es e 8|: & 1§
3 3 3 3 3 3 3 3 S = = = S 3
i) i) i) i) © i) ie) © © o o o o o
|| |o|e|o|a|e|a|8[8|8 OO0 =2]:¢
=] =] =] =] =] =] =] =] > > >) @ 3
o] o] o] o] [} [} [} [} [} 3 3 3 =] @
= = = = = =" =" I (s | =
- | v | r|lo|lo | N|lo|o 5|20 E =
Architecture Core Features Detailed Features Completion
>
Start of Project End of Project

Using Iterations to Manage the Project

During each project iteration, all systems development life cycle activities are per-
formed (see Figure 3-34). This means that each project iteration has management
and planning, analysis, design, and implementation and operation activities. For
each iteration, the inputs to the process are the allocated project components—verti-
cal slices or use cases—to perform during this iteration and the results from the prior
iteration. The results of this iteration are then used as inputs to the next iteration.
For example, as components are designed and implemented, much is learned about
how subsequent components will need to be implemented. The learning that occurs
during each iteration helps the project manager gain a better understanding about
how subsequent components will be designed, what problems might occur, what re-
sources are needed, and how long and complex a component will be to complete.
As a result, most experienced project managers believe that it is a mistake to make
project plans too detailed early in the project when much is still unknown.

Don’t Plan Too Much Up Front

During each iteration, more and more will be learned about how subsequent com-
ponents will need to be designed, how long each might take to complete, and so on.
Therefore, it is a mistake to make highly detailed plans far into the future because it
is likely that these plans will be wrong. In OOSAD, as each iteration is completed, the
goal is to learn more about the system being constructed, the capabilities of the de-
velopment team, the complexity of the development environment, and so on. As this
understanding is gained over the course of the project, the project manager is able
to make better and better predictions and plans. As a result, making highly detailed
plans for all project iterations is likely to result in a big waste of time. The project
manager should be concerned only with making highly detailed plans for the next
iteration or two. As the project manager learns over the course of the project, he or
she will be able to continually refine schedules, time estimates, and resource require-
ments with better and better estimates (see Figure 3-35).

-

CHAPTER 3 MANAGING THE INFORMATION SYSTEMS PROJECT 81

Management and

Planning
Analysis
| Design
| Implementations and
Operations

How Many and How Long Are Iterations?

One question that many people have when first experiencing OOSAD has to do
with the number and duration of iterations. Iterations are designed to be a fixed
length of time, typically from two to eight weeks, but they can be as short as one week
(especially for smaller projects). During a single iteration, multiple components (use
cases) can be completed. However, it is important not to try to pack the develop-
ment of too many components into a single iteration. Experience has shown that
having more iterations with fewer components to be completed is better than hav-
ing only a few iterations with many components needing to be completed. It is only

Inception

Estimation Errors Over Time
o

x4 -

Overestimated

Elaboration Construction

Transition

Underestimated

Time

FIGURE 3-34
The workflow of an iteration

(Source: Based on Royce, 1998; George
etal., 2007.)

FIGURE 3-35

Planning estimation improves over time

(Source: Based on Royce, 1998; George
etal., 2007.)

82 PARTI FOUNDATIONS FOR SYSTEMS DEVELOPMENT

FIGURE 3-36
An OOSAD project typically has six to

nine iterations

FIGURE 3-37
As the project evolves, system
functionality evolves

(Source: Based on Royce, 1998; George
etal., 2007.)

Inception Elaboration | Construction Transition
(1-2 iterations) |(2-3 iterations) |(3-5 iterations) | (1-2 iterations)

Management and
Planning

Analysis

Design

Implementation

Operation

6-9 Iterations

by iterating—completing a full systems development cycle—that significant learning
can occur to help the project manager better plan subsequent iterations.

The inception phase generally will entail one iteration, but it is not uncommon
for this to require two or more iterations in large, complex projects. Likewise, elabora-
tion often is completed in one or two iterations, but again system complexity and size
can influence this. Construction can range from two to several iterations, and transi-
tion typically occurs over one or two iterations. Thus, experienced OOSAD project
managers typically use from six to nine iterations when designing and constructing a
system (see Figure 3-36). Note that all completed components are integrated into a
comprehensive system at the conclusion of each iteration. During the first iteration, it
is likely that simple component prototypes, such as file opening, closing, and saving,
will be created. However, as the project progresses, the prototypes become increas-
ingly sophisticated until the entire system is completed (see Figure 3-37).

Iterations

Inception Elaboration Construction Transition

B

100

Percent Complete
(&)
o
I

0
Component Integrated Alpha Release Beta Release
Prototypes Component
Start of Project End of Project

CHAPTER 3

MANAGING THE INFORMATION SYSTEMS PROJECT

83

Elaboration
(2-3 iterations)

Inception
(1-2 iterations)

Construction
(8-5 iterations)

FIGURE 3-38
The level and focus of activity across the
systems development process change

Transition
(1-2 iterations)

Management and
Planning

from the start to the end of the project

Analysis

Design

Implementation

Operation

Start of Project

P End of Project

Project Activity Focus Changes Over the Life of a Project

Over the life of a project, the project manager moves from iteration to iteration,
beginning with inception and ending with the transition phase. Additionally, during
all project iterations, the manager engages in all phases of the systems development
cycle. However, the level of activity in each phase changes over the life of the project
(see Figure 3-38). For example, throughout the life of the project, management and
planning are an ongoing and important part of the project. Additionally, during in-
ception the primary focus is analysis, during elaboration the primary focus is design,
during construction the primary focus is implementation, and during transition the
primary focus is making the system operational. In sum, although all project life
cycle activities are employed during every project iteration, the mix and focus of

these activities change over time.

SUMMARY

When managing an OOSAD project, the project manager
must define the project as a set of components. Once de-
fined, these components can be analyzed and ordered so
that the most difficult components are implemented first.
An OOSAD project is managed by a series of iterations,
and each iteration contains all phases of the systems de-
velopment cycle. Over each iteration, more and more of
the system is created (component by component), and
more and more is learned about the system being con-
structed, the capabilities of the development team, and

REVIEW QUESTION

the complexity of the development environment. As this
learning increases over time, the project manager is better
able to plan project activities more accurately. Therefore,
itis not good practice to plan long-range activities in great
detail; detailed planning should occur only for the current
and subsequent iteration. Most projects have six to nine
iterations, but large projects could have several more. An
iteration is a fixed time period, usually about two weeks,
but it can be shorter or longer depending upon the char-
acteristics of the project.

3.60 Describe the unique characteristics of OOSAD projects that
have ramifications for how these projects are managed.

PROBLEMS AND EXERCISES

3.61 Why should project managers complete hard problems
first in an OOSAD project?

3.62 Why is planning too much up front a mistake in an OOSAD
project?

84 PART I

PETRI PETRIE ELECTRONICS
ELECTRONI

Chapter 3: Managing the Information Systems
Project

Jim Watanabe, assistant director of information technol-
ogy at Petrie Electronics, a Southern California-based
electronics retail store, walked into his building’s confer-
ence room. It was early in the morning for Jim, but the
meeting was important. Ella Whinston, the COO, had
called the meeting. On the agenda was the proposed cus-
tomer relationship project Ella told Jim about earlier in
the week. She had asked Jim to be the project manager. If
the project was approved by Petrie IS steering committee,
it would be Jim’s first big project to manage at Petrie. He
was excited about getting started.

“Hi Jim,” said Ella Whinston. With Ella was a man Jim
did not know. “Jim, this is Bob Petroski. I know that the
customer loyalty project has not been officially approved
yet, but I am certain it will be. I'd like for Bob to be on
your team, to represent me.”

Jim and Bob shook hands. “Nice to meet you, Jim. I'm
looking forward to working with you.”

“And Bob knows how important this project is to me,”
Ella said, “so I expect him to keep me informed about
your progress.” Ella smiled.

Great, Jim thought, more pressure. That’s all I need.

Just then, John Smith, the head of marketing, walked
into the conference room. With him was a young woman
Jim recognized, but he wasn’t sure from where.

“Jim,” John said, “Let me introduce you to Sally
Fukuyama. She is the assistant director of marketing.
She will be representing marketing, and me, on your ‘No
Employee Escapes’ project. Assuming it gets official ap-
proval, of course.”

FOUNDATIONS FOR SYSTEMS DEVELOPMENT

“Hi, Jim,” Sally said, “I have a lot of ideas about what we
can do. Even though I still have my regular job to worry
about, I'm excited about working on this project.”

“Who else do you think should be on your team?” Ella
asked.

“I’d like to bring in Sanjay Agarwal from IT,” Jim said.
“He is in charge of systems integration in the IT depart-
ment and reports to me. In addition to me and Sanjay and
Sally and Bob, I think we should also have a store man-
ager on the team. I'd like to suggest Juanita Lopez, the
manager of the store in Irvine, California. She is really
busy, but I think we have to have a store manager on the
team.”

“Irvine?” Ella asked. “That’s one of our top stores.
Juanita should have a lot of insight into the issues related
to keeping customers, if she is managing the Irvine store.
And you are right, she is going to be very busy.”

Case Questions

3.63 What qualities might Jim possess that would make
him a successful project manager?

3.64 How do you think Jim should respond to Ella’s im-
plied pressure about the importance of the project
to her?

3.65 What strategies might Jim employ to deal with a very
busy team member such as Juanita Lopez?

3.66 What should Jim do next to complete the project
initiation?

3.67 List five team communication methods that Jim
might use throughout this project. What are some
pros and cons of each?

PART TWO

Planning

Chapter 4 Chapter 5

Identifying and Selecting Systems Initiating and Planning Systems Development
Development Projects Projects

85

S

PART TWO

Planning

The demand for new or replacement systems exceeds
the ability and resources of most organizations to con-
duct systems development projects either by themselves
or with consultants. This means that organizations must
set priorities and a direction for systems development
that will yield development projects with the greatest net
benefits. As a systems analyst, you must analyze user in-
formation requirements, and you must also help make
the business case—or justify why the system should be
built and the development project conducted.

The reason for any new or improved information
system (IS) is to add value to the organization. As systems
analysts, we must choose to use systems development re-
sources to build the mix of systems that add the greatest
value to the organization. How can we determine the busi-
ness value of systems and identify those applications that
provide the most critical gains? Part Two addresses this
topic, the first phase of the systems development life cycle
(SDLC), which we call planning. Business value comes
from supporting the most critical business goals and help-
ing the organization deliver on its business strategy. All
systems, whether supporting operational or strategic func-
tions, must be linked to business goals. The two chapters
in this part of the book show how to make this linkage.

The source of systems projects is either initiatives
from IS planning (proactive identification of systems)
or requests from users or IS professionals (reactions to
problems or opportunities) for new or enhanced systems.
In Chapter 4, we outline the linkages among corporate
planning, IS planning, and the identification and selec-
tion of projects. We do not include IS planning as part
of the SDLC, but the results of IS planning greatly influ-
ence the birth and conduct of systems projects. Chapter
4 makes a strong argument that IS planning provides not
only insights into choosing which systems an organiza-
tion needs, but also describes the strategies necessary for
evaluating the viability of any potential systems project.

A more frequent source of project identification
originates from system service requests (SSRs) from
business managers and IS professionals, usually for
very focused systems or incremental improvements in
existing systems. Business managers request a new or

86

replacement system when they believe that improved in-
formation services will help them do their jobs. IS profes-
sionals may request system updates when technological
changes make current system implementations obsolete
or when the performance of an existing system needs im-
provement. In either case, the request for service must
be understood by management, and a justification for
the system and associated project must be developed.

We continue with the Petrie Electronics case fol-
lowing Chapter 4. In this case, we show how an idea for a
new IS project was stimulated by a synergy between cor-
porate strategic planning and the creativity of an indi-
vidual business manager.

Chapter 5 focuses on what happens after a project
has been identified and selected: the next step in mak-
ing the business case, initiating and planning the pro-
posed system request. This plan develops a better under-
standing of the scope of the potential system change and
the nature of the needed system features. From this pre-
liminary understanding of system requirements, a proj-
ect plan is developed that shows both the detailed steps
and resources needed in order to conduct the analysis
phase of the life cycle and the more general steps for
subsequent phases. The feasibility and potential risks of
the requested system are also outlined, and an economic
cost-benefit analysis is conducted to show the potential
impact of the system change. In addition to the economic
feasibility or justification of the system, technical, organi-
zational, political, legal, schedule, and other feasibilities
are assessed. Potential risks—unwanted outcomes—are
identified, and plans for dealing with these possibilities
are identified. Project initiation and planning end when
a formal proposal for the systems development project
is completed and submitted for approval to the person
who must commit the resources to systems development.
If approved, the project moves into the analysis phase of
the SDLC.

We illustrate a typical project initiation and plan-
ning phase in a Petrie Electronics case following Chapter
5. In this case, we show how the company developed its
project scope statement and addressed various aspects of
the project’s initiation and planning stage.

PI'OJeCtS

N L~

Learning Objectives

After studying this chapter, you should be able to

4.1 describe the project identification and selection
process,

4.2 describe the corporate strategic planning and
information systems planning process, and

Idenﬁfymg and Selectlng
- Systems Development

e -

4.3 describe the three classes of Internet
electronic commerce applications: business-
to-consumer, business-to-employee, and
business-to-business.

Introduction

The scope of information systems today is the whole
enterprise. Managers, knowledge workers, and all
other organizational members expect to easily access
and retrieve information, regardless of its location.
Nonintegrated systems used in the past—often referred
to as “islands of information”—are being replaced with
cooperative, integrated enterprise systems that can eas-
ily support information sharing. Although the goal of
building bridges between these “islands” will take some
time to achieve, it represents a clear direction for infor-
mation systems development. The use of enterprise re-
source planning (ERP) systems from companies such as
SAP (www.sap.com) and Oracle (www.oracle.com), has
enabled the linking of these “islands” in many organiza-
tions. Additionally, as the use of the Internet continues
to evolve to support business activities, systems integra-
tion has become a paramount concern of organizations
(Fox, 2013; Luftman, 2004; Overby, 2006; Wailgum, 2010;
Westerman et al., 2014; Weill and Ross, 2009).
Obtaining integrated, enterprise-wide computing
presents significant challenges for both corporate and
information systems management. For example, given
the proliferation of personal and departmental comput-
ing wherein disparate systems and databases have been
created, how can the organization possibly control and
maintain all of these systems and data? In many cases they
simply cannot; it is nearly impossible to track who has
which systems and what data, where there are overlaps

or inconsistencies, and the accuracy of the information.
The reason that personal and departmental systems and
databases abound is that users are either unaware of the
information that exists in corporate databases or they can-
not easily get at it, so they create and maintain their own
information and systems. Intelligent identification and
selection of system projects, for both new and replace-
ment systems, is a critical step in gaining control of sys-
tems and data. It is the hope of many chief information
officers (CIOs) that with the advent of ERP systems, im-
proved system integration, and the rapid deployment of
corporate Internet solutions, these islands will be reduced
or eliminated (Fox, 2013; Harvard Business Review, 2011;
Luftman, 2004; Newbold and Azua, 2007; Olavsrud, 2014;
Weill and Ross, 2009; Wailgum, 2010).

The acquisition, development, and maintenance
of information systems consume substantial resources
for most organizations. This suggests that organizations
can benefit from following a formal process for identify-
ing and selecting projects. The first phase of the systems
development life cycle—project identification and selec-
tion—deals with this issue. In the next section, you will
learn about a general method for identifying and select-
ing projects and the deliverables and outcomes from this
process. This is followed by brief descriptions of corporate
strategic planning and information systems planning, two
activities that can greatly improve the project identifica-
tion and selection process.

87

http://www.sap.com
http://www.oracle.com

88 PARTII PLANNING

FIGURE 4-1
Systems development life cycle with
project identification and selection

highlighted

IDENTIFYING AND SELECTING SYSTEMS
DEVELOPMENT PROJECTS

The first phase of the SDLC is planning, consisting of project identification and se-
lection, and project initiation and planning (see Figure 4-1). During project iden-
tification and selection, a senior manager, a business group, an IS manager, or a
steering committee identifies and assesses all possible systems development projects
that an organization unit could undertake. Next, those projects deemed most likely
to yield significant organizational benefits, given available resources, are selected for
subsequent development activities. Organizations vary in their approach to identify-
ing and selecting projects. In some organizations, project identification and selection
is a very formal process in which projects are outcomes of a larger overall planning
process. For example, a large organization may follow a formal project identifica-
tion process whereby a proposed project is rigorously compared with all competing
projects. Alternatively, a small organization may use informal project selection pro-
cesses that allow the highest-ranking IS manager to independently select projects or
allow individual business units to decide on projects after agreeing to provide project
funding.

Information systems development requests come from a variety of sources.
One source is requests by managers and business units for replacing or extending
an existing system to gain needed information or to provide a new service to cus-
tomers. Another source for requests is IS managers who want to make a system more
efficient and less costly to operate, or want to move it to a new operating environ-
ment. A final source of projects is a formal planning group that identifies projects
for improvement to help the organization meet its corporate objectives (e.g., a new
system to provide better customer service). Regardless of how a given organization
actually executes the project identification and selection process, a common se-
quence of activities occurs. In the following sections, we describe a general process
for identifying and selecting projects and producing the deliverables and outcomes
of this process.

v Project Identification and Selection
Project Initiation and Planning

Planning

Maintenance Analysis

Implementation < Design

CHAPTER 4

The Process of Identifying and Selecting IS Development Projects

IDENTIFYING AND SELECTING SYSTEMS DEVELOPMENT PROJECTS

Project identification and selection consists of three primary activities:

1. Identifying potential development projects
2. Classifying and ranking IS development projects

3. Selecting IS development projects

Each of these steps is described below:

1. Identifying potential development projects. Organizations vary as to how they identify

projects. This process can be performed by

® a key member of top management, either the CEO of a small- or medium-
sized organization or a senior executive in a larger organization;

® asteering committee, composed of a cross section of managers with an inter-
est in systems;

¢ user departments, in which either the head of the requesting unit or a com-
mittee from the requesting department decides which projects to submit
(often you, as a systems analyst, will help users prepare such requests); or

¢ the development group or a senior IS manager.

All methods of identification have been found to have strengths and weak-
nesses. Research has found, for example, that projects identified by top man-
agement more often have a strategic organizational focus. Alternatively, projects
identified by steering committees more often reflect the diversity of the commit-
tee and therefore have a cross-functional focus. Projects identified by individual
departments or business units most often have a narrow, tactical focus. Finally, a
dominant characteristic of projects identified by the development group is the
ease with which existing hardware and systems will integrate with the proposed
project. Other factors, such as project cost, duration, complexity, and risk, are
also influenced by the source of a given project. Characteristics of each selection
method are briefly summarized in Table 4-1. In addition to who makes the deci-
sion, characteristics specific to the organization—such as the level of firm diversi-
fication, level of vertical integration, or extent of growth opportunities—can also
influence any investment or project selection decision (Dewan et al., 1998; Fox,
2013; Harvard Business Review, 2009; Luftman, 2004; Yoo et al., 2006; Thomas
and Fernandez, 2008; Weill and Ross, 2009).

TABLE 4-1 Characteristics of Alternative Methods for Making Information Systems
Identification and Selection Decisions

Selection Method Characteristics

Top Management Greater strategic focus

Largest project size
Longest project duration
Enterprise-wide consideration

Steering Committee Cross-functional focus

Greater organizational change
Formal cost-benefit analysis
Larger and riskier projects
Functional Area Narrow, nonstrategic focus
Faster development

Fewer users, management layers, and business
functions involved

Development Group Integration with existing systems focus
Fewer development delays
Less concern with cost-benefit analysis

(Source: Based on McKeen, Guimaraes, and Wetherbe, 1994; GAO, 2000.)

89

90

PART II

PLANNING

Of all the possible project sources, those identified by top management
and steering committees most often reflect the broader needs of the organiza-
tion. This occurs because top management and steering committees are likely
to have a broader understanding of overall business objectives and constraints.
Projects identified by top management or by a diverse steering committee are
therefore referred to as coming from a top-down source.

Projects identified by a functional manager, business unit, or by the infor-
mation systems development group are often designed for a particular business
need within a given business unit. In other words, these projects may not reflect
the overall objectives of the organization. This does not mean that projects iden-
tified by individual managers, business units, or the IS development group are
deficient, only that they may not consider broader organizational issues. Project
initiatives stemming from managers, business units, or the development group
are generally referred to as coming from a bottom-up source. These are the types
of projects in which you, as a systems analyst, will have the earliest role in the life
cycle as part of your ongoing support of users. You will help user managers pro-
vide the description of information needs and the reasons for doing the project
that will be evaluated in selecting, among all submitted projects, which ones will
be approved to move into the project initiation and planning phase of the SDLC.

In sum, projects are identified by both top-down and bottom-up initiatives.
The formality of the process of identifying and selecting projects can vary substan-
tially across organizations. Also, because limited resources preclude the develop-
ment of all proposed systems, most organizations have a process of classifying and
ranking the merit of each project. Those projects deemed inconsistent with overall
organizational objectives, redundant in functionality to some existing system, or
unnecessary will thus be removed from consideration. This topic is discussed next.

2. Classifying and ranking IS development projects. The second major activity in the

project identification and selection process focuses on assessing the relative
merit of potential projects. As with the project identification process, classifying
and ranking projects can be performed by top managers, a steering committee,
business units, or the IS development group. Additionally, the criteria used when
assigning the relative merit of a given project can vary. Commonly used criteria
for assessing projects are summarized in Table 4-2. In any given organization,
one or several criteria might be used during the classifying and ranking process.

As with the project identification and selection process, the actual criteria
used to assess projects will vary by organization. If, for example, an organization
uses a steering committee, it may choose to meet monthly or quarterly to review

TABLE 4-2 Possible Evaluation Criteria When Classifying and Ranking Projects

Evaluation Criteria Description

Value Chain Analysis Extent to which activities add value and costs

when developing products and/or services

Strategic Alignment Extent to which the project is viewed as

helping the organization achieve its strategic
objectives and long-term goals

Potential Benefits Extent to which the project is viewed as
improving profits, customer service, and so
forth, and the duration of these benefits

Resource Availability Amount and type of resources the project
requires and their availability
Project Size/Duration Number of individuals and the length of time

needed to complete the project

Technical Difficulty/Risks Level of technical difficulty to successfully

complete the project within given time and
resource constraints

CHAPTER 4 IDENTIFYING AND SELECTING SYSTEMS DEVELOPMENT PROJECTS 91

projects and use a wide variety of evaluation criteria. At these meetings, new proj-
ect requests will be reviewed relative to projects already identified, and ongoing
projects are monitored. The relative ratings of projects are used to guide the
final activity of this identification process—project selection.

An important project evaluation method that is widely used for assessing
information systems development projects is called value chain analysis (Foss and
Saebi, 2015; Porter, 1985; Van den Berg and Pietersma, 2015). Value chain analy-
sis is the process of analyzing an organization’s activities for making products
and/or services to determine where value is added and costs are incurred. Once
an organization gains a clear understanding of its value chain, improvements in
the organization’s operations and performance can be achieved. Information sys-
tems projects providing the greatest benefit to the value chain will be given prior-
ity over those with fewer benefits.

As you might have guessed, information systems have become one of the
primary ways for organizations to make changes and improvements in their value
chains. Many organizations, for example, are using the Internet to exchange
important business information with suppliers and customers, such as orders,
invoices, and receipts. To conduct a value chain analysis for an organization,
think about an organization as a big input/output process (see Figure 4-2). At
one end are the inputs to the organization, for example, supplies that are pur-
chased. Within the organizations, those supplies and resources are integrated in
some way to produce products and services. At the other end are the outputs,
which represent the products and services that are marketed, sold, and then dis-
tributed to customers. In value chain analysis, you must first understand each ac-
tivity, function, and process where value is or should be added. Next, determine
the costs (and the factors that drive costs or cause them to fluctuate) within each
of the areas. After understanding your value chain and costs, you can benchmark
(compare) your value chain and associated costs with those of other organiza-
tions, preferably your competitors. By making these comparisons, you can iden-
tify priorities for applying information systems projects.

. Selecting IS development projects. The final activity in the project identification and
selection process is the actual selection of projects for further development. Proj-
ect selection is a process of considering both short- and long-term projects and
selecting those most likely to achieve business objectives. Additionally, as busi-
ness conditions change over time, the relative importance of any single project
may substantially change. Thus, the identification and selection of projects is a
very important and ongoing activity.

Numerous factors must be considered when making project selection de-
cisions. Figure 4-3 shows that a selection decision requires that the perceived
needs of the organization, existing systems and ongoing projects, resource avail-
ability, evaluation criteria, current business conditions, and the perspectives of
the decision makers will all play a role in project selection decisions. Numerous
outcomes can occur from this decision process. Of course, projects can be ac-
cepted or rejected. Acceptance of a project usually means that funding to con-
duct the next phase of the SDLC has been approved. Rejection means that the
project will no longer be considered for development. However, projects may
also be conditionally accepted; they may be accepted pending the approval or

il Y
_:Il.’l! 'IF'll
Transform Raw Storage and Marketing,
Materials into Distribution Sales, and
Products of Products Customer Support

Value chain analysis

Analyzing an organization's acivities

to defermine where value is added 1o
products and/or services and the costs
incurred for doing so; usually also includes
a comparison with the activities, added
value, and costs of other organizations

for the purpose of making improvements

in the organization’s operations and
performance.

FIGURE 4-2

Organizations can be thought of as a
value chain, transforming raw materials
info products for customers

Sources: Left to right: Bram van
Broekhoven/Shutterstock; Alexey
Fursov/Shutterstock; TTstudio/Fotolia;
Kadmy/Fotolia

92 PART II PLANNING

FIGURE 4-3

Project selection decisions must consider
numerous factors and can have numerous
outcomes

FIGURE 4-4

Alternative projects and system design
decisions can be assisted using weighted
multicriteria analysis

. Existing and
Perceived and) 9
Available
Real Needs
Resources

Decision Outcome

e Accept Project

List of Potential Project

)) ¢ Reject Project
and Ongoing =3 Selection o
Projects Decision o Refocus Project
e End-User Development
¢ Proof of Concept
Current .
- Evaluation
Organizational Criteria
Environment

availability of needed resources or the demonstration that a particularly difficult
aspect of the system can be developed. Projects may also be returned to the origi-
nal requesters, who are told to develop or purchase the requested system. Finally,
the requesters of a project may be asked to modify and resubmit their request
after making suggested changes or clarifications.

One method for deciding among different projects, or when considering alter-
native designs for a given system, is illustrated in Figure 4-4. For example, suppose
that, for a given system that has been identified and selected, there are three alterna-
tive designs that could be pursued—A, B, or C. Let’s also suppose that early planning
meetings identified three key system requirements and four key constraints that could
be used to help make a decision on which alternative to pursue. In the left column
of Figure 4-4, three system requirements and four constraints are listed. Because not
all requirements and constraints are of equal importance, they are weighted based
on their relative importance. In other words, you do not have to weight requirements
and constraints equally; it is certainly possible to make requirements more or less
important than constraints. Weights are arrived at in discussions among the analysis
team, users, and sometimes managers. Weights tend to be fairly subjective and, for

Criteria Weight Alternative A Alternative B Alternative C
Rating | Score | Rating | Score | Rating | Score

Requirements

Real-time data entry 18 5 90 5 90 5 90
Automatic reorder 18 1 18 5 90 5 90
Real-time data query _14 1 14 5 70 5 70

50 122 250 250

Constraints

Developer costs 15 4 60 5 75 S 45
Hardware costs 15 4 60 4 60 3 45
Operating costs 15 5 75 1 15 5] 75
Ease of training _ 5 © 25 3 15 3 15

50 220 165 180
Total 100 342 415 430

CHAPTER 4 IDENTIFYING AND SELECTING SYSTEMS DEVELOPMENT PROJECTS

that reason, should be determined through a process of open discussion to reveal un-
derlying assumptions, followed by an attempt to reach consensus among stakehold-
ers. Notice that the total of the weights for both the requirements and constraints is
100 percent.

Next, each requirement and constraint is rated on a scale of 1 to 5. A rating of
1 indicates that the alternative does not meet the requirement very well or that the
alternative violates the constraint. A rating of 5 indicates that the alternative meets or
exceeds the requirement or clearly abides by the constraint. Ratings are even more
subjective than weights and should also be determined through open discussion
among users, analysts, and managers. For each requirement and constraint, a score is
calculated by multiplying the rating for each requirement and each constraint by its
weight. The final step is to add the weighted scores for each alternative. Notice that
we have included three sets of totals: for requirements, for constraints, and overall to-
tals. If you look at the totals for requirements, alternative B or C is the best choice be-
cause both meet or exceed all requirements. However, if you look only at constraints,
alternative A is the best choice because it does not violate any constraints. When we
combine the totals for requirements and constraints, we see that the best choice is
alternative C. Whether alternative C is actually chosen for development, however, is
another issue. The decision makers may choose alternative A, knowing that it does
not meet two key requirements, because it has the lowest cost. In short, what may ap-
pear to be the best choice for a systems development project may not always be the
one that ends up being developed. By conducting a thorough analysis, organizations
can greatly improve their decision-making performance.

Deliverables and Outcomes

The primary deliverable from the first part of the planning phase is a schedule of spe-
cific IS development projects, coming from both top-down and bottom-up sources,
to move into the next part of the planning phase—project initiation and planning
(see Figure 4-5). An outcome of this phase is the assurance that careful consideration
was given to project selection, with a clear understanding of how each project can
help the organization reach its objectives. Due to the principle of incremental com-
mitment, a selected project does not necessarily result in a working system. After each
subsequent SDLC phase, you, other members of the project team, and organizational
officials will reassess your project to determine whether the business conditions have
changed or whether a more detailed understanding of a system’s costs, benefits, and
risks would suggest that the project is not as worthy as previously thought.

Sources of Project Identification Project Initiation
Potential Projects and Selection and Planning
Top Down

e Top Management
e Steering Committee

Schedule of Projects

Evaluate,
Prioritize, and
Schedule
Projects

Bottom Up

e User Departments
¢ Development Group

93

Incremental commitment

A sfrategy in systems analysis and design
in which the project is reviewed affer each
phase and confinuation of the project is

rejustified.

FIGURE 4-5

Information systems development projects
come from both top-down and bottom-up

initiatives

94

PART II

PLANNING

Many organizations have found that in order to make good project selection
decisions, a clear understanding of overall organizational business strategy and ob-
jectives is required. This means that a clear understanding of the business and the
desired role of information systems in achieving organizational goals is a precondi-
tion to improving the identification and selection process. In the next section, we
provide a brief overview of the process many organizations follow—involving corpo-
rate strategic planning and information systems planning—when setting their busi-
ness strategy and objectives and when defining the role of information systems in
their plans.

CORPORATE AND INFORMATION
SYSTEMS PLANNING

Although there are numerous motivations for carefully planning the identification
and selection of projects (see Atkinson, 1990; Dyche, 2015; Harvard Business Review,
2009; Kelly, 2006; Luftman, 2004; Weill and Ross, 2009), organizations have not tra-
ditionally used a systematic planning process when determining how to allocate IS
resources. Instead, projects have often resulted from attempts to solve isolated orga-
nizational problems. In effect, organizations have asked the question: “What proce-
dure (application program) is required to solve this particular problem as it exists
today?” The difficulty with this approach is that the required organizational proce-
dures are likely to change over time as the environment changes. For example, a
company may decide to change its method of billing customers or a university may
change its procedure for registering students. When such changes occur, it is usually
necessary to again modify existing information systems.

In contrast, planning-based approaches essentially ask the question: “What in-
formation (or data) requirements will satisfy the decision-making needs or business
processes of the enterprise today and well into the future?” A major advantage of this
approach is that an organization’s informational needs are less likely to change (or
will change more slowly) than its business processes. For example, unless an organi-
zation fundamentally changes its business, its underlying data structures may remain
reasonably stable for more than 10 years. However, the procedures used to access
and process the data may change many times during that period. Thus, the challenge
of most organizations is to design comprehensive information models containing
data that are relatively independent from the languages and programs used to ac-
cess, create, and update them.

To benefit from a planning-based approach for identitying and selecting proj-
ects, an organization must analyze its information needs and plan its projects care-
fully. Without careful planning, organizations may construct databases and systems
that support individual processes but do not provide a resource that can be easily
shared throughout the organization. Further, as business processes change, lack of
data and systems integration will hamper the speed at which the organization can ef-
fectively make business strategy or process changes.

The need for improved information systems project identification and selec-
tion is readily apparent when we consider factors such as the following:

1. The cost of information systems has risen steadily and approaches 40 percent of
total expenses in some organizations.

2. Many systems cannot handle applications that cross organizational boundaries.

3. Many systems often do not address the critical problems of the business as a
whole or support strategic applications.

4. Data redundancy is often out of control, and users may have little confidence in
the quality of data.

5. Systems maintenance costs are out of control as old, poorly planned systems must
constantly be revised.

CHAPTER 4 IDENTIFYING AND SELECTING SYSTEMS DEVELOPMENT PROJECTS

6. Application backlogs often extend three years or more, and frustrated end users
are forced to create (or purchase) their own systems, often creating redundant
databases and incompatible systems in the process.

Careful planning and selection of projects alone will certainly not solve all of these
problems. We believe, however, that a disciplined approach, driven by top management
commitment, is a prerequisite for most effectively applying information systems in order
to reach organizational objectives. The focus of this section is to provide you with a clear
understanding of how specific development projects with a broader organizational
focus can be identified and selected. Specifically, we describe corporate strategic plan-
ning and information systems planning, two processes that can significantly improve
the quality of project identification and selection decisions. This section also outlines
the types of information about business direction and general systems requirements
that can influence selection decisions and guide the direction of approved projects.

Corporate Strategic Planning

A prerequisite for making effective project selection decisions is to gain a clear idea
of where an organization is, its vision of where it wants to be in the future, and how to
make the transition to its desired future state. Figure 4-6 represents this as a three-step
process. The first step focuses on gaining an understanding of the current enterprise.
In other words, if you don’t know where you are, it is impossible to tell where you are
going. Next, top management must determine where it wants the enterprise to be in
the future. Finally, after gaining an understanding of the current and future enter-
prise, a strategic plan can be developed to guide this transition. The process of devel-
oping and refining models of the current and future enterprise as well as a transition
strategy is often referred to as corporate strategic planning. During corporate strategic
planning, executives typically develop a mission statement, statements of future cor-
porate objectives, and strategies designed to help the organization reach its objectives.

All successful organizations have a mission. The mission statement of a com-
pany typically states in very simple terms what business the company is in. For ex-
ample, the mission statement for Pine Valley Furniture (PVF) is shown in Figure 4-7.
After reviewing PVF’s mission statement, it becomes clear that it is in the business
of constructing and selling high-quality wood furniture to the general public, busi-
nesses, and institutions such as universities and hospitals. It is also clear that PVF is
not in the business of fabricating steel file cabinets or selling its products through
wholesale distributors. Based on this mission statement, you could conclude that
PVF does not need a retail sales information system; instead, a high-quality human
resource information system would be consistent with its goal.

Pine Valley Furniture
Corporate Mission Statement

We are in the business of designing,
fabricating, and selling to retail stores
high-quality wood furniture for
household, office, and institutional use.
We value quality in our products and in
our relationships with customers and
suppliers. We consider our employees
our most critical resource.

Step 1 Current
Enterprise

Step 2 Futurg
Enterprise
Strategic

Step 3

P Plan
FIGURE 4-6

Corporate strategic planning

is a three-step process

95

Corporate strategic planning

An ongoing process that defines the

mission, obijectives, and sfrafegies of an

organization.

Mission statement

A statement that makes it clear what

business a company is in.

FIGURE 4-7

Mission statement (Pine Valley Furniture)

96 PART II PLANNING

FIGURE 4-8
Statement of corporate objectives
(Pine Valley Furniture)

Pine Valley Furniture
Statement of Objectives

1. PVF will strive to increase market share and profitability (prime objective).
2. PVF will be considered a market leader in customer service.

3. PVF will be innovative in the use of technology to help bring new products
to market faster than our competition.

4. PVF will employ the fewest number of the highest-quality people
necessary to accomplish our prime objective.

5. PVF will create an environment that values diversity in gender, race,
values, and culture among employees, suppliers, and customers.

Objective statements
A series of statements that express an
organization’s qualitative and quantitative

goals for reaching a desired future position.

Competitive strategy

The method by which an organization
affempts to achieve its mission and
objectives.

After defining its mission, an organization can then define its objectives.
Objective statements refer to “broad and timeless” goals for the organization. These
goals can be expressed as a series of statements that are either qualitative or quantita-
tive but that typically do not contain details likely to change substantially over time.
Objectives are often referred to as critical success factors. Here, we will simply use the
term objectives. The objectives for PVF are shown in Figure 4-8, with most relating to
some aspect of the organizational mission. For example, the second objective relates
to how PVF views its relationships with customers. This goal would suggest that PVF
might want to invest in a web-based order tracking system that would contribute to
high-quality customer service. Once a company has defined its mission and objec-
tives, a competitive strategy can be formulated.

A competitive strategy is the method by which an organization attempts to
achieve its mission and objectives. In essence, the strategy is an organization’s game
plan for playing in the competitive business world. In his classic book on competitive
strategy, Michael Porter (1980) defined three generic strategies—low-cost producer,
product differentiation, and product focus or niche—for reaching corporate objec-
tives (see Table 4-3). These generic strategies allow you to more easily compare two
companies in the same industry that may not employ the same competitive strategy.

TABLE 4-3 Generic Competitive Strategies

Strategy

Description

Low-Cost Producer This strategy reflects competing in an industry on the basis of product or service cost to the consumer.
For example, in the automobile industry, the South Korean—produced Hyundai is a product line that

competes on the basis of low cost.

This competitive strategy reflects capitalizing on a key product criterion requested by the market (for
example, high quality, style, performance, roominess). In the automobile industry, many manufacturers
are trying to differentiate their products on the basis of quality (e.g., “At Ford, quality is job one.”).

This strategy is similar to both the low-cost and differentiation strategies but with a much narrower
market focus. For example, a niche market in the automobile industry is the convertible sports car
market. Within this market, some manufacturers may employ a low-cost strategy and others may
employ a differentiation strategy based on performance or style.

Product Differentiation

Product Focus or Niche

(Source: Based on The Free Press, a Division of Simon & Schuster Adult Publishing Group, from Porter, 1980. Copyright © 1980, 1998 by
The Free Press. All rights reserved.)

CHAPTER 4 IDENTIFYING AND SELECTING SYSTEMS DEVELOPMENT PROJECTS 97

In addition, organizations employing different competitive strategies often have dif-
ferent informational needs to aid decision making. For example, Rolls-Royce and
Kia Motors are two car lines with different strategies: One is a high-prestige line in
the ultra-luxury niche, whereas the other is a relatively low-priced line for the general
automobile market. Rolls-Royce may build information systems to collect and ana-
lyze information on customer satisfaction to help manage a key company objective.
Alternatively, Kia may build systems to track plant and material utilization in order to
manage activities related to its low-cost strategy.

To effectively deploy resources such as the creation of a marketing and sales or-
ganization or to build the most effective information systems, an organization must
clearly understand its mission, objectives, and strategy. A lack of understanding will
make it impossible to know which activities are essential to achieving business ob-
jectives. From an information systems development perspective, by understanding
which activities are most critical for achieving business objectives, an organization
has a much greater chance to identify those activities that need to be supported by
information systems. In other words, it is only through the clear understanding of the or-
ganizational mission, objectives, and strategies that 1S development projects should be identi-
fied and selected. The process of planning how information systems can be employed
to assist organizations to reach their objectives is the focus of the next section.

Information Systems Planning

The second planning process that can play a significant role in the quality of project
identification and selection decisions is called information systems planning (ISP).
ISP is an orderly means of assessing the information needs of an organization and
defining the information systems, databases, and technologies that will best satisfy
those needs (Amrollahi et al., 2014; Carlson et al., 1989; Cassidy, 2005; Luftman,
2004; Overby, 2008; Parker and Benson, 1989; Segars and Grover, 1999; Weill and
Ross, 2009). This means that during ISP you (or, more likely, senior IS managers
responsible for the IS plan) must model current and future organization informa-
tional needs and develop strategies and project plans to migrate the current infor-
mation systems and technologies to their desired future state. ISP is a top-down
process that takes into account the outside forces—industry, economic, relative
size, geographic region, and so on—that are critical to the success of the firm. This
means that ISP must look at information systems and technologies in terms of how
they help the business achieve its objectives as defined during corporate strategic
planning.

The three key activities of this modeling process are represented in Figure 4-9.
Like corporate strategic planning, ISP is a three-step process in which the first step
is to assess current IS-related assets—human resources, data, processes, and tech-
nologies. Next, target blueprints of these resources are developed. These blueprints
reflect the desired future state of resources needed by the organization to reach its
objectives as defined during strategic planning. Finally, a series of scheduled projects
is defined to help move the organization from its current to its future desired state.
(Of course, scheduled projects from the ISP process are just one source for projects.
Others include bottom-up requests from managers and business units, such as the
SSR in Figure 3-2.)

For example, a project may focus on reconfiguration of a telecommunica-
tions network to speed data communications or it may restructure work and data
flows between business areas. Projects can include not only the development of new
information systems or the modification of existing ones, but also the acquisition
and management of new systems, technologies, and platforms. These three activi-
ties parallel those of corporate strategic planning, and this relationship is shown in
Figure 4-10. Numerous methodologies such as Business Systems Planning (BSP) and
Information Engineering (IE) have been developed to support the ISP process (see

Information systems
planning (ISP)

An orderly means of assessing the
information needs of an organization and
defining the systems, databases, and
technologies that will best safisfy those
needs.

98

FIGURE 4-9
Information systems planning is a three-
step process

PART II PLANNING

Current Situation:

listing of manual and automated processes
listing of manual and automated data
technology inventory

human resources inventory

{

Future Situation:

blueprints of manual and automated processes
blueprints of manual and automated data
technology blueprints

human resources blueprints

Top-down planning

A generic ISP methodology that attempts
to gain a broad understanding of the
information systems needs of the entire
organization.

FIGURE 4-10

Parallel activities of corporate strategic
planning and information systems
planning

{

[]
Step1 | @
[]
[]
(]
Step2 | o
[]
[]
Step 3

Schedule of Projects:

12 3 4 5

6 7 8 9 10 11 12 13 14 15

Amrollahi et al., 2014; Segars and Grover, 1999); most contain the following three

key activities:

1. Describe the current situation. The most widely used approach for describing the
current organizational situation is generically referred to as top-down planning.
Top-down planning attempts to gain a broad understanding of the informational
needs of the entire organization. The approach begins by conducting an exten-
sive analysis of the organization’s mission, objectives, and strategy and determin-
ing the information requirements needed to meet each objective. This approach
to ISP implies by its name a high-level organizational perspective with active in-
volvement of top-level management. The top-down approach to ISP has several
advantages over other planning approaches, which are summarized in Table 4-4.

Corporate Strategic Planning

Current
Enterprise

>

Future
Enterprise

Strategic
Plan

>

Information Systems Planning

Current Situation:

e listing of manual and automated processes
e listing of manual and automated data

e technology inventory

e human resources inventory

Future Situation:

e blueprints of manual and automated processes
blueprints of manual and automated data
technology blueprints

human resources blueprints

{

Schedule of Projects:

Electronic Commerce

12 3 4 5 6 7 8 9 10 11 12 13 14 15

CHAPTER 4 IDENTIFYING AND SELECTING SYSTEMS DEVELOPMENT PROJECTS

TABLE 4-4 Advantages to the Top-Down Planning Approach Over Other Planning Approaches

Advantage Description

Broader Perspective If not viewed from the top, information systems may be
implemented without first understanding the business from
general management’s viewpoint.

Improved Integration If not viewed from the top, totally new management information
systems may be implemented rather than planning how to
evolve existing systems.

Improved Management If not viewed from the top, planners may lack sufficient
Support management acceptance of the role of information systems in
helping them achieve business objectives.
Better Understanding If not viewed from the top, planners may lack the understanding

necessary to implement information systems across the entire
business rather than simply to individual operating units.

(Source: Based on IBM, 1982; Slater, 2002; Overby, 2008).

In contrast to the top-down planning approach, a bottom-up planning ap-
proach requires the identification of business problems and opportunities that
are used to define projects. Using the bottom-up approach for creating IS plans
can be faster and less costly than using the top-down approach; it also has the
advantage of identifying pressing organizational problems. Yet, the bottom-up
approach often fails to view the informational needs of the entire organization.
This can result in the creation of disparate information systems and databases
that are redundant or not easily integrated without substantial rework.

The process of describing the current situation begins by selecting a planning
team that includes executives chartered to model the existing situation. To gain
this understanding, the team will need to review corporate documents; interview
managers, executives, and customers; and conduct detailed reviews of competitors,
markets, products, and finances. The type of information that must be collected to
represent the current situation includes the identification of all organizational loca-
tions, units, functions, processes, data (or data entities), and information systems.

Within PVEF, for example, organizational locations would consist of a list of all
geographic areas in which the organization operates (e.g., the locations of the home
and branch offices). Organizational units represent a list of people or business units
that operate within the organization. Thus, organizational units would include vice
president of manufacturing, sales manager, salesperson, and clerk. Functions are
cross-organizational collections of activities used to perform day-to-day business
operations. Examples of business functions might include research and develop-
ment, employee development, purchasing, and sales. Processes represent a list of
manual or automated procedures designed to support business functions. Exam-
ples of business processes might include payroll processing, customer billing, and
product shipping. Data entities represent a list of the information items generated,
updated, deleted, or used within business processes. Information systems represent
automated and nonautomated systems used to transform data into information to
support business processes. For example, Figure 4-11 shows portions of the business

FUNCTIONS: DATA ENTITIES: INFORMATION SYSTEMS:
= business planning = customer = payroll processing

= product development = product = accounts payable

= marketing and sales = vendor = accounts receivable

= production operations = raw material = time card processing

= finance and accounting = order = inventory management

= human resources = invoice

= equipment

99

Bottom-up planning
A generic information systems planning

methodology that identifies and defines 1S
development projects based upon solving
operational business problems or taking

advantage of some business opportunities.

PINE
VALLEY
FURNITURE

FIGURE 4-11

Information systems planning
information (Pine Valley Furniture)

100 PARTII PLANNING

FIGURE 4']2 v i =] . PYF-Organizational Business Functions [Compatibility Mode] - Visio Professicnal ? - 0O X
Functional decomposition of information HOME BISERT DEGGN DATA PROCESS REVIEW VW | CRGCHART Vilacich, Joe S - (valatich) - 5
. . . . 1, T3 Re-Layout Spacing + = Height # — g
systems planning information (Pine Valley BB s i = e P) o s = _ by B Epon
. Layout —_— il J Insert Import 7§ Compare
Furniture) - =] s Change pasit < & shown
. . Layuut 5 Birange & Shapes & Fictura Organization Data -~
(Source: Microsoft Corporation.)
Shapes ;
STENCILS SEARCH L
More Shapes ® 9 o e
- B & Val umni
Quick Shapes S Organizational Busingss
Organization Chart Shapes] PARCRGnE
% T
[eecntive 5 Meneger - | Busingss Flanning
- 3 B
Pasit =) Consutta 5
(=] Fosition e | Market Analysis | | Sabes Foracasting |
* | Vagancy =1 assistant L
- |- Product Develepment
T2 | reamiamme .L"'E Staff E e
[Muligle [T 5 I Cuncept Design | | Platksc Design |
shapes postions &
(— Markating and Sales
HOR i
e Tl Date ﬁz it L _ :
[Dynemic | Dotted-line 5 |M-mmgﬂmmi| | | Cirder Fulfilment | | Distribulion |
| connector | _ _ repart E
it |- Preductivn Operatians
: I L I T 1
] |Prnmmnnsmdmng| [Fabrcston | | Assembly | | Firishing
| Financs and Accounting
1
z [cani ing | [Accounts Receivabls | [Accoums Payatie |
L— Finance and Accounting
5 SSSsSsssssesssss=ssn
L I Recruiling | | Training |
3 =
T G
Page-l | Alla | (@

functions, data entities, and information systems of PVF. Once high-level informa-
tion is collected, each item can typically be decomposed into smaller units as more
detailed planning is performed. Figure 4-12 shows the decomposition of several of
PVF’s high-level business functions into more detailed supporting functions.

After creating these lists, a series of matrices can be developed to cross
reference various elements of the organization. The types of matrices typically
developed include the following:

e Location-to-Function: This matrix identifies which business functions are
being performed at various organizational locations.

¢ Location-to-Unit: This matrix identifies which organizational units are located
in or interact with a specific business location.

¢ Unit-to-Function: This matrix identifies the relationships between
organizational entities and each business function.

* Function-to-Objective: This matrix identifies which functions are essential or
desirable in achieving each organizational objective.

¢ Function-to-Process: This matrix identifies which processes are used to
support each business function.

¢ Function-to-Data Entity: This matrix identifies which business functions
utilize which data entities.

® Process-to-Data Entity: This matrix identifies which data are captured, used,
updated, or deleted within each process.

® Process-to-Information System: This matrix identifies which information
systems are used to support each process.

¢ Data Entity-to-Information System: This matrix identifies which data are
created, updated, accessed, or deleted in each system.

¢ Information System-to-Objective: This matrix identifies which information
systems support each business objective as identified during organizational
planning.

CHAPTER 4 IDENTIFYING AND SELECTING SYSTEMS DEVELOPMENT PROJECTS

Customer | Product | Vendor Raw Order Work | Equipment | Employees | Invoice Work
Material Center Order
Marketing and Sales
Marketing Research X X
Order Fulfilment X X X X
Distribution X X
Production Operation
Production Scheduling X X X X
Fabrication X X X X
Assembly X X X X
Finishing X X X X
Finance and Accounting
Capital Budgeting X X X
Accounts Receivable X X X X X X
Accounts Payable
FIGURE 4-13

Different matrices will have different relationships depending on what is
being represented. For example, Figure 4-13 shows a portion of the Data Entity-
to-Function matrix for PVF. The “X” in various cells of the matrix represents
which business functions utilize which data entities. A more detailed picture of
data utilization would be shown in the Process-to-Data Entity matrix (not shown
here), in which the cells would be coded as “C” for the associated process that
creates or captures data for the associated data entity, “R” for retrieve (or used),
“U” for update, and “D” for delete. This means that different matrices can have
different relationships depending on what is being represented. Because of this
flexibility and ease of representing information, analysts use a broad range of
matrices to gain a clear understanding of an organization’s current situation and
to plan for its future (Kerr, 1990). A primer on using matrices for ISP is provided
in Figure 4-14.

2. Describing the target situation, trends, and constraints. After describing the cur-
rent situation, the next step in the ISP process is to define the target situ-
ation that reflects the desired future state of the organization. This means
that the target situation consists of the desired state of the locations, units,
functions, processes, data, and IS (see Figure 4-9). For example, if a de-
sired future state of the organization is to have several new branch offices
or a new product line that requires several new employee positions, func-
tions, processes, and data, then most lists and matrices will need to be up-
dated to reflect this vision. The target situation must be developed in light
of technology and business trends, in addition to organizational constraints.
This means that lists of business trends and constraints should also be con-
structed in order to help ensure that the target situation reflects these
issues.

In summary, to create the target situation, planners must first edit their
initial lists and record the desired locations, units, functions, processes, data,
and information systems within the constraints and trends of the organization
environment (e.g., time, resources, technological evolution, competition, and
so on). Next, matrices are updated to relate information in a manner consistent
with the desired future state. Planners then focus on the differences between
the current and future lists and matrices to identify projects and transition
strategies.

Data Entity-to-Function matrix
(Pine Valley Furniture)

101

102 PARTII PLANNING

FIGURE 4-14
Making sense out of planning matrices

Affinity clustering

The process of arranging planning matrix
information so that clusters of information
with a predetermined level or type of
affinity are placed next to each other on a
matrix report.

During the information systems planning process, before individual projects are
identified and selected, a great deal of “behind the scenes” analysis takes place.
During this planning period, which can span from six months to a year, IS planning
team members develop and analyze numerous matrices like those described in the
associated text. Matrices are developed to represent the current and the future views
of the organization. Matrices of the “current” situation are called “as is” matrices. In
other words, they describe the world “as” it currently “is.” Matrices of the target or
“future” situation are called “to be” matrices. Contrasting the current and future views
provides insights into the relationships existing in important business information, and
most important, forms the basis for the identification and selection of specific
development projects. Many CASE tools provide features that will help you make
sense out of these matrices in at least three ways:

1. Management of Information. A big part of working with complex matrices is
managing the information. Using the dictionary features of the CASE tool
repository, terms (such as business functions and process and data entities) can be
defined or modified in a single location. All planners will therefore have the most
recent information.

2. Matrix Construction. The reporting system within the CASE repository allows
matrix reports to be easily produced. Because planning information can be
changed at any time by many team members, an easy method to record changes
and produce the most up-to-date reports is invaluable to the planning process.

3. Matrix Analysis. Possibly the most important feature CASE tools provide to
planners is the ability to perform complex analyses within and across matrices. This
analysis is often referred to as affinity clustering. Affinity refers to the extent to
which information holds things in common. Thus, affinity clustering is the process
of arranging matrix information so that clusters of information with some
predetermined level or type of affinity are placed next to each other on a matrix
report. For example, an affinity clustering of a Process-to-Data Entity matrix would
create roughly a block diagonal matrix with processes that use similar data entities
appearing in adjacent rows and data entities used in common by the same
processes grouped into adjacent columns. This general form of analysis can be
used by planners to identify items that often appear together (or should!). Such
information can be used by planners to most effectively group and relate
information (e.g., data to processes, functions to locations, and so on). For
example, those data entities used by a common set of processes are candidates
for a specific database. And those business processes that relate to a strategically
important objective will likely receive more attention when managers from those
areas request system changes.

3. Developing a transition strategy and plans. Once the creation of the current and
target situations is complete, a detailed transition strategy and plan are devel-
oped by the IS planning team. This plan should be very comprehensive, reflect-
ing broad, long-range issues in addition to providing sufficient detail to guide
all levels of management concerning what needs to be done, how, when, and
by whom in the organization. The components of a typical information systems
plan are outlined in Figure 4-15.

The IS plan is typically a very comprehensive document that looks at both
short- and long-term organizational development needs. The short- and long-term
developmental needs identified in the plan are typically expressed as a series of
projects (see Figure 4-16). Projects from the long-term plan tend to build a foun-
dation for later projects (such as transforming databases from old technology into
newer technology). Projects from the short-term plan consist of specific steps to
fill the gap between current and desired systems or respond to dynamic business
conditions. The top-down (or plan-driven) projects join a set of bottom-up or needs-
driven projects submitted as system service requests from managers to form the

CHAPTER 4 IDENTIFYING AND SELECTING SYSTEMS DEVELOPMENT PROJECTS 103

|. Organizational Mission, Objectives, and Strategy

company are also briefly presented (i.e., where we are, where we want to be).
Il. Informational Inventory

needs of the enterprise. This inventory will view both current and future needs.
Ill. Mission and Objectives of IS

IV. Constraints on IS Development

company—financial, technological, and personnel.
V. Overall Systems Needs and Long-Range IS Strategies

strategies chosen by the IS department to fill the needs.
VI. The Short-Term Plan

VIl. Conclusions

as presently known, and a description of their estimated impact on the plan.

Briefly describes the mission, objectives, and strategy of the organization. The current and future views of the

This section provides a summary of the various business processes, functions, data entities, and information

Description of the primary role IS will play in the organization to transform the enterprise from its current to
future state. While it may later be revised, it represents the current best estimate of the overall role for IS within
the organization. This role may be as a necessary cost, an investment, or a strategic advantage, for example.

Briefly describes limitations imposed by technology and current level of resources within the

Presents a summary of the overall systems needed within the company and the set of long-range (2-5 years)

Shows a detailed inventory of present projects and systems and a detailed plan of projects to be developed or
advanced during the current year. These projects may be the result of the long-range IS strategies or of
requests from managers that have already been approved and are in some stage of the life cycle.

Contains likely but not-yet-certain events that may affect the plan, an inventory of business change elements

FIGURE 4-15
Outline of an information systems plan

short-term systems development plan. Collectively, the short- and long-term projects
set clear directions for the project selection process. The short-term plan includes
not only those projects identified from the planning process but also those selected
from among bottom-up requests. The overall IS plan may also influence all develop-
ment projects. For example, the IS mission and IS constraints may cause projects to
choose certain technologies or emphasize certain application features as systems are
designed.

In this section, we outlined a general process for developing an IS plan. ISP is
a detailed process and an integral part of deciding how to best deploy information
systems and technologies to help reach organizational goals. It is beyond the scope
of this chapter, however, to extensively discuss ISP, yet it should be clear from our dis-
cussion that planning-based project identification and selection will yield substantial
benefits to an organization. It is probably also clear to you that, as a systems analyst,
you are not usually involved in IS planning because this process requires senior IS

Information Systems Plan:
I. Organizational Mission

Il. Informational Inventory Project 1
lll. Mission and Objectives of IS /

IV. Constraints /

V. Long-Range IS Strategies
VI. Short-Term Plan
VII. Conclusions \

FIGURE 4-16
Systems development projects flow from
the information systems plan

104 PARTII PLANNING

Internet

A large, worldwide network of
networks that use a common protocol fo
communicate with each other.

Electronic commerce (EC)
Infernetbased communication to support
dayto-day business acfivities.

Business-to-consumer (B2C)
Electronic commerce between businesses
and consumers.

Business-to-business (B2B)
Electronic commerce between business
partners, such as suppliers and
infermediaries.

Business-to-employee (B2E)
Electronic commerce between businesses
and their employees.

Electronic data interchange
(EDI)

The use of telecommunications technologies
to directly transfer business documents
between organizations.

FIGURE 4-17
Three possible modes of electronic
commerce

and corporate management participation. On the other hand, the results of IS plan-
ning, such as planning matrices like that in Figure 4-13, can be a source of very valu-
able information as you identify and justify projects.

ELECTRONIC COMMERCE APPLICATIONS:
IDENTIFYING AND SELECTING SYSTEMS
DEVELOPMENT PROJECTS

Identifying and selecting systems development projects for an Internet-based elec-
tronic commerce application is no different from the process followed for more
traditional applications. Nonetheless, there are some special considerations when
developing an Internet-based application. In this section, we highlight some of those
issues that relate directly to the process of identifying and selecting Internet-related
systems development projects.

Internet Basics

The name Internet is derived from the concept of “internetworking”; that is, con-
necting host computers and their networks to form an even larger, global network.
And that is essentially what the Internet is—a large, worldwide network of networks
that use a common protocol to communicate with each other. The interconnected
networks include computers running Windows, Linux, IOS, and many other net-
work and computer types. The Internet stands as the most prominent representation
of global networking. Using the Internet to support day-to-day business activities is
broadly referred to as electronic commerce (EC). However, not all Internet EC ap-
plications are the same. For example, there are three general classes of Internet EC
applications: business-to-consumer (B2C), business-to-business (B2B), and business-
to-employee (B2E). Figure 4-17 shows three possible modes of EC using the Internet.
B2C refers to business transactions between individual consumers and businesses.
B2B refers to business transactions between business partners, such as suppliers and
intermediaries. B2E refers to the use of the Internet within the same business to
support employee development and internal business processes. B2E is sometimes
referred to as an Intranet.

B2E and B2B electronic commerce are examples of two ways organizations
have been communicating via technology for years. For example, B2E is a lot like
having a “global” local area network (LAN). Organizations utilizing B2E capabilities
will select various applications or resources that are located on the Intranet—such
as a customer contact database or an inventory-control system—that only members
of the organization can access. Likewise, B2Bs use the Internet to provide similar
capabilities to an established computing model, electronic data interchange (EDI).
EDI refers to the use of telecommunications technologies to directly transfer busi-
ness documents between organizations. Using EDI, trading partners (suppliers,

Business-to-Business (B2B)

A
r N
Individual R —— Business B ——Ta Business
\ W
"
Business-to-Consumer (B2C) - ~ /

Business-to-Employee (B2E)

CHAPTER 4 IDENTIFYING AND SELECTING SYSTEMS DEVELOPMENT PROJECTS

manufacturers, customers, etc.) establish computer-to-computer links that allow
them to exchange data electronically. For example, a company using EDI may send
an electronic purchase order instead of a paper request to a supplier. The paper
order may take several days to arrive at the supplier, whereas an EDI purchase order
will only take a few seconds. EDI-type data transfers over the Internet, generally re-
ferred to as B2B transactions, have become the standard by which organizations com-
municate with each other in the world of electronic commerce.

When developing either a B2E or B2B application, developers know who the
users are, what applications will be used, the speed of the network connection, and
the type of communication devices supported (e.g., web browsers such as Firefox or
web-enabled smart phones such as the iPhone). On the other hand, when develop-
ing an Internet EC application (hereafter, simply EC), there are countless unknowns
that developers have to discern in order to build a useful system. Table 4-5 lists a
sample of the numerous unknowns to be dealt with when designing and building an
EC application. These unknowns may result in making trade-offs based on a careful
analysis of who the users are likely to be, where they are likely to be located, and how
they are likely to be connected to the Internet. Even with all these difficulties to con-
tend with, there is no shortage of Internet EC applications springing up all across the
world. One company that has decided to get onto the web with its own EC site is PVFE.

Pine Valley Furniture WebStore

The board of directors of PVF has requested that a project team be created to explore
the opportunity to develop an EC system. Specifically, market research has found
that there is a good opportunity for online furniture purchases, especially in the fol-
lowing areas:

¢ Corporate furniture
e Home office furniture
e Student furniture

The board wants to incorporate all three target markets into its long-term EC
plan, but wants to initially focus on the corporate furniture buying system. Board
members feel that this segment has the greatest potential to provide an adequate
return on investment and would be a good building block for moving into the
customer-based markets. Because the corporate furniture buying system will be spe-
cifically targeted to the business furniture market, it will be easier to define the sys-
tem’s operational requirements. Additionally, this EC system should integrate nicely
with two currently existing systems: Purchasing Fulfillment and Customer Tracking.
Together, these attributes make it an ideal candidate for initiating PVF’s web strategy.
Throughout the remainder of the book, we will follow the evolution of the WebStore
project until it becomes operational for PVF.

TABLE 4-5 Unknowns That Must Be Dealt with When Designing and Building Internet
Applications

User e Concern: Who is the user?
® Example: Where is the user located? What is the user’s expertise
or education? What are the user’s expectations?
Connection Speed e Concern: What is the speed of the connection and what
information can be effectively displayed?
¢ Example: Modem, Cable Modem, DSL, Satellite, Broadband,
Cellular
Access Method e Concern: What is the method of accessing the net2
¢ Example: Web Browser, Personal Digital Assistant (PDA), Web-
enabled Cellular Phone, Tablet, Web-enabled Television

PINE
VALLEY
FURNITURE

105

106
SUMMARY

PART II PLANNING

In this chapter, we described the first major activity of the
planning phase of the SDLC—project identification and
selection. Project identification and selection consists of
three primary activities: identifying potential develop-
ment projects, classifying and ranking projects, and select-
ing projects for development. A variety of organizational
members or units can be assigned to perform this process,
including top management, a diverse steering committee,
business units and functional managers, the development
group, or the most senior IS executive. Potential projects
can be evaluated and selected using a broad range of
criteria such as value chain analysis, alignment with busi-
ness strategy, potential benefits, resource availability and
requirements, and risks.

The quality of the project identification and selec-
tion process can be improved if decisions are guided by
corporate strategic planning and ISP. Corporate strategic
planning is the process of identifying the mission, objec-
tives, and strategies of an organization. Crucial in this pro-
cess is selecting a competitive strategy that states how the
organization plans to achieve its objectives.

ISP is an orderly means for assessing the information
needs of an organization and defining the systems and da-
tabases that will best satisfy those needs. ISP is a top-down
process that takes into account outside forces that drive
the business and the factors critical to the success of the
firm. ISP evaluates the current inventory of systems and
the desired future state of the organization and its system

KEY TERMS

and then determines which projects are needed to trans-
form systems to meet the future needs of the organization.
Corporate and IS planning are highly interrelated.
Conceptually, these relationships can be viewed via various
matrices that show how organizational objectives, locations,
units, functions, processes, data entities, and systems relate
to one another. Selected projects will be those viewed to be
most important in supporting the organizational strategy.
The Internet is a global network consisting of thou-
sands of interconnected individual networks that communi-
cate with each other using a common protocol. Electronic
commerce (EC) refers to the use of the Internet to sup-
port day-to-day business activities. Business-to-consumer
EC refers to transactions between individual consumers
and businesses. Business-to-employee EC refers to the use
of the Internet within the same organization. Business-to-
business EC refers to the use of the Internet between firms.
The focus of this chapter was to provide you with
a clearer understanding of how organizations identify
and select projects. Improved project identification and
selection is needed for the following reasons: the cost
of information systems is rising rapidly, systems cannot
handle applications that cross organizational boundaries,
systems often do not address critical organizational objec-
tives, data redundancy is often out of control, and system
maintenance costs continue to rise. Thus, effective project
identification and selection is essential if organizations are
to realize the greatest benefits from information systems.

4.1 Affinity clustering 4.7 Corporate strategic planning 4.13 Mission statement
4.2 Bottom-up planning 4.8 Electronic commerce (EC) 4.14 Objective statements
4.3 Business-to-business (B2B) 4.9 Electronic data interchange (EDI) 4.15 Top-down planning
4.4 Business-to-consumer (B2C) 4.10 Incremental commitment 4.16 Value chain analysis
4.5 Business-to-employee (B2E) 4.11 Information systems planning (ISP)

4.6 Competitive strategy 4.12 Internet

Match each of the key terms above with the definition that best
fits it.

Analyzing an organization’s activities to determine where
value is added to products and/or services and the costs
incurred for doing so.

A strategy in systems analysis and design in which the proj-
ect is reviewed after each phase and continuation of the
project is rejustified.

An ongoing process that defines the mission, objectives,
and strategies of an organization.

A statement that makes it clear what business a company is in.

A series of statements that express an organization’s quali-
tative and quantitative goals for reaching a desired future
position.

The method by which an organization attempts to achieve
its mission and objectives.

An orderly means of assessing the information needs of
an organization and defining the systems, databases, and
technologies that will best satisfy those needs.

A generic ISP methodology that attempts to gain a broad
understanding of the information system needs of the en-
tire organization.

CHAPTER 4

A generic ISP methodology that identifies and defines
IS development projects based upon solving operational
business problems or taking advantage of some business
opportunities.

The process of arranging planning matrix information so
the clusters of information with a predetermined level or
type of affinity are placed next to each other on a matrix
report.

A large, worldwide network of networks that use a com-
mon protocol to communicate with each other.

REVIEW QUESTIONS

IDENTIFYING AND SELECTING SYSTEMS DEVELOPMENT PROJECTS

107

Internet-based communication to support day-to-day busi-
ness activities.

Electronic commerce between businesses and consumers.

Electronic commerce between business partners, such as
suppliers and intermediaries.
Electronic commerce between businesses and their

employees.

The use of telecommunications technologies to directly
transfer business documents between organizations.

4.17

4.18
4.19
4.20

4.21

Contrast the following terms:

Mission; objective statements; competitive strategy

. Corporate strategic planning; ISP

Top-down planning; bottom-up planning

. Low-cost producer; product differentiation; product
focus or niche

a0 T

Describe the project identification and selection process.
Describe several project evaluation criteria.

Describe value chain analysis and how organizations use
this technique to evaluate and compare projects.

Discuss several factors that provide evidence for the need
for improved ISP today.

PROBLEMS AND EXERCISES

4.22

4.23
4.24

4.25

4.26

4.27

Describe the steps involved in corporate strategic
planning.
What are three generic competitive strategies?

Describe what is meant by ISP and the steps involved in the
process.

List and describe the advantages of top-down planning
over other planning approaches.

Briefly describe nine planning matrices that are used in
ISP and project identification and selection.

Discuss some of the factors that must be considered when
designing and building Internet applications.

4.28

4.29

4.30

4.31

4.33

Write a mission statement for a business that you would
like to start. The mission statement should state the area of
business you will be in and what aspect of the business you
value highly.

When you are happy with the mission statement you have
developed in response to the prior question, describe the ob-
jectives and competitive strategy for achieving that mission.

Consider an organization that you believe does not conduct
adequate strategic IS planning. List at least six reasons why
this type of planning is not done appropriately (or is not
done at all). Are these reasons justifiable? What are the im-
plications of this inadequate strategic IS planning? What lim-
its, problems, weaknesses, and barriers might this present?

IS planning, as depicted in this chapter, is highly related
to corporate strategic planning. What might those respon-
sible for IS planning have to do if they operate in an orga-
nization without a formal corporate planning process?

The economic analysis carried out during the project iden-
tification and selection phase of the systems development
life cycle is rather cursory. Why is this? Consequently, what
factors do you think tend to be most important for a poten-
tial project to survive this first phase of the life cycle?

In those organizations that do an excellent job of IS plan-
ning, why might projects identified from a bottom-up

4.35

4.36

process still find their way into the project initiation and
planning phase of the life cycle?

Figure 4-14 introduces the concept of affinity clustering.
Suppose that through affinity clustering it was found that
three business functions provided the bulk of the use of
five data entities. What implications might this have for
project identification and subsequent steps in the systems
development life cycle?

Timberline Technology manufactures membrane circuits
in its Northern California plant. In addition, all circuit de-
sign and research and development work occur at this site.
All finance, accounting, and human resource functions
are headquartered at the parent company in the upper
Midwest. Sales take place through six sales representatives
located in various cities across the country. Information
systems for payroll processing, accounts payable, and ac-
counts receivable are located at the parent office while sys-
tems for inventory management and computer-integrated
manufacturing are at the California plant. As best you can,
list the locations, units, functions, processes, data entities,
and information systems for this company.

For each of the following categories, create the most
plausible planning matrices for Timberline Technology,
described in Problem and Exercise 4-35: function-to-data
entity, process-to-data entity, process-to-information system,

108 PARTII PLANNING

data entity-to-information system. What other information
systems not listed is Timberline likely to need?

4.37 The owners of Timberline Technology (described in Prob-
lem and Exercise 4-35) are considering adding a plant in

FIELD EXERCISES

Montana and one in Arizona and six more sales represen-
tatives at various sites across the country. Update the ma-
trices from Problem and Exercise 4-36 so that the matrices
account for these changes.

4.38 Obtain a copy of an organization’s mission statement.
(One can typically be found in an organization’s annual re-
port. Such reports are often available in university libraries
or in corporate marketing brochures. If you are finding it
difficult to locate this material, write or call the organiza-
tion directly and ask for a copy of the mission statement.)
What is this organization’s area of business? What does the
organization value highly (e.g., high-quality products and
services, low cost to consumers, employee growth and de-
velopment, etc.)? If the mission statement is well written,
these concepts should be clear. Do you know anything
about the information systems in this company that would
demonstrate that the types of systems in place reflect the
organization’s mission? Explain.

4.39 Interview the managers of the information systems depart-
ment of an organization to determine the level and nature
of their strategic ISP. Does it appear to be adequate? Why
or why not? Obtain a copy of that organization’s mission
statement. To what degree do the strategic IS plan and
the organizational strategic plan fit together? What are
the areas where the two plans fit and do not fit? If there is
not a good fit, what are the implications for the success of
the organization? For the usefulness of their information
systems?

4.40 Choose an organization that you have contact with, per-
haps your employer or university. Follow the “Outline of
an information systems plan” shown in Figure 4-15 and

REFERENCES

complete a short information systems plan for the organi-
zation you chose. Write at least a brief paragraph for each
of the seven categories in the outline. If IS personnel and
managers are available, interview them to obtain informa-
tion you need. Present your mock plan to the organiza-
tion’s IS manager and ask for feedback on whether or not
your plan fits the IS reality for that organization.

4.41 Choose an organization that you have contact with, per-
haps your employer or university. List significant examples
for each of the items used to create planning matrices.
Next, list possible relationships among various items and
display these relationships in a series of planning matrices.

4.42 Write separate mission statements that you believe would
describe Microsoft, IBM, and AT&T. Compare your mission
statements with the real mission statements of these com-
panies. Their mission statements can typically be found in
their annual reports. Were your mission statements com-
parable to the real mission statements? Why or why not?
What differences and similarities are there among these
three mission statements? What information systems are
necessary to help these companies deliver on their mission
statements?

4.43 Choose an organization that you have contact with, per-
haps your employer or university. Determine how informa-
tion systems projects are identified. Are projects identified
adequately? Are they identified as part of the ISP or the
corporate strategic planning process? Why or why not?

Amrollahi, A., A. H. Ghapanchi, and A. Talaei-Khoei. 2014.
“Three Decades of Research on Strategic Information
System Plan Development.” Communications of the As-
sociation for Information Systems 34(84). Available at:
http://aisel.aisnet.org/cais/vol34/iss1/84. Accessed on
February 23, 2015.

Atkinson, R. A. 1990. “The Motivations for Strategic Planning.”
Journal of Information Systems Management 7(4): 53-56.

Carlson, C. K., E. P. Gardner, and S. R. Ruth. 1989. “Technol-
ogy-Driven Long-Range Planning.” Journal of Information
Systems Management 6(3): 24-29.

Cassidy, A. 2005. A Practical Guide to Information Systems
Strategic Planning. London: CRC Press.

Dewan, S., S. C. Michael, and C. K. Min. 1998. “Firm Charac-
teristics and Investments in Information Technology:
Scale and Scope Effects.” Information Systems Research 9(3):
219-232.

Dyche, J. 2015. The New IT: How Technology Leaders are Enabling
Business Strategy in the Digital Age. NY: McGraw Hill.

Foss, N.J., and T. Saebi (eds). 2015. Business Model Innovation:
The Organizational Dimension. Oxford, UK: Oxford Univer-
sity Press.

Fox, R. 2013. “A Strategic Approach to Cloud Integration.”
Available at: http://www.cio.com/article/2383589/ cloud-
computing/a-strategic-approach-to-cloud-integration.html.
Accessed February 23, 2015.

GAO. 2000. Information Technology Investment Management:
A Framework for Assessing and Improving Process Maturity.
U.S. Government Accountability Office. Available at
www.gao.gov/special.pubs/ail0123.pdf. Accessed February
23, 2015.

Harvard Business Review. 2011. Aligning Technology with Strategy.
Boston, MA: Harvard Business Review Press.

IBM. 1982. “Business Systems Planning.” In J. D. Couger,
M. A. Colter, and R. W. Knapp (eds.), Advanced System Develop-
ment/ Feasibility Techniques, 236-314. New York: Wiley.

Kelly, R. T. 2006. “Adaptive and Aware: Strategy, Architecture,
and IT Leadership in an Age of Commoditization.” In

http://aisel.aisnet.org/cais/vol34/iss1/84
http://www.cio.com/article/2383589/cloud-computing/a-strategic-approach-to-cloud-integration.html
http://www.cio.com/article/2383589/cloud-computing/a-strategic-approach-to-cloud-integration.html
http://www.gao.gov/special.pubs/ai10123.pdf

CHAPTER 4

P. A. Laplante and T. Costello (eds.), CIO Wisdom II, 249-69.
Upper Saddle River, NJ: Prentice Hall.

Kerr, J. 1990. “The Power of Information Systems Planning.”
Database Programming & Design 3(12): 60-66.

Laplante, P. A. 2006. “Software Return on Investment (ROI).”
In P. A. Laplante and T. Costello (eds.), CIO Wisdom II,
163-76. Upper Saddle River, NJ: Prentice Hall.

Luftman, J. N. 2004. Managing the Information Technol-
ogy Resource. With C. V. Bullen, D. Liao, E. Nash, and
C. Neumann. Upper Saddle River, NJ: Prentice Hall.

McKeen, J. D., T. Guimaraes, and J. C. Wetherbe. 1994. “A Com-
parative Analysis of MIS Project Selection Mechanisms.”
Data Base 25(2): 43-59.

Newbold, D. L., and M. C. Azua. 2007. “A Model for CIO-Led
Innovation.” IBM Systems Journal 46(4), 629-37.

Olavsrud, T. 2014. “Agile Comes to Data Integration.” Available at:
http://www.cio.com/article/2378615/data-management/
agile-comes-to-data-integration.html. Accessed on February
23, 2015.

Overby, S. 2006. “Big Deals, Big Savings, Big Problems.” CIO.
com. Available at http://www.cio.com/article/2447687/
outsourcing/outsourcing-can-mean-big-deals—big-savings-
and-big-problems.html. Accessed February 23, 2015.

Overby, S. 2008. “Tales from the Darkside: 8 IT Strategic Plan-
ning Mistakes to Avoid.” CIO.com. Available at http://www.
cio.com/article/2437287 /strategy/ tales-from-the-darkside—
8-it-strategic-planning-mistakes-to-avoid.html. Accessed
February 23, 2015.

Overby, S. 2008. “How to Get Real about Strategic Planning.” CIO.
com. Available at: http://www.cio.com/article/2437070/
leadership-management/how-to-get-real-about-strategic-
planning.html. Accessed on February 23, 2015.

IDENTIFYING AND SELECTING SYSTEMS DEVELOPMENT PROJECTS

109

Parker, M. M., and R. J. Benson. 1989. “Enterprisewide Informa-
tion Management: State-of-the-Art Strategic Planning.” Jour-
nal of Information Systems Management 6 (Summer): 14-23.

Porter, M. 1980. Competitive Strategy: Techniques for Analyzing In-
dustries and Competitors. New York: Free Press.

Porter, M. 1985. Competitive Advantage. New York: Free Press.

Segars, A. H., and V. Grover. 1999. “Profiles of Strategic Informa-
tion Systems Planning.” Information Systems Planning 10(3):
199-232.

Slater, D. 2002. “Mistakes: Strategic Planning Don’ts (and
Dos).” CIO.com. Available at: http://www.cio.com/article/
2440785 /project-management/mistakes—strategic-
planning-don-ts—and-dos-.html. Accessed February 23, 2015.

Thomas, G., and W. Fernandez. 2008. “Success in IT Projects: A
Matter of Definition?” International Journal of Project Manage-
ment October: 733—42.

Van den Berg, G., and P. Pietersma. 2015. 25 Need-to-Know Man-
agement Models. Upper Saddle River, NJ: FT Press.

Wailgum, T. 2010. “Taming the ERP Integration Beast: A Work
in Progress.” Available at: http://www.cio.com/article/
2417576/ enterprise-software/taming-the-erp-integration-
beast—a-work-in-progress.html. Accessed February 23, 2015.

Weill, P., and J. W. Ross. 2009. IT Savvy: What Top Executives Must
Know to Go from Pain to Gain. Boston, MA: Harvard Business
Review Press.

Westerman, G., D. Bonnet, and A. McAfee. 2014. Leading
Digital: Turning Technology into Business Transformation.
Boston, MA: Harvard Business Review Press.

Yoo, M. J., R. S. Sangwan, and R. G. Qiu. 2006. “Enterprise In-
tegration: Methods and Technologies.” In P. A. Laplante
and T. Costello (eds.), CIO Wisdom II, 107-26. Upper Saddle
River, NJ: Prentice Hall.

http://www.cio.com/article/2378615/data-management/agile-comes-to-data-integration.html
http://www.cio.com/article/2447687/outsourcing/outsourcing-can-mean-big-deals%E2%80%93big-savingsand-big-problems.html
http://www.cio.com/article/2437287/strategy/tales-from-the-darkside%E2%80%938-it-strategic-planning-mistakes-to-avoid.html
http://www.cio.com/article/2437070/leadership-management/how-to-get-real-about-strategicplanning.html
http://www.cio.com/article/2440785/project-management/mistakes%E2%80%93strategicplanning-don-ts%E2%80%93and-dos-.html
http://www.cio.com/article/2417576/enterprise-software/taming-the-erp-integrationbeast%E2%80%93a-work-in-progress.html
http://www.cio.com/article/2447687/outsourcing/outsourcing-can-mean-big-deals%E2%80%93big-savingsand-big-problems.html
http://www.cio.com/article/2447687/outsourcing/outsourcing-can-mean-big-deals%E2%80%93big-savingsand-big-problems.html
http://www.cio.com/article/2437287/strategy/tales-from-the-darkside%E2%80%938-it-strategic-planning-mistakes-to-avoid.html
http://www.cio.com/article/2437070/leadership-management/how-to-get-real-about-strategicplanning.html
http://www.cio.com/article/2437070/leadership-management/how-to-get-real-about-strategicplanning.html
http://www.cio.com/article/2440785/project-management/mistakes%E2%80%93strategicplanning-don-ts%E2%80%93and-dos-.html
http://www.cio.com/article/2440785/project-management/mistakes%E2%80%93strategicplanning-don-ts%E2%80%93and-dos-.html
http://www.cio.com/article/2417576/enterprise-software/taming-the-erp-integrationbeast%E2%80%93a-work-in-progress.html
http://www.cio.com/article/2417576/enterprise-software/taming-the-erp-integrationbeast%E2%80%93a-work-in-progress.html

110

PETRI PETRIE ELECTRONICS
ELECTRONI

Chapter 4: Identifying and Selecting Systems
Development Projects

PART II PLANNING

J. K. Choi, chief financial officer for Petrie Electronics,
came early to the quarterly IS Steering Committee meet-
ing. Choi, who was the chair of the committee, took his
seat at the head of the big table in the corporate confer-
ence room. He opened the cover on his tablet PC and
looked at the agenda for the day’s meeting. There were
only a few proposed systems projects to consider to-
day. He was familiar with the details of most of them. He
briefly looked over the paperwork for each request. He
didn’t really think there was anything too controversial
to be considered today. Most of the requests were pretty
routine and involved upgrades to existing systems. The
one totally new system being proposed for development
was a customer loyalty system, referred to internally as
“No Customer Escapes.”

Choi chuckled at the name as he read through the pro-
posal documents. “This is something we have needed for
some time,” he thought.

After about 15 minutes, his administrative assistant,
Julie, came in. “Am I late or are you early?” she asked.

“No, you're not late,” Choi said. “I wanted to come in a
little early and look over the proposals. I wasn'’t able to
spend as much time on these yesterday as I wanted.”

As Julie was about to respond, the other members of
the committee started to arrive. First was Ella Whinston,
the chief operating officer. Choi knew that Ella was the
champion for the customer loyalty project. She had talked
about it for years now, it seemed to Choi. One of her peo-
ple would make the presentation in support of the system.
Choi knew she had buy-in on the project from most of
the other members of the c-suite. He also knew that Joe
Swanson, Petrie director of IT, supported the project.
Joe was away, but his assistant director, Jim Watanabe,
would attend the meeting in his place. Ella had already let
it be known that she expected Jim to be the project man-
ager for the customer loyalty system project. Jim had just
joined the company, but he had five years of experience
at Broadway Entertainment Company before its spectacu-
lar collapse. “Good thing I unloaded all that BEC stock I
owned before the company went under,” Choi thought.
That reminded him of the meeting he had later today to

plan the annual stockholders’ meeting. “Better not let the
steering committee meeting run too long,” he thought.
“I've got more important things to do today.”

Next to arrive was John Smith, the head of marketing.
John, who was also a member of the steering committee,
had been with Petrie for most of his career. He had been
with the company longer than anyone else on the steering
committee.

Just then, Jim Watanabe came speeding into the con-
ference room. He almost ran into John Smith as he sailed
into the room. It looked like he was about to drop his tab-
let and spill his coffee on Smith. Choi chuckled again.

“Welcome, everyone,” Choi said. “I think we are all here.
You all have copies of the agenda for this morning’s meet-
ing. Let’s get started.”

“Sorry to interrupt, JK,” Ella said. “Bob Petroski is not
here yet. He will be presenting the proposal on the cus-
tomer loyalty system project. I don’t know where he is.
Maybe he got held up in traffic.”

“The customer loyalty system discussion is the last item
we will discuss today, so we can go ahead with the rest
of the agenda. Bob does not need to be here for anything
except that discussion,” Choi explained.

Choi looked around the table once more. “OK, then,
let’s get started. Let’s try to keep to the agenda as much
as possible. And let’s watch the clock. I know we are all
busy, but I have a very important meeting this afternoon.
Julie, see if you can locate Bob.”

Case Questions

4.44 What is an IS steering committee? What are its major
functions? Typically, who serves on such a commit-
tee? Why do these committees exist?

4.45 Where do ideas for new information systems origi-
nate in organizations?

4.46 What criteria are typically used to determine which
new information systems projects to develop? What
arguments might Bob Petroski make for developing
the proposed customer loyalty system?

447 Look at Figure 4-4. What kind of information would
you need to put together a table like Figure 4-4 to pres-
ent to the steering committee? How much of that infor-
mation is objective? Subjective? Justify your answer.

X ¥
_ Initiating and Planning
cuper § Systems Development
5 Projects
N~ - . S m— o —

Learning Objectives

After studying this chapter, you should be able to

5.1 describe the steps involved in the project initiation
and planning process,

5.2 list and describe various methods for assessing
project feasibility,

5.3 describe the activities needed to build and review
the baseline project plan, and

5.4 describe the activities and participant roles within a
structured walk-through.

Introduction

During the first phase of the systems development
life cycle (SDLC) planning, two primary activities are
performed. The first, project identification and selec-
tion, focuses on the activities during which the need for a
new or enhanced system is recognized. This activity does
not deal with a specific project but rather identifies the
portfolio of projects to be undertaken by the organiza-
tion. Thus, project identification and selection is often
thought of as a “preproject” step in the life cycle. This
recognition of potential projects may come as part of a
larger planning process, information systems planning,
or from requests from managers and business units.
Regardless of how a project is identified and selected, the
next step is to conduct a more detailed assessment during
project initiating and planning. This assessment does not
focus on how the proposed system will operate but rather
on understanding the scope of a proposed project and
its feasibility of completion given the available resources.
It is crucial that organizations understand whether re-
sources should be devoted to a project; otherwise, very
expensive mistakes can be made (Laplante, 2006; Nash,
2008). Thus, the focus of this chapter is on this process.
Project initiation and planning is where projects are ac-
cepted for development, rejected, or redirected. This is
also where you, as a systems analyst, begin to play a major
role in the systems development process.

In the next section, the project initiation and plan-
ning process is briefly reviewed. Numerous techniques for
assessing project feasibility are then described. We then
discuss the process of building the Baseline Project Plan,

which organizes the information uncovered during feasi-
bility analysis. Once this plan is developed, a formal review
of the project can be conducted. Yet, before the project
can evolve to the next phase of the systems development
life cycle—analysis—the project plan must be reviewed
and accepted. In the final major section of the chapter, we
provide an overview of the project review process.

INITIATING AND PLANNING
SYSTEMS DEVELOPMENT PROJECTS

A key consideration when conducting project initiation
and planning (PIP) is deciding when PIP ends and when
analysis, the next phase of the SDLC, begins. This is a
concern because many activities performed during PIP
could also be completed during analysis. Pressman (2014)
speaks of three important questions that must be consid-
ered when making this decision on the division between
PIP and analysis:

1. How much effort should be expended on the project
initiation and planning process?

2. Who is responsible for performing the project initia-
tion and planning process?

3. Why is project initiation and planning such a challeng-
ing activity?

Finding an answer to the first question, how much
effort should be expended on the PIP process, is often diffi-
cult. Practical experience has found, however, that the time

111

112

PART II

PLANNING

and effort spent on initiation and planning activities easily pay for themselves later in the
project. Proper and insightful project planning, including determining project scope as
well as identifying project activities, can easily reduce time in later project phases. For
example, a careful feasibility analysis that leads to deciding that a project is not worth
pursuing can save a considerable expenditure of resources. The actual amount of time
expended will be affected by the size and complexity of the project as well as by the
experience of your organization in building similar systems. A rule of thumb is that
between 10 and 20 percent of the entire development effort should be expended on
the PIP study. Thus, you should not be reluctant to spend considerable time in PIP in
order to fully understand the motivation for the requested system.

For the second question, who is responsible for performing PIP, most organiza-
tions assign an experienced systems analyst, or a team of analysts for large projects,
to perform PIP. The analyst will work with the proposed customers (managers and
users) of the system and other technical development staff in preparing the final
plan. Experienced analysts working with customers who fully understand their infor-
mation services needs should be able to perform PIP without the detailed analysis
typical of the analysis phase of the life cycle. Less-experienced analysts with custom-
ers who only vaguely understand their needs will likely expend more effort during
PIP in order to be certain that the project scope and work plan are feasible.

As to the third question, PIP is viewed as a challenging activity because the
objective of the PIP study is to transform a vague system request document into a
tangible project description. This is an open-ended process. The analyst must clearly
understand the motivation for and objectives of the proposed system. Therefore,
effective communication among the systems analyst, users, and management is cru-
cial to the creation of a meaningful project plan. Getting all parties to agree on the
direction of a project may be difficult for cross-department projects where different
parties have different business objectives. Thus, more complex organizational set-
tings for projects will result in more time required for analysis of the current and
proposed systems during PIP.

In the remainder of this chapter, we will describe the necessary activities used to
answer these questions. In the next section, we will revisit the project initiation and
planning activities originally outlined in Chapter 3 in the section on “Managing the
Information Systems Project.” This is followed by a brief description of the deliver-
ables and outcomes from this process.

THE PROCESS OF INITIATING AND PLANNING
IS DEVELOPMENT PROJECTS

As its name implies, two major activities occur during project initiation and planning
(Figure 5-1). Because the steps of the project initiation and planning process were
explained in Chapter 3, our primary focus in this chapter is to describe several tech-
niques that are used when performing this process. Therefore, we will only briefly
review the PIP process.

Project initiation focuses on activities designed to assist in organizing a team to
conduct project planning. During initiation, one or more analysts are assigned to work
with a customer—that is, a member of the business group that requested or will be
affected by the project—to establish work standards and communication procedures.
Examples of the types of activities performed are shown in Table 5-1. Depending upon
the size, scope, and complexity of the project, some project initiation activities may
be unnecessary or may be very involved. Also, many organizations have established
procedures for assisting with common initiation activities. One key activity of project
initiation is the development of the project charter (defined in Chapter 3).

Project planning, the second activity within PIP, is distinct from general
information systems planning, which focuses on assessing the information systems

CHAPTER 5

Project Identification and Selection
\fProject Initiation and Planning

Planning

Maintenance Analysis

Implementation — Design

needs of the entire organization (discussed in Chapter 4). Project planning is
the process of defining clear, discrete activities and the work needed to complete
each activity within a single project. The objective of the project planning pro-
cess is the development of a Baseline Project Plan (BPP) and the Project Scope
Statement (PSS) (Morris and Sember, 2008). The BPP becomes the foundation for
the remainder of the development project. The PSS produced by the team clearly
outlines the objectives and constraints of the project for the customer. As with the
project initiation process, the size, scope, and complexity of a project will dictate
the comprehensiveness of the project planning process and resulting documents.
Further, numerous assumptions about resource availability and potential problems
will have to be made. Analysis of these assumptions and system costs and benefits
forms a business case. The range of activities performed during project planning
is listed in Table 5-2.

Deliverables and Outcomes

The major outcomes and deliverables from the project initiation and planning phase
are the Baseline Project Plan and the Project Scope Statement. The Baseline Project
Plan (BPP) contains all information collected and analyzed during project initiation

TABLE 5-1

e Establishing the Project Initiation Team

e Establishing a Relationship with the Customer

e Establishing the Project Initiation Plan

e Establishing Management Procedures

e Establishing the Project Management Environment and Project Workbook
* Developing the Project Charter

Elements of Project Initiation

INITIATING AND PLANNING SYSTEMS DEVELOPMENT PROJECTS

113

FIGURE 5-1
Systems development life
cycle with project initiation

and planning highlighted

Business case

The justification for an information system,
presented in ferms of the tangible and
intangible economic benefits and costs and
the technical and organizational feasibility
of the proposed system.

Baseline Project Plan (BPP)

A major outcome and deliverable from the
project initiation and planning phase that
contains the best estimate of a project’s
scope, benefifs, costs, risks, and resource
requirements.

114 PARTII PLANNING

Project Scope Statement (PSS)
A document prepared for the customer that
describes what the project will deliver and
outlines generally at a high level all work
required fo complete the project.

TABLE 5-2 Elements of Project Planning

* Describing the Project Scope, Alternatives, and Feasibility
* Dividing the Project into Manageable Tasks

e Estimating Resources and Creating a Resource Plan

® Developing a Preliminary Schedule

® Developing a Communication Plan

e Determining Project Standards and Procedures

* |dentifying and Assessing Risk

e Creating a Preliminary Budget

* Developing the Project Scope Statement

® Setting a Baseline Project Plan

and planning. The plan reflects the best estimate of the project’s scope, benefits,
costs, risks, and resource requirements given the current understanding of the
project. The BPP specifies detailed project activities for the next life cycle phase—
analysis—and less detail for subsequent project phases (because these depend on the
results of the analysis phase). Similarly, benefits, costs, risks, and resource require-
ments will become more specific and quantifiable as the project progresses. The BPP
is used by the project selection committee to help decide whether the project should
be accepted, redirected, or canceled. If selected, the BPP becomes the foundation
document for all subsequent SDLC activities; however, it is also expected to evolve as
the project evolves. That is, as new information is learned during subsequent SDLC
phases, the baseline plan will be updated. Later in this chapter we describe how to
construct the BPP.

The Project Scope Statement (PSS) is a short document prepared for the cus-
tomer that describes what the project will deliver and outlines all work required to
complete the project. The PSS ensures that both you and your customer gain a com-
mon understanding of the project. It is also a very useful communication tool. The
PSS is a very easy document to create because it typically consists of a high-level sum-
mary of the BPP information (described later). Depending upon your relationship
with your customer, the role of the PSS may vary. At one extreme, the PSS can be used
as the basis of a formal contractual agreement outlining firm deadlines, costs, and
specifications. At the other extreme, the PSS can simply be used as a communication
vehicle to outline the current best estimates of what the project will deliver, when it
will be completed, and the resources it may consume. A contract programming or
consulting firm, for example, may establish a very formal relationship with a cus-
tomer and use a PSS that is extensive and formal. Alternatively, an internal develop-
ment group may develop a PSS that is only one to two pages in length and is intended
to inform customers rather than to set contractual obligations and deadlines.

ASSESSING PROJECT FEASIBILITY

All projects are feasible given unlimited resources and infinite time (Pressman,
2014). Unfortunately, most projects must be developed within tight budgetary and
time constraints. This means that assessing project feasibility is a required activity for
all information systems projects and is a potentially large undertaking. It requires
that you, as a systems analyst, evaluate a wide range of factors. Typically, the relative
importance of these factors will vary from project to project. Although the specifics
of a given project will dictate which factors are most important, most feasibility fac-
tors are represented by the following categories:

e Economic
e Technical
® Operational

CHAPTER 5 INITIATING AND PLANNING SYSTEMS DEVELOPMENT PROJECTS 115

¢ Scheduling
¢ Legal and contractual
¢ Political

Together, the culmination of these feasibility analyses forms the business case
that justifies the expenditure of resources on the project. In the remainder of this
section, we will examine various feasibility issues. We begin by looking at issues
related to economic feasibility and then demonstrate techniques for conducting this
analysis. This is followed by a discussion of techniques for assessing technical project
risk. Finally, issues not directly associated with economic and technical feasibility, but
no less important to ensuring project success, are discussed.

To help you better understand the feasibility assessment process, we will exam-
ine a project at Pine Valley Furniture (PVF). For this project, a System Service Request
(SSR) was submitted by PVF’s Vice President of Marketing Jackie Judson to develop
a Customer Tracking System (CTS) (Figure 5-2). Jackie feels that this system would
allow PVF’s marketing group to better track customer purchase activity and sales
trends. She also feels that, if constructed, the CTS would provide many tangible and
intangible benefits to PVF. This project was selected by PVF’s Systems Priority Board
for a project initiation and planning study. During project initiation, Senior Systems
Analyst Jim Woo was assigned to work with Jackie to initiate and plan the project. At
this point in the project, all project initiation activities have been completed. Jackie
and Jim are now focusing on project planning activities in order to complete the BPP.

Assessing Economic Feasibility

The purpose of assessing economic feasibility is to identify the financial benefits and
costs associated with the development project (Laplante, 2006). Economic feasibility
is often referred to as cost—benefit analysis. During project initiation and planning, it
will be impossible for you to precisely define all benefits and costs related to a partic-
ular project. Yet it is important that you spend adequate time identifying and quan-
tifying these items or it will be impossible for you to conduct an adequate economic
analysis and make meaningful comparisons between rival projects. Here we will
describe typical benefits and costs resulting from the development of an informa-
tion system and provide several useful worksheets for recording costs and benefits.
Additionally, several common techniques for making cost-benefit calculations are
presented. These worksheets and techniques are used after each SDLC phase as the
project is reviewed in order to decide whether to continue, redirect, or kill a project.

Determining Project Benefits An information system can provide many benefits to
an organization. For example, a new or renovated information system can automate
monotonous jobs and reduce errors; provide innovative services to customers and
suppliers; and improve organizational efficiency, speed, flexibility, and morale. In
general, the benefits can be viewed as being both tangible and intangible. Tangible
benefits refer to items that can be measured in dollars and with certainty. Examples
of tangible benefits might include reduced personnel expenses, lower transaction
costs, or higher profit margins. It is important to note that not all tangible benefits
can be easily quantified. For example, a tangible benefit that allows a company to
perform a task in 50 percent of the time may be difficult to quantify in terms of hard
dollar savings. Most tangible benefits will fit within the following categories:

Cost reduction and avoidance

Error reduction

Increased flexibility

Increased speed of activity

Improvement of management planning and control
Opening new markets and increasing sales opportunities

& PINE
VALLEY
= FURNITURE

Economic feasibility

A process of identifying the financial
benefits and costs associated with a
development project.

Tangible benefit

A benefit derived from the creation of an
information system that can be measured in
dollars and with certainty.

116

PART II PLANNING
Pine Valley Furniture
System Service Request
REQUESTED BY Jackie Judson DATE: August 20, 2017
DEPARTMENT Marketing
LOCATION Headquarters, 570c
CONTACT Tel: 4-3290 FAX: 4-3270 E-Mail: jjudson
TYPE OF REQUEST URGENCY
[X] New System [] Immediate: Operations are impaired or opportunity lost
[] System Enhancement [] Problems exist, but can be worked around
[] System Error Correction [X] Business losses can be tolerated until new system installed
PROBLEM STATEMENT
Sales growth at PVF has caused a greater volume of work for the marketing department. This volume
of work has greatly increased the volume and complexity of the data we need to deal with and
understand. We are currently using manual methods and a complex PC-based electronic spreadsheet
to track and forecast customer buying patterns. This method of analysis has many problems: (1) we are
slow to catch buying trends as there is often a week or more delay before data can be taken from the
point-of-sales system and manually enter it into our spreadsheet; (2) the process of manual data entry is
prone to errors (which makes the results of our subsequent analysis suspect); and (3) the volume of
data and the complexity of analyses conducted in the system seem to be overwhelming our current
system—sometimes the program starts recalculating and never returns, while for others it returns
information that we know cannot be correct.
SERVICE REQUEST
| request a thorough analysis of our current method of tracking and analysis of customer purchasing
activity with the intent to design and build a completely new information system. This system should
handle all customer purchasing activity, support display and reporting of critical sales information, and
assist marketing personnel in understanding the increasingly complex and competitive business
environment. | feel that such a system will improve the competitiveness of PVF, particularly in our
ability to better serve our customers.
IS LIAISON Jim WOO, 4-6207 FAX: 4-6200 E-Mail: jWOO
SPONSOR Jackie Judson, Vice President, Marketing
---------------- TO BE COMPLETED BY SYSTEMS PRIORITY BOARD ------------------------
[] Request approved Assigned to
Start date
[] Recommend revision
[] Suggest user development
[1 Reject for reason
FIGURE 5-2

System Service Request for Customer Tracking System (Pine Valley Furniture)

CHAPTER 5 INITIATING AND PLANNING SYSTEMS DEVELOPMENT PROJECTS
TANGIBLE BENEFITS WORKSHEET
Customer TrackingSystem Project
Year 1 through 5
A. Cost reduction or avoidance $ 4,500
B. Error reduction 2,500
C. Increased flexibility 7,500
D. Increased speed of activity 10,500
E. Improvement in management
planning or control 25,000
F. Other 0
TOTAL tangible benefits $50,000

Within the CTS at PVF, Jim and Jackie identified several tangible benefits, which
are summarized on the tangible benefits worksheet shown in Figure 5-3. Jackie and
Jim had to establish the values in Figure 5-3 after collecting information from users
of the current customer tracking system. They first interviewed the person respon-
sible for collecting, entering, and analyzing the accuracy of the current customer
tracking data. This person estimated that 10 percent of her time was spent correcting
data entry errors. Given that this person’s salary is $25,000, Jackie and Jim estimated
an error-reduction benefit of $2,500. Jackie and Jim also interviewed managers who
used the current customer tracking reports. Using this information they were able
to estimate other tangible benefits. They learned that costreduction or avoidance
benefits could be gained due to better inventory management. Also, increased flex-
ibility would likely occur from a reduction in the time normally taken to manually
reorganize data for different purposes. Further, improvements in management plan-
ning or control should result from a broader range of analyses in the new system.
Overall, this analysis forecasts that benefits from the system would be approximately
$50,000 per year.

Jim and Jackie also identified several intangible benefits of the system. Although
these benefits could not be quantified, they will still be described in the final BPP.
Intangible benefits refer to items that cannot be easily measured in dollars or with
certainty. Intangible benefits may have direct organizational benefits, such as the
improvement of employee morale, or they may have broader societal implications,
such as the reduction of waste creation or resource consumption. Potential tangible
benefits may have to be considered intangible during project initiation and planning
because you may not be able to quantify them in dollars or with certainty at this stage
in the life cycle. During later stages, such intangibles can become tangible benefits as
you better understand the ramifications of the system you are designing. In this case,
the BPP is updated and the business case revised to justify continuation of the project
to the next phase. Table 5-3 lists numerous intangible benefits often associated with
the development of an information system. Actual benefits will vary from system to
system. After determining project benefits, project costs must be identified.

Determining Project Costs Similar to benefits, an information system can have both
tangible and intangible costs. Tangible costs refer to items that you can easily mea-
sure in dollars and with certainty. From an IS development perspective, tangible costs
include items such as hardware costs, labor costs, and operational costs including
employee training and building renovations. Alternatively, intangible costs are items
that you cannot easily measure in terms of dollars or with certainty. Intangible costs
can include loss of customer goodwill, employee morale, or operational inefficiency.

117

FIGURE 5-3
Tangible benefits for Customer Tracking
System (Pine Valley Furniture)

Intangible benefit

A benefit derived from the creation of an
information system that cannof be easily
measured in dollars or with certainty.

Tangible cost

A cost associated with an information
system that can be measured in dollars and
with certainty.

Intangible cost

A cost associated with an information
system that cannot be easily measured in
terms of dollars or with certainty.

118

PART II

PLANNING

TABLE 5-3 Intangible Benefits from the Development of an Information System

® Competitive necessity

* More timely information °
* Improved organizational planning o
* Increased organizational flexibility o
® Promotion of organizational learning and o

understanding o
* Availability of new, better, or more

information .
* Ability fo investigate more alternatives o
* Faster decision making o

More confidence in decision quality
Improved processing efficiency

Improved asset utilization

Improved resource control

Increased accuracy in clerical operations

Improved work process that can improve
employee morale or customer satisfaction

Positive impacts on society
Improved social responsibility
Better usage of resources (“greener”)

(Source: Based on Parker and Benson, 1988; Brynjolfsson and Yang, 1997; Keen, 2003;

Cresswell, 2004.)

Table 5-4 provides a summary of common costs associated with the development
and operation of an information system. Predicting the costs associated with the
development of an information system is an inexact science. IS researchers, how-
ever, have identified several guidelines for improving the cost-estimating process (see
Table 5-5). Both underestimating and overestimating costs are problems you must
avoid (Laplante, 2006; Lederer and Prasad, 1992; Nash, 2008; White and Lui, 2005).
Underestimation results in cost overruns, whereas overestimation results in unneces-

sary allocation of resources that might be better utilized.

TABLE 5-4 Possible Information Systems Costs

Type of Cost Examples Type of Cost Examples

Procurement Hardware, software, Project
facilities infrastructure

Management and staff
Consulting and services

Infrastructure replacement/
improvements

Project personnel

Training

Development activities
Services and procurement
Organizational disruptions
Management and staff

Start-Up Initial operating costs Operating Infrastructure replacement/

Management and staff
Personnel recruiting

improvements
System maintenance
Management and staff
User training and support

(Source: Based on King and Schrems, 1978; Sonije,

TABLE 5-5 Guidelines for Better Cost Estimating

2008.)

1. Have clear guidelines for creating estimates.

2. Use experienced developers and/or project managers for making estimates.
3. Develop a culture where all project participants are responsible for defining accurate

estimates.

4. Use historical data to help in establishing better estimates of costs, risks, schedules, and

resources.
5. Update estimates as the project progresses.

6. Monitor progress and record discrepancies to improve future estimates.

(Source: Based on Lederer and Prasad, 1992; Hubbard, 2007; Sonje, 2008.)

CHAPTER 5 INITIATING AND PLANNING SYSTEMS DEVELOPMENT PROJECTS 119

One goal of a cost-benefit analysis is to accurately determine the total cost of
ownership (TCO) for an investment (Nash, 2008). TCO is focused on understand-
ing not only the total cost of acquisition but also all costs associated with ongoing use
and maintenance of a system. Consequently, besides tangible and intangible costs, you
can distinguish IS-related development costs as either one-time or recurring (the
same is true for benefits, although we do not discuss this difference for benefits).
One-time costs refer to those associated with project initiation and development and
the start-up of the system. These costs typically encompass activities such as systems
development, new hardware and software purchases, user training, site preparation,
and data or system conversion. When conducting an economic cost-benefit analysis,
a worksheet should be created for capturing these expenses. For very large projects,
one-time costs may be staged over one or more years. In these cases, a separate one-
time cost worksheet should be created for each year. This separation will make it
easier to perform present value calculations (described later). Recurring costs refer
to those costs resulting from the ongoing evolution and use of the system. Examples
of these costs typically include the following:

¢ Application software maintenance
¢ Incremental data storage expenses

® Incremental communications

® New software and hardware leases

® Supplies and other expenses (e.g., paper, forms, data center personnel)

Both one-time and recurring costs can consist of items that are fixed or variable
in nature. Fixed costs are costs that are billed or incurred at a regular interval and
usually at a fixed rate (a facility lease payment). Variable costs are items that vary in
relation to usage (long-distance phone charges).

During the process of determining project costs, Jim and Jackie identified
both one-time and recurring costs for the project. These costs are summarized in
Figures 5-4 and 5-b. These figures show that this project will incur a one-time cost of
$42,500 and a recurring cost of $28,500 per year. One-time costs were established by
discussing the system with Jim’s boss, who felt that the system would require approxi-
mately four months to develop (at $5000 per month). To effectively run the new
system, the marketing department would need to upgrade at least five of its current
workstations (at $3000 each). Additionally, software licenses for each workstation
(at $1000 each) and modest user training fees (ten users at $250 each) would be
necessary.

ONE-TIME COSTS WORKSHEET

Customer Tracking System Project
Year 0
A. Development costs $20,000
B. New hardware 15,000

C. New (purchased) software, if any

1. Packaged applications software 5,000
2. Other 0
D. User training 2,500
E. Site preparation 0
F. Other 0
TOTAL one-time costs $42,500

total cost of ownership (TCO)
The cost of owning and operating

a system, including the total cost of
acquisition, as well as all costs associated
with its ongoing use and maintenance.

One-time cost
A cost associated with project startup and
development or system start-up.

Recurring cost
A cost resulfing from the ongoing evolution
and use of a system.

FIGURE 5-4
One+ime costs for Customer Tracking
System (Pine Valley Furniture)

120 PARTII PLANNING

FIGURE 5-5
Recurring costs for Customer Tracking
System (Pine Valley Furniture)

Time value of money (TVM)
The concept that money available foday
is worth more than the same amount
fomorrow.

Discount rate
The rate of refurn used to compute the
present value of future cash flows.

Present value
The current value of a future cash flow.

RECURRING COSTS WORKSHEET
Customer Tracking System Project

Year 1 through 5
A. Application software maintenance $25,000
B. Incremental data storage required: 20 GB $50 1000

(estimated cost/GB = $50)

C. Incremental communications (lines, messages, . . .) 2000
D. New software or hardware leases 0
E. Supplies 500
F. Other 0
TOTAL recurring costs $28,500

As you can see from Figure 5-5, Jim and Jackie believe the proposed system will
be highly dynamic and will require, on average, five months of annual maintenance,
primarily for enhancements as users expect more from the system. Other ongoing
expenses such as increased data storage, communications equipment, and supplies
should also be expected. You should now have an understanding of the types of ben-
efit and cost categories associated with an information systems project. It should be
clear that there are many potential benefits and costs associated with a given project.
Additionally, because the development and useful life of a system may span several
years, these benefits and costs must be normalized into present-day values in order
to perform meaningful cost-benefit comparisons. In the next section, we address the
relationship between time and money.

The Time Value of Money Most techniques used to determine economic feasibility
encompass the concept of the time value of money (TVM), which reflects the notion
that money available today is worth more than the same amount tomorrow. As previ-
ously discussed, the development of an information system has both one-time and
recurring costs. Furthermore, benefits from systems development will likely occur
sometime in the future. Because many projects may be competing for the same in-
vestment dollars and may have different useful life expectancies, all costs and ben-
efits must be viewed in relation to their present value when comparing investment
options.

A simple example will help in understanding the TVM. Suppose you want to buy
aused car from an acquaintance and she asks that you make three payments of $1500
for three years, beginning next year, for a total of $4500. If she would agree to a single
lump-sum payment at the time of sale (and if you had the money!), what amount
do you think she would agree to? Should the single payment be $4500? Should it be
more or less? To answer this question, we must consider the time value of money.
Most of us would gladly accept $4500 today rather than three payments of $1500,
because a dollar today (or $4500 for that matter) is worth more than a dollar tomor-
row or next year, given that money can be invested. The rate at which money can be
borrowed or invested is referred to as the cost of capital, and is called the discount rate
for TVM calculations. Let’s suppose that the seller could put the money received for
the sale of the car in the bank and receive a 10 percent return on her investment. A
simple formula can be used when figuring out the present value of the three $1500
payments:

CHAPTER 5

INITIATING AND PLANNING SYSTEMS DEVELOPMENT PROJECTS 121

where PV" is the present value of Y dollars n years from now when i is the discount
rate.

From our example, the present value of the three payments of $1500 can be
calculated as

PV,

PV,

PV,

where PV, PVy,
2, and 3, respectively.
To calculate the net present value (NPV) of the three $1500 payments, simply add
the present values calculated previously (NPV = PV| = PV, = PV5 = 1363.65 = 1239.60
=1126.95 = $3730.20). In other words, the seller could accept a lump-sum payment
of $3730.20 as equivalent to the three payments of $1500, given a discount rate of

10

percent.

1500 X ——————
(1 + .10)
1
1500 X ————
(1 + .10)
1500 X —————
(1 + .10)

= 1500 X 9091 = 1363.65
= 1500 X .8264 = 1239.60
= 1500 X .7513 = 1126.95

and PVj reflect the present value of each $1500 payment in years 1,

Given that we now know the relationship between time and money, the next
step in performing the economic analysis is to create a summary worksheet reflecting
the present values of all benefits and costs as well as all pertinent analyses. Due to the
fast pace of the business world, PVF’s System Priority Board feels that the useful life
of many information systems may not exceed five years. Therefore, all cost-benefit
analysis calculations will be made using a five-year time horizon as the upper bound-
ary on all time-related analyses. In addition, the management of PVF has set its cost
of capital to be 12 percent (i.e., PVF’s discount rate). The worksheet constructed by
Jim is shown in Figure 5-6.

[« = PVF -- WebStore Project [Compatibility Made] - Excel T E = O %
FILE HOME INSERT PAGE LAYOUT FORMULAS DATA REVIEW VIEW Fenit PDF Valwcich, Jow 5 - (valacich) =
ﬁ!]::' asial "4 - AN E=g ¥ FwepTet Gareeal |—P|—|T '_‘.4 ,:ﬁ ,‘_"f“ E_‘D\ Ii E' %? %
Pute . EEY-E- 2 === 242 EMogeaconte - $-% 0 W3 ri‘::’;:';" i s';i e] e e e
Cliphoard 2 Fonit Aligriment Humber Styfes Cells Editing ~
A1 ~ Je | pine valley Furniture v
A B c) E F G H J K. (=

1 |Pine Valley Fumfmre

2 Economic Feasibility Analysis

3z WebStore Project

4

B Year of Project

G Year0 Year{ Year2 Year 3 Yeard Year 5 TOTALS

T Meteconomic benefit $50,000 550,000 $50,000 $50,000 $50,000

& Discount Rate (12%) 1.0000 06929 a.7972 07118 0.6355 0.5674

9 PV of Benefits $44.643 530,660 535 580 S31.776 S28.371

10

11 NPV of all BENEFITS $44 643 $84 503 $120,002 $151,867 $180,239 $180,239

12

18 One-ime COSTS (542,500)

14

15 Recurring Costs ($28,500) (528,500) ($28,500) (828,500) ($28 500)

16 Discount Rate (12%) 1.0000 0.8920 07972 07118 0.6355 0.567¢

17 PV of Recurring Costs [$25446) (522,720) ($20.266) (318,112) 816.172)

18

19 NPV of AN COSTS (542,500) ($67.946) {590 666) (5110952) ($129,064) ($145236) ($145,236)

20

21

22 Overall NPV $35,003

28

24

26 Owverall RO - {Overall NPV / NPV of All COSTS) 024

26

27

28 Break-Even Analysis

29 Yearly NPV Cash Flow (342,500) $19.196 517,140 $15,303 £13 664 $12,200 FIGURE 5-6

30 Overal NPV Cash Flow ($42500) ($23,304) (56,164) $9.139 $22 803 $35.003

Project break-aven oocurs batwean years 2 and 3

Use first year of positive cash flow to caloulate break-even fraction - ({15303 - 9139)/ 15303) = 403
Actual break-even occurred at 2.4 years

PVF -. CTSP

)

Summary spreadsheet reflecting the
present value calculations of all benefits
and costs for the Customer Tracking
System (Pine Valley Furniture)

(Source: Microsoft Corporation.)

122 PARTII PLANNING

Break-even analysis
A type of cosi-benefit analysis to identify af
what point (if ever) benefits equal costs.

FIGURE 5-7
Break-even analysis for Customer
Tracking System (Pine Valley Furniture)

Cell H11 of the worksheet displayed in Figure 5-6 summarizes the NPV of the
total tangible benefits from the project. Cell H19 summarizes the NPV of the total
costs from the project. The NPV for the project ($35,003) shows that, overall, ben-
efits from the project exceed costs (see cell H22).

The overall return on investment (ROI) for the project is also shown on the work-
sheet in cell H25. Because alternative projects will likely have different benefit and cost
values and, possibly, different life expectancies, the overall ROI value is very useful for
making project comparisons on an economic basis. Of course, this example shows ROI
for the overall project; an ROI analysis could be calculated for each year of the project.

The last analysis shown in Figure 5-6 is a break-even analysis. The objective of
the break-even analysis is to discover at what point (if ever) benefits equal costs (i.e.,
when breakeven occurs). To conduct this analysis, the NPV of the yearly cash flows
are determined. Here, the yearly cash flows are calculated by subtracting both the
one-time cost and the present values of the recurring costs from the present value of
the yearly benefits. The overall NPV of the cash flow reflects the total cash flows for
all preceding years. Examination of line 30 of the worksheet shows that breakeven
occurs between years 2 and 3. Because year 3 is the first in which the overall NPV cash
flow figure is nonnegative, the identification of what point during the year breakeven
occurs can be derived as follows:

Yearly NPV Cash Flow — Overall NPV Cash Flow

Break -Even Ratio =

Yearly NPV Cash Flow
Using data from Figure 5-6,
15,303 — 9139
Break-E Ratio = ———— = 403
rea ven Ratio 15.303

Therefore, project breakeven occurs at approximately 2.4 years. A graphical
representation of this analysis is shown in Figure 5-7. Using the information from the
economic analysis, PVF’s Systems Priority Board will be in a much better position to
understand the potential economic impact of the CTS. It should be clear from this
analysis that, without such information, it would be virtually impossible to know the
cost-benefits of a proposed system and impossible to make an informed decision
regarding approval or rejection of the service request.

You can use many techniques to compute a project’s economic feasibility.
Because most information systems have a useful life of more than one year and will

200
__ 150 /
[2]
o]
]
2] Project break-even point
2 N\
_E 100
@
o
°
Qo
50
~ =@ Benefits
=@ Costs
0 | | | | |
0 1 2 3 4 5

Year

CHAPTER 5 INITIATING AND PLANNING SYSTEMS DEVELOPMENT PROJECTS 123

TABLE 5-6 Commonly Used Economic Cost—Benefit Analysis Techniques

Analysis Technique Description

Net Present Value (NPV) NPV uses a discount rate defermined from the company’s cost of
capital to establish the present value of a project. The discount
rate is used to determine the present value of both cash receipts
and outlays.

Return on Investment (ROI) ROl is the ratio of the net cash receipts of the project divided by
the cash outlays of the project. Trade-off analysis can be made
among projects competing for investment by comparing their
representative RO ratios.

Break-Even Analysis (BEA) BEA finds the amount of time required for the cumulative cash flow
from a project to equal its initial and ongoing investment.

provide benefits and incur expenses for more than one year, most techniques for
analyzing economic feasibility employ the concept of the TVM. Some of these cost—
benefit analysis techniques are quite simple, whereas others are more sophisticated.
Table 5-6 describes three commonly used techniques for conducting economic
feasibility analysis. For a more detailed discussion of TVM or cost-benefit analysis
techniques in general, the interested reader is encouraged to review an introductory
finance or managerial accounting textbook.

A systems project, to be approved for continuation, may not have to achieve
breakeven or have an ROI above some organizational threshold, as estimated dur-
ing project initiation and planning. Because you may not be able to quantify many
benefits or costs at this point in a project, such financial hurdles for a project may
be unattainable. In this case, simply doing as thorough an economic analysis as pos-
sible, including producing a long list of intangibles, may be sufficient for the proj-
ect to progress. One other option is to run the type of economic analysis shown in
Figure 5-7 using pessimistic, optimistic, and expected benefit and cost estimates dur-
ing project initiation and planning. This range of possible outcomes, along with the
list of intangible benefits and the support of the requesting business unit, will often
be enough to allow the project to continue to the analysis phase. You must, however,
be as precise as you can with the economic analysis, especially when investment capi-
tal is scarce. In this case, it may be necessary to conduct some typical analysis phase
activities during project initiation and planning in order to clearly identify inefficien-
cies and shortcomings with the existing system and to explain how a new system will
overcome these problems. Thus, building the economic case for a systems project
is an open-ended activity; how much analysis is needed depends on the particular
project, stakeholders, and business conditions. Also, conducting economic feasibility
analyses for new types of information systems is often very difficult.

Assessing Technical Feasibility

The purpose of assessing technical feasibility is to gain an understanding of the orga-
nization’s ability to construct the proposed system. This analysis should include an as-
sessment of the development group’s understanding of the possible target hardware,
software, and operating environments to be used, as well as system size, complexity,
and the group’s experience with similar systems. In this section, we will discuss a
framework you can use for assessing the technical feasibility of a project in which a
level of project risk can be determined after answering a few fundamental questions.

It is important to note that all projects have risk and that risk is not necessarily
something to avoid. Yet it is also true that, because organizations typically expect a
greater return on their investment for riskier projects, understanding the sources
and types of technical risks proves to be a valuable tool when you assess a project.
Also, risks need to be managed in order to be minimized; you should, therefore,

Technical feasibility

A process of assessing the development
organization’s ability to construct a
proposed sysfem.

124

PART II

PLANNING

identify potential risks as early as possible in a project. The potential consequences of
not assessing and managing risks can include the following:

Failure to attain expected benefits from the project

Inaccurate project cost estimates

Inaccurate project duration estimates

Failure to achieve adequate system performance levels

Failure to adequately integrate the new system with existing hardware, software,
or organizational procedures

You can manage risk on a project by changing the project plan to avoid risky fac-
tors, assigning project team members to carefully manage the risky aspects, and set-
ting up monitoring methods to determine whether or not potential risk is, in fact,
materializing.

The amount of technical risk associated with a given project is contingent on
four primary factors: project size, project structure, the development group’s expe-
rience with the application and technology area, and the user group’s experience
with systems development projects and the application area (see also Kirsch, 2000).
Aspects of each of these risk areas are summarized in Table 5-7. When using these
factors for conducting a technical risk assessment, four general rules emerge:

1. Large projects are riskier than small projects. Project size, of course, relates to the
relative project size with which the development group typically works. A “small”
project for one development group may be relatively “large” for another. The
types of factors that influence project size are listed in Table 5-7.

2. A system in which the requirements are easily obtained and highly structured will be less
risky than one in which requirements are messy, ill-structured, ill-defined, or subject to the
Judgment of an individual. For example, the development of a payroll system has
requirements that may be easy to obtain due to legal reporting requirements
and standard accounting procedures. On the other hand, the development of an
executive support system would need to be customized to the particular execu-
tive decision style and critical success factors of the organization, thus making its
development more risky (see Table 5-7).

TABLE 5-7 Project Risk Assessment Factors
Risk Factor Examples

Project Size Number of members on the project team
Project duration time
Number of organizational departments involved in project
Size of programming effort (e.g., hours, function points)
Number of outsourcing partners

Project Structure New system or renovation of existing system(s)

Organizational, procedural, structural, or personnel changes
resulting from system

User perceptions and willingness to participate in effort
Management commitment to system
Amount of user information in system development effort

Development Group Familiarity with target hardware, software development
environment, tools, and operating system

Familiarity with proposed application area

Familiarity with building similar systems of similar size
User Group Familiarity with information systems development process

Familiarity with proposed application area

Familiarity with using similar systems

(Source: Based on Applegate, Austin, and Soule, 2009; Tech Republic, 2005.)

CHAPTER 5

3. The development of a system employing commonly used or standard technology will be less
risky than one employing novel or nonstandard technology. A project has a greater like-
lihood of experiencing unforeseen technical problems when the development
group lacks knowledge related to an aspect of the technology environment. A less
risky approach is to use standard development tools and hardware environments.
It is not uncommon for experienced system developers to talk of the difficulty of
using leading-edge (or in their words, bleeding-edge) technology (see Table 5-7).

4. A project is less risky when the user group is familiar with the systems development pro-
cess and application area than if the user group is unfamiliar with them. Successful IS
projects require active involvement and cooperation between the user and devel-
opment groups. Users familiar with the application area and the systems develop-
ment process are more likely to understand the need for their involvement and
how this involvement can influence the success of the project (see Table 5-7).

A project with high risk may still be conducted. Many organizations look at risk
as a portfolio issue: Considering all projects, it is okay to have a reasonable percent-
age of high-, medium-, and low-risk projects. Given that some high-risk projects will
getinto trouble, an organization cannot afford to have too many of these. Having too
many low-risk projects may not be aggressive enough to make major breakthroughs
in innovative uses of systems. Each organization must decide on its acceptable mix of
projects of varying risk.

A matrix for assessing the relative risks related to the general rules just described
is shown in Figure 5-8. Using the risk factor rules to assess the technical risk level of
the CTS, Jim and Jackie concluded the following about their project:

1. The project is a relatively small project for PVF’s development organization. The
basic data for the system are readily available, so the creation of the system will
not be a large undertaking.

2. The requirements for the project are highly structured and easily obtainable. In
fact, an existing spreadsheet-based system is available for analysts to examine and
study.

3. The development group is familiar with the technology that will likely be used
to construct the system because the system will simply extend current system
capabilities.

4. The user group is familiar with the application area because they are already us-
ing the PC-based spreadsheet system described in Figure 5-3.

Given this risk assessment, Jim and Jackie mapped their information into the
risk framework of Figure 5-8. They concluded that this project should be viewed as
having “very low” technical risk (cell 4 of the figure). Although this method is useful

Low Structure

High Structure

High Familiarity
with Technology
or Application Area

Large Project

M
Low risk
(very susceptible
to mismanagement)

@

Low risk

Small Project

3)
Very low risk
(very susceptible
to mismanagement)

(4)
Very low risk

Low Familiarity
with Technology
or Application Area

Large Project

©)
Very high risk

©)

Medium risk

Small Project

@)
High risk

®)

Medium-low risk

INITIATING AND PLANNING SYSTEMS DEVELOPMENT PROJECTS

e | PINE
VALLEY

FIGURE 5-8

= FURNITURE

125

Effects of degree of project structure,

project size, and familiarity
with application area on project

implementation risk

(Source: Based on Applegate, Austin, and

Soule, 2009; Tech Republic, 2005.)

126 PARTII PLANNING

Operational feasibility

The process of assessing the degree to
which a proposed sysfem solves business
problems or takes advantage of business
opportunities.

Schedule feasibility

The process of assessing the degree

to which the potential time frame and
complefion dates for all major activities
within a project meet organizational
deadlines and constraints for affecting
change.

Legal and contractual
feasibility

The process of assessing potential legal
and contractual ramifications due to the
construction of a system.

for gaining an understanding of technical feasibility, numerous other issues can
influence the success of the project. These nonfinancial and nontechnical issues are
described in the following section.

Assessing Other Feasibility Concerns

In this section, we will briefly conclude our discussion of project feasibility issues by
reviewing other forms of feasibility that you may need to consider when formulating
the business case for a system during project planning.

Assessing Operational Feasibility The first relates to examining the likelihood that
the project will attain its desired objectives, called operational feasibility. Its purpose
is to gain an understanding of the degree to which the proposed system will likely
solve the business problems or take advantage of the opportunities outlined in the
System Service Request or project identification study. For a project motivated from
information systems planning, operational feasibility includes justifying the project
on the basis of being consistent with or necessary for accomplishing the information
systems plan. In fact, the business case for any project can be enhanced by showing
a link to the business or information systems plan. Your assessment of operational
feasibility should also include an analysis of how the proposed system will affect orga-
nizational structures and procedures. Systems that have substantial and widespread
impact on an organization’s structure or procedures are typically riskier projects to
undertake. Thus, it is important for you to have a clear understanding of how an
information system will fit into the current day-to-day operations of the organization.

Assessing Schedule Feasibility Another feasibility concern relates to project du-
ration and is referred to as assessing schedule feasibility. The purpose of assessing
schedule feasibility is for you, as a systems analyst, to gain an understanding of the
likelihood that all potential time frames and completion date schedules can be met
and that meeting these dates will be sufficient for dealing with the needs of the
organization. For example, a system may have to be operational by a government-
imposed deadline, by a particular point in the business cycle (such as the beginning
of the season when new products are introduced), or at least by the time a competi-
tor is expected to introduce a similar system. Further, detailed activities may only be
feasible if resources are available when called for in the schedule. For example, the
schedule should not call for system testing during rushed business periods or for key
project meetings during annual vacation or holiday periods. The schedule of activi-
ties produced during project initiation and planning will be very precise and detailed
for the analysis phase. The estimated activities and associated times for activities after
the analysis phase are typically not as detailed (e.g., it will take two weeks to program
the payroll report module) but are rather at the life-cycle-phase level (e.g., it will take
six weeks for physical design, four months for programming, and so on). This means
that assessing schedule feasibility during project initiation and planning is more of a
“rough-cut” analysis of whether the system can be completed within the constraints
of the business opportunity or the desires of the users. While assessing schedule fea-
sibility you should also evaluate scheduling trade-offs. For example, factors such as
project team size, availability of key personnel, subcontracting or outsourcing activi-
ties, and changes in development environments may all be considered as having a
possible impact on the eventual schedule. As with all forms of feasibility, schedule
feasibility will be reassessed after each phase when you can specify with greater cer-
tainty the details of each step for the next phase.

Assessing Legal and Contractual Feasibility A third concern relates to assessing
legal and contractual feasibility issues. In this area, you need to gain an understand-
ing of any potential legal ramifications due to the construction of the system. Possible
considerations might include copyright or nondisclosure infringements, labor laws,

CHAPTER 5 INITIATING AND PLANNING SYSTEMS DEVELOPMENT PROJECTS 127

antitrust legislation (which might limit the creation of systems to share data with
other organizations), foreign trade regulations (e.g., some countries limit access to
employee data by foreign corporations), and financial reporting standards, as well as
current or pending contractual obligations. Contractual obligations may involve own-
ership of software used in joint ventures, license agreements for use of hardware or
software, nondisclosure agreements with partners, or elements of a labor agreement
(e.g., a union agreement may preclude certain compensation or work-monitoring
capabilities a user may want in a system). A common situation is that development of
a new application system for use on new computers may require new or expanded,
and more costly, system software licenses. Typically, legal and contractual feasibility is
a greater consideration if your organization has historically used an outside organiza-
tion for specific systems or services that you now are considering handling yourself.
In this case, ownership of program source code by another party may make it difficult
to extend an existing system or link a new system with an existing purchased system.

Assessing Political Feasibility A final feasibility concern focuses on assessing
political feasibility in which you attempt to gain an understanding of how key stake-
holders within the organization view the proposed system. Because an information
system may affect the distribution of information within the organization, and thus
the distribution of power, the construction of an information system can have politi-
cal ramifications. Those stakeholders not supporting the project may take steps to
block, disrupt, or change the intended focus of the project.

In summary, depending upon the given situation, numerous feasibility issues
must be considered when planning a project. This analysis should consider economic,
technical, operational, schedule, legal, contractual, and political issues related to the
project. In addition to these considerations, project selection by an organization may
be influenced by issues beyond those discussed here. For example, projects may be
selected for construction despite high project costs and high technical risk if the
system is viewed as a strategic necessity; that is, the organization views the project as
being critical to the organization’s survival. Alternatively, projects may be selected
because they are deemed to require few resources and have little risk. Projects may
also be selected due to the power or persuasiveness of the manager proposing the
system. This means that project selection may be influenced by factors beyond those
discussed here and beyond items that can be analyzed. Understanding the reality
that projects may be selected based on factors beyond analysis, your role as a systems
analyst is to provide a thorough examination of the items that can be assessed. Your
analysis will ensure that a project review committee has as much information as pos-
sible when making project approval decisions. In the next section, we discuss how
project plans are typically reviewed.

BUILDING AND REVIEWING THE BASELINE
PROJECT PLAN

All the information collected during project initiation and planning is collected
and organized into a document called the Baseline Project Plan. Once the BPP is
completed, a formal review of the project can be conducted with project clients and
other interested parties. This presentation, a walk-through, is discussed later in this
chapter. The focus of this review is to verify all information and assumptions in the
baseline plan before moving ahead with the project.

Building the Baseline Project Plan

As mentioned previously, the project size and organizational standards will dictate
the comprehensiveness of the project initiation and planning process as well as the
BPP. Yet most experienced systems builders have found project planning and a clear

Political feasibility

The process of evaluating how key
stakeholders within the organization view
the proposed system.

128

PART II PLANNING

BASELINE PROJECT PLAN REPORT

1.0 Introduction
A.

Project Overview —Provides an executive summary that specifies the project’s scope,
feasibility, justification, resource requirements, and schedules. Additionally, a brief
statement of the problem, the environment in which the system is to be implemented,
and constraints that affect the project are provided.

Recommendation—Provides a summary of important findings from the planning
process and recommendations for subsequent activities.

2.0 System Description
A
B.

Alternatives—Provides a brief presentation of alternative system configurations.
System Description—Provides a description of the selected configuration and a
narrative of input information, tasks performed, and resultant information.

B.

C.

3.0 Feasibility Assessment
A.

Economic Analysis—Provides an economic justification for the system using
cost-benefit analysis.

Technical Analysis—Provides a discussion of relevant technical risk factors and an
overall risk rating of the project.

Operational Analysis—Provides an analysis of how the proposed system solves
business problems or takes advantage of business opportunities in addition to an
assessment of how current day-to-day activities will be changed by the system.

. Legal and Contractual Analysis—Provides a description of any legal or contractual risks

related to the project (e.g., copyright or nondisclosure issues, data capture or
transferring, and so on).

Political Analysis—Provides a description of how key stakeholders within the
organization view the proposed system.

Schedules, Time Line, and Resource Analysis—Provides a description of potential time
frame and completion date scenarios using various resource allocation schemes.

4.0 Management Issues

A. Team Configuration and Management—Provides a description of the team member
roles and reporting relationships.

B. Communication Plan—Provides a description of the communication procedures to be
followed by management, team members, and the customer.

C. Project Standards and Procedures—Provides a description of how deliverables will be
evaluated and accepted by the customer.

D. Other Project-Specific Topics— Provides a description of any other relevant issues
related to the project uncovered during planning.

FIGURE 5-9

Outline of a Baseline Project Plan

project plan to be invaluable to project success. An outline of a BPP is provided in

Figure 5-9, which shows that it contains four major sections:

1. Introduction

2. System Description

3. Feasibility Assessment
4. Management Issues

The Introduction Section of the Baseline ProjectPlan The purpose of the Introduction
is to provide a brief overview of the entire document and outline a recommended

CHAPTER 5 INITIATING AND PLANNING SYSTEMS DEVELOPMENT PROJECTS

course of action for the project. The entire Introduction section is often limited to
only a few pages. Although the Introduction section is sequenced as the first section
of the BPP, it is often the final section to be written. It is only after performing most
of the project planning activities that a clear overview and recommendation can be
created. One activity that should be performed initially is the definition of project
scope.

When defining scope for the CTS within PVF, Jim Woo first needed to gain a
clear understanding of the project’s objectives. To do this, Jim briefly interviewed
Jackie Judson and several of her colleagues to gain a clear idea of their needs. He
also spent a few hours reviewing the existing system’s functionality, processes, and
data use requirements for performing customer tracking activities. These activities
provided him with the information needed to define the project scope and to iden-
tify possible alternative solutions. Alternative system solutions can relate to different
system scopes, platforms for deployment, or approaches to acquiring the system. We
elaborate on the idea of alternative solutions, called design strategies, when we discuss
the analysis phase of the life cycle. During project initiation and planning, the most
crucial element of the design strategy is the system’s scope. In sum, a determination
of scope will depend on the following factors:

® Which organizational units (business functions and divisions) might be affected
by or use the proposed system or system change?

® With which current systems might the proposed system need to interact or be
consistent, or which current systems might be changed due to a replacement
system?

* Who inside and outside the requesting organization (or the organization as a
whole) might care about the proposed system?

e What range of potential system capabilities will be considered?

The Project Scope Statement for the CTS project is shown in Figure 5-10.

For the CTS, project scope was defined using only textual information. It is
not uncommon, however, to define project scope using diagrams such as data flow
diagrams and entity-relationship models. For example, Figure 5-11 shows a context-
level data flow diagram used to define system scope for PVF’s Purchasing Fulfillment
System. The other items in the Introduction section of the BPP are simply executive
summaries of the other sections of the document.

The System Description Section of the Baseline Project Plan The second section of
the BPP is the System Description, which contains an outline of possible alternative so-
lutions in addition to the one deemed most appropriate for the given situation. Note
that this description is at a very high level and mostly narrative in form. The following
examples demonstrate that alternatives may be stated simply:

1. Web-based online system

2. Mainframe with central database

3. Local area network with decentralized databases
4. Batch data input with online retrieval

5. Purchasing of a prewritten package

If the project is approved for construction or purchase, you will need to collect
and structure information in a more detailed and rigorous manner during the analy-
sis phase and evaluate in greater depth these and other alternative directions for the
system. At this point in the project, your objective is only to identify the most obvious
alternative solutions.

When Jim and Jackie were considering system alternatives for the CTS, they
focused on two primary issues. First, they discussed how the system would be
acquired and considered three options: purchase the system if one could be found
that met PVF’s needs, outsource the development of the system to an outside orga-
nization, or build the system within PVF. The second issue focused on defining the

PINE
VALLEY
FURNITURE

129

130

PART II PLANNING

Pine Valley Furniture Prepared by: Jim Woo
Project Scope Statement Date: September 10, 2017
General Project Information

Project Name: Customer Tracking System

Sponsor: Jackie Judson, VP Marketing

Project Manager: Jim Woo

Problem/Opportunity Statement:
Sales growth has outpaced the Marketing department’s ability to accurately track and
forecast customer buying trends. An improved method for performing this process must
be found in order to reach company objectives.

Project Objectives:
To enable the Marketing department to accurately track and forecast customer buying
patterns in order to better serve customers with the best mix of products. This will also
enable PVF to identify the proper application of production and material resources.

Project Description:
A new information system will be constructed that will collect all customer purchasing
activity, support display and reporting of sales information, aggregate data, and show
trends in order to assist marketing personnel in understanding dynamic market conditions.
The project will follow PVF’s systems development life cycle.

Business Benefits:
Improved understanding of customer buying patterns
Improved utilization of marketing and sales personnel
Improved utilization of production and materials

Project Deliverables:
Customer tracking system analysis and design
Customer tracking system programs
Customer tracking documentation
Training procedures

Estimated Project Duration:
5 months

FIGURE 5-10
Project Scope Statement for the Customer Tracking Systems (Pine Valley Furniture)

comprehensiveness of the system’s functionality. To complete this task, Jim asked
Jackie to write a series of statements listing the types of tasks that she envisioned
marketing personnel would be able to accomplish when using the CTS. This list
of statements became the basis of the system description and was instrumental in
helping them make their acquisition decision. After considering the unique needs
of the marketing group, both decided that the best decision was to build the system
within PVF.

CHAPTER 5 INITIATING AND PLANNING SYSTEMS DEVELOPMENT PROJECTS 131

Price & Terms Quotes

Shipment Suppliers

A

Request for QuotesT
Order
<Supplier Material Evaluation

Production Schedules

Production Capacities> Purchasing
Material Availability | Fulfillment

l . System Material Specifications

Production Supplier Material

Engineering
Schedulers Specifications

The Feasibility Assessment Section of the Baseline Project Plan In the third
section, Feasibility Assessment, issues related to project costs and benefits, technical dif-
ficulties, and other such concerns are outlined. This is also the section where high-
level project schedules are specified using network diagrams and Gantt charts. Recall
from Chapter 3 that this process is referred to as a work breakdown structure. During
project initiation and planning, task and activity estimates are not generally detailed.
An accurate work breakdown can be done only for the next one or two life cycle ac-
tivities. After defining the primary tasks for the project, an estimate of the resource
requirements can be made. As with defining tasks and activities, this activity is pri-
marily concerned with gaining rough estimates of the human resource requirements
because people are the most expensive resource element. Once you define the major
tasks and resource requirements, a preliminary schedule can be developed. Defining
an acceptable schedule may require that you find additional or different resources
or that you change the scope of the project. The greatest amount of project planning
effort is typically expended on these Feasibility Assessment activities.

The Management Issues Section of the Baseline Project Plan The final section,
Management Issues, outlines a number of managerial concerns related to the project.
This will be a very short section if the proposed project is going to be conducted
exactly as prescribed by the organization’s standard systems development methodol-
ogy. Most projects, however, have some unique characteristics that require minor to
major deviation from the standard methodology. In the Team Configuration and
Management portion, you identify the types of people to work on the project, who
will be responsible for which tasks, and how work will be supervised and reviewed
(Figure 5-12). In the Communications Plan portion, you explain how the user will
be kept informed about project progress (such as periodic review meetings or even a
newsletter) and what mechanisms will be used to foster sharing of ideas among team
members, such as some form of computer-based conference facility (Figure 5-13).
An example of the type of information contained in the Project Standards and
Procedures portion would be procedures for submitting and approving project
change requests and any other issues deemed important for the project’s success.

You should now have a feel for how a BPP is constructed and the types of
information it contains. Its creation is not meant to be a project in and of itself, but
rather a step in the overall systems development process. Developing the BPP has
two primary objectives. First, it helps to ensure that the customer and development
group share a common understanding of the project. Second, it helps to provide the
sponsoring organization with a clear idea of the scope, benefits, and duration of the
project.

FIGURE 5-11

Contextlevel data flow diagram showing
project scope for Purchasing Fulfillment
System (Pine Valley Furniture)

132 PARTII PLANNING
Project: Prepared by: Legend:
WebStore Juan Gonzales P = Primary
Manager: Page: 1 of 1 S = Support
Juan Gonzales Responsibility Matrix
Task ID Task Jordan James Jackie Jeremy Kim Juan
A Collect Requirements P S S
B Develop Data Model P S S
C Develop Program Interface P S S
D Build Database S P S
E Design Test Scenarios S S S S S
F Run Test Scenarios S S S S P
G Create User Documentation P S S
H Install System S P S S
| Develop Customer Support S P S S
FIGURE 5-12

Task responsibility matrix

Walk-through

A peer group review of any product
created during the systems development
process; also called a structured
walk-through.

Reviewing the Baseline Project Plan

Before the next phase of the SDLC can begin, the users, management, and develop-
ment group must review the BPP in order to verify that it makes sense. This review
takes place before the BPP is submitted or presented to a project approval body, such
as an IS steering committee or the person who must fund the project. The objective
of this review is to ensure that the proposed system conforms to organizational stan-
dards and that all relevant parties understand and agree with the information con-
tained in the BPP. A common method for performing this review (as well as reviews
during subsequent life cycle phases) is called a structured walk-through. Walk-throughs
are peer group reviews of any product created during the systems development pro-
cess and are widely used by professional development organizations. Experience has
shown that walk-throughs are a very effective way to ensure the quality of an informa-
tion system and have become a common day-to-day activity for many systems analysts.

Most walk-throughs are not rigidly formal or exceedingly long in duration. It
is important, however, to establish a specific agenda for the walk-through so that all
attendees understand what is to be covered and the expected completion time. At

Stakeholder Document Format Team Contact Date Due

Team Members Project Status Report Project Intranet Juan and Kim First Monday of Month
Management Supervisor | Project Status Report Hard Copy Juan and Kim First Monday of Month
User Group Project Status Report Hard Copy James and Kim First Monday of Month
Internal IT Staff Project Status Report E-Mail Jackie and James First Monday of Month
IT Manager Project Status Report Hard Copy Juan and Jeremy First Monday of Month
Contract Programmers Software Specifications E-Mail/Project Intranet | Jordan and Kim October 4, 2017
Training Subcontractor Implementation and Training Plan | Hard Copy Jordan and James January 10, 2018

FIGURE 5-13

The Project Communication Matrix provides a high-level summary of the communication plan

CHAPTER 5 INITIATING AND PLANNING SYSTEMS DEVELOPMENT PROJECTS

walk-through meetings, there is a need to have individuals play specific roles. These
roles are as follows (Yourdon, 1989):

e Coordinator. This person plans the meeting and facilitates a smooth meeting
process. This person may be the project leader or a lead analyst responsible for
the current life cycle step.

® Presenter. This person describes the work product to the group. The presenter is
usually an analyst who has done all or some of the work being presented.

e User. This person (or group) makes sure that the work product meets the needs
of the project’s customers. This user would usually be someone not on the
project team.

® Secretary. This person takes notes and records decisions or recommendations
made by the group. This may be a clerk assigned to the project team or it may
be one of the analysts on the team.

® Standards bearer. The role of this person is to ensure that the work product
adheres to organizational technical standards. Many larger organizations have
staff groups within the unit responsible for establishing standard procedures,
methods, and documentation formats. These standards bearers validate the
work so that it can be used by others in the development organization.

® Maintenance oracle. This person reviews the work product in terms of future
maintenance activities. The goal is to make the system and its documentation
easy to maintain.

After Jim and Jackie completed their BPP for the CTS, Jim approached his boss
and requested that a walk-through meeting be scheduled and that a walk-through
coordinator be assigned to the project. PVF assists the coordinator by providing a
Walk-through Review Form, shown in Figure 5-14. Using this form, the coordina-
tor can more easily make sure that a qualified individual is assigned to each walk-
through role; that each member has been given a copy of the review materials; and
that each member knows the agenda, date, time, and location of the meeting. At the
meeting, Jim presented the BPP and Jackie added comments from a user’s perspec-
tive. Once the walk-through presentation was completed, the coordinator polled
each representative for his or her recommendation concerning the work product.
The results of this voting may result in validation of the work product, validation
pending changes suggested during the meeting, or a suggestion that the work prod-
uct requires major revision before being presented for approval. In this latter case,
substantial changes to the work product are usually requested, after which another
walk-through must be scheduled before the project can be proposed to the Systems
Priority Board (steering committee). In the case of the CTS, the BPP was supported
by the walk-through panel, pending some minor changes to the duration estimates
in the schedule. These suggested changes were recorded by the secretary on a Walk-
through Action List (see Figure 5-15) and given to Jim to incorporate into a final
version of the baseline plan to be presented to the steering committee.

As suggested by the previous discussion, walk-through meetings are a common
occurrence in most systems development groups and can be used for more activities
than reviewing the BPP, including the following:

System specifications
Logical and physical designs
Code or program segments
Test procedures and results
Manuals and documentation

One of the key advantages in using a structured review process is it ensures
that formal review points occur during the project. At each subsequent phase of the
project, a formal review should be conducted (and shown on the project schedule)
to make sure all aspects of the project are satisfactorily accomplished before assign-
ing additional resources to the project. This conservative approach of reviewing each
major project activity with continuation contingent on successful completion of the

133

134 PARTII PLANNING

Pine Valley Furniture

Walk-through Review Form

Session Coordinator:

Project/Segment:

Coordinator’s Checklist:

1. Confirmation with producer(s) that material is ready and stable:
2. Issue invitations, assign responsibilities, distribute materials: [1Y [N
3. Set date, time, and location for meeting:

Date:_ / / Time: AM. / P.M. (circle one)

Location:
Responsibilities Participants Can Attend Received Materials
Coordinator [1Y [IN [1Y [IN
Presenter [1Y [IN [1Y T[IN
User [1Y [IN [1Y [IN
Secretary [1TY T[1IN [1Y [IN
Standards [1TY T[1IN [1Y []IN
Maintenance [1TY T[1IN [1Y []IN
Agenda:
_ 1. All participants agree to follow PVF’s Rules of a Walk-through
_ 2. New material: walk-through of all material
__ 3. OlId material: item-by-item checkoff of previous action list
_____ 4. Creation of new action list (contribution by each participant)
___ 5. Group decision (see below)

6. Deliver copy of this form to the project control manager

Group Decision:
Accept product as-is
Revise (no further walk-through)
Review and schedule another walk-through

Signatures

FIGURE 5-14
Walk+through Review Form (Pine Valley Furniture)

CHAPTER 5 INITIATING AND PLANNING SYSTEMS DEVELOPMENT PROJECTS 135

Pine Valley Furniture
Walk-through Action List
Session Coordinator:
Project/Segment:
Date and Time of Walk-through:
Date:____ / / Time: AM. /P.M. (circle one)
Fixed (v') Issues raised in review:
FIGURE 5-15

Walkthrough Action List (Pine Valley Furniture)

136 PARTII

PLANNING

prior phase is called incremental commitment. It is much easier to stop or redirect a
project at any point when using this approach.

Walk-throughs are used throughout the duration of the project for briefing
team members and external stakeholders. These presentations can provide many
benefits to the team, but, unfortunately, are often not well done. With the prolif-
eration of computer technology and the availability of powerful software to assist in
designing and delivering presentations, making an effective presentation has never
been easier. Microsoft’s PowerPoint has emerged as the de facto standard for creating
computer-based presentations. Although this program is relatively easy to use, it can
also be misused such that the “bells and whistles” added to a computer-based pre-
sentation actually detract from the presentation. Like any project, to make an effec-
tive presentation it must be well-planned, well-designed, and well-delivered. Planning
and designing your presentation is equally important as delivering it. If your slides
are poorly laid out, hard to read, or inconsistent, it won’t matter how good your deliv-
ery is; your audience will think more about the poor quality of the slides than about
what you are saying. Fortunately, with a little work it is easy to design a high-quality
presentation if you follow a few simple steps, which are outlined in Table 5-8.

TABLE 5-8 Guidelines for Making an Effective Presentation

Presentation Planning

Who is the audience?

What is the message?

What is the presentation
environment?¢

To design the most effective presentation, you need to consider the audience (e.g., What do they know
about your topic? What is their education level?).

Your presentation should be designed with a particular objective in mind.

Knowledge of the room size, shape, and lighting is valuable information for designing an optimal
presentation.

Presentation Design

Organize the sequence.
Keep it simple.
Be consistent.

Use variety.

Don't rely on the spell
checker alone.

Use bells and whistles
sparingly.

Use supplemental materials
appropriately.

Have a clear beginning and
end.

Organize your presentation so that like elements or topics are found in one place, instead of scattered
throughout the material in random fashion.

Make sure that you don’t pack too much information onto a slide so that it is difficult to read. Also, work to
have as few slides as possible; in other words, only include information that you absolutely need.

Make sure that you are consistent in the types of fonts, font sizes, colors, design approach, and
backgrounds.

Use both textual and graphical slides to convey information in the most meaningful format.

Make sure you carefully review your presentation for typographical and wording errors.

Make sure that you use familiar graphical icons to guide and enhance slides; don't lose sight of your
message as you add bells and whistles. Also, take great care when making transitions between slides and
elements so that “special effects” don't take away from your message.

Take care when using supplemental materials so that they don't distract the audience. For example, don't
provide handouts until you want the audience to actually read this material.

At the beginning, introduce yourself and your teammates (if any), thank your audience for being there,
and provide a clear outline of what will be covered during the presentation. At the conclusion, have a
concluding slide so that the audience clearly sees that the presentation is over.

Presentation Delivery

Practice.

Arrive early and cue up your
presentation.

Learn to use the “special”
software keys.

Have a backup plan.

Deliver the information
effectively.

Personal appearance matters.

Make sure that you thoroughly test your completed work on yourself and others to be sure it covers your
points and presents them in an effective manner within the time frame required.

It is good practice, when feasible, to have your presentation ready to go prior to the arrival of the audience.

Using special keys to navigate the presentation will allow you to focus on your message and not on the
software.

Have a backup plan in case technology fails or your presentation is lost when traveling.
To make an effective presentation, you must become an effective public speaker through practice.

Your appearance and demeanor can go a long way toward enhancing how the audience receives your
presentation.

CHAPTER 5 INITIATING AND PLANNING SYSTEMS DEVELOPMENT PROJECTS

ELECTRONIC COMMERCE APPLICATIONS:
INITIATING AND PLANNING SYSTEMS
DEVELOPMENT PROJECTS

Initiating and planning systems development projects for an Internetbased EC
application is very similar to the process followed for more traditional applications. In
Chapter 4, you read how PVF’s management began the WebStore project—to sell fur-
niture products over the Internet. In this section, we highlight some of the issues that
relate directly to the process of identifying and selecting systems development projects.

Initiating and Planning Systems Development Projects for Pine
Valley Furniture’s WebStore

Given the high priority of the WebStore project, Vice President of Marketing Jackie
Judson, and senior systems analyst, Jim Woo, were assigned to work on this project.
Like the CTS described earlier in this chapter, their initial activity was to begin the
project’s initiation and planning activities.

Initiating and Planning PVF’s E-Commerce System To start the initiation and
planning process, Jim and Jackie held several meetings over several days. At the first
meeting they agreed that “WebStore” would be the proposed system project name.
Next, they worked on identifying potential benefits, costs, and feasibility concerns.
To assist in this process, Jim developed a list of potential costs from developing web-
based systems that he shared with Jackie and the other project team members (see
Table 5-9).

TABLE 5-9 Web-Based System Costs
Cost Category Examples

Platform Costs ® Web-hosting service
* Web server
® Server software
* Software plug-ins
e Firewall server
® Router
® Internet connection
Content and Service e Creative design and development
® Ongoing design fees
® Web project manager
e Technical site manager
e Content staff
e Graphics staff
e Support staff
e Site enhancement funds
® Fees to license outside content
® Programming, consulting, and research
* Training and travel
Marketing * Direct mail
® Launch and ongoing public relations
e Print advertisement
® Paid links to other websites
® Promotions
* Marketing staff
e Advertising sales staff

PINE
VALLEY
FURNITURE

137

138 PARTII PLANNING

FIGURE 5-16
Schedule for WebStore project at Pine
Valley Furniture

(Source: Microsoft Corporation.)

TABLE 5-10 PVF WebStore: Project Benefits and Costs
Tangible Benefits

Intangible Benefits

® Lower pertransaction overhead cost
® Repeat business

e First to market
e Foundation for complete Web-based IS
e Simplicity for customers

Tangible Costs (one-time) Intangible Costs

* Internet service setup fee
* Hardware

® No face-to-face interaction

e Not all customers use Infernet
* Development cost

¢ Data entry

Tangible Costs (recurring)

e Internet service hosting fee

e Software

e Support

e Maintenance

e Decreased sales via traditional channels

TABLE 5-11 PVF WebStore: Feasibility Concerns

Feasibility Concern

Description

Operational Online store is open 24/7/365
Returns/customer support
Technical New skill set for development, maintenance, and operation
Schedule Must be open for business by Q3
Legal Credit card fraud
Political Traditional distribution channel loses business

WebStore Project Walk-through ~ After meeting with the project team, Jim and
Jackie established an initial list of benefits and costs (see Table 5-10) as well as several
feasibility concerns (see Table 5-11). Next, Jim worked with several of PVF’s technical
specialists to develop an initial project schedule. Figure 5-16 shows the Gantt chart
for this 84-day schedule. Finally, Jim and Jackie presented their initial project plans in
a walk-through to PVF’s board of directors and senior management. All were excited

about the project plan, and approval was given to move the WebStore project into
the analysis phase.

1 [st e Requinsmans

Toala s DT Rec) | A TErs Ay

3 el ing b tivs Tesiiremats Arhgs
© < Lagiesd Dunign
F &roie Lo

-
i DusgnE Suee Hohes
« Implamuniation

FaKTT QAT

CHAPTER 5
SUMMARY

INITIATING AND PLANNING SYSTEMS DEVELOPMENT PROJECTS

139

The project initiation and planning (PIP) phase is a criti-
cal activity in the life of a project. Itis at this point that proj-
ects are accepted for development, rejected as infeasible,
or redirected. The objective of this process is to transform
a vague system request into a tangible system description
clearly outlining the objectives, feasibility issues, benefits,
costs, and time schedules for the project.

Project initiation includes forming the project initia-
tion team, establishing customer relationships, developing
a plan to get the project started, setting project manage-
ment procedures, and creating an overall project manage-
ment environment. A key activity in project planning is the
assessment of numerous feasibility issues associated with
the project. The types of feasibility that should be exam-
ined include economic, technical, operational, schedule,
legal and contractual, and political. These issues are influ-
enced by the project size, the type of system proposed, and
the collective experience of the development group and
potential customers of the system. High project costs and
risks are not necessarily bad; rather it is more important
that the organization understands the costs and risks asso-
ciated with a project and with the portfolio of active proj-
ects before proceeding.

KEY TERMS

After completing all analyses, a BPP can be created.
A BPP includes a high-level description of the proposed
system or system change, an outline of the various feasi-
bilities, and an overview of management issues specific to
the project. Before the development of an information sys-
tem can begin, the users, management, and development
group must review and agree on this specification. The
focus of this walk-through review is to assess the merits of
the project and to ensure that the project, if accepted for
development, conforms to organizational standards and
goals. An objective of this process is also to make sure that
all relevant parties understand and agree with the infor-
mation contained in the plan before subsequent develop-
ment activities begin.

Project initiation and planning is a challenging and
time-consuming activity that requires active involvement
from many organizational participants. The eventual suc-
cess of a development project, and the information systems
function in general, hinges on the effective use of disci-
plined, rational approaches such as the techniques outlined
in this chapter. In subsequent chapters, you will be exposed
to numerous other tools that will equip you to become an
effective designer and developer of information systems.

5.1 Baseline Project Plan (BPP) 5.9 One-time cost
5.2 Break-even analysis
5.3 Business case

5.4 Discount rate 5.12 Present value
5.5 Economic feasibility
5.6 Intangible benefit
5.7 Intangible cost

5.8 Legal and contractual feasibility

Match each of the key terms above with the definition that best
fits it.

The concept that money available today is worth more
than the same amount tomorrow.

The process of evaluating how key stakeholders within the
organization view the proposed system.

A document prepared for the customer that describes
what the project will deliver and outlines generally at a
high level all work required to complete the project.

The justification for an information system, presented in
terms of the tangible and intangible economic benefits
and costs, and the technical and organizational feasibility
of the proposed system.

A process of identifying the financial benefits and costs as-
sociated with a development project.

5.10 Operational feasibility
5.11 Political feasibility

5.13 Project Scope Statement (PSS)
5.14 Recurring cost

5.15 Schedule feasibility

5.16 Total cost of ownership (TCO)

5.17 Tangible benefit

5.18 Tangible cost

5.19 Technical feasibility

5.20 Time value of money (TVM)
5.21 Total cost of ownership (TCO)
5.22 Walk-through

The process of assessing the degree to which a proposed
system solves business problems or takes advantage of busi-
ness opportunities.

A cost resulting from the ongoing evolution and use of a
system.

The rate of return used to compute the present value of
future cash flows.

A benefit derived from the creation of an information system
that cannot be easily measured in dollars or with certainty.

The process of assessing the degree to which the potential
time frame and completion dates for all major activities
within a project meet organizational deadlines and con-
straints for affecting change.

A cost associated with an information system that can be
easily measured in dollars and with certainty.

140

PART II PLANNING

A peer group review of any product created during the sys-
tems development process.

A process of assessing the development organization’s abil-
ity to construct a proposed system.

A cost associated with project start-up and development or
system start-up.

The current value of a future cash flow.

A benefit derived from the creation of an information sys-
tem that can be measured in dollars and with certainty.

The process of assessing potential legal and contractual
ramifications due to the construction of a system.

REVIEW QUESTIONS

A cost associated with an information system that cannot
be easily measured in terms of dollars or with certainty.

This plan is the major outcome and deliverable from the
project initiation and planning phase and contains the
best estimate of the project’s scope, benefits, costs, risks,
and resource requirements.

A type of cost-benefit analysis to identify at what point (if
ever) benefits equal costs.
The cost of owning and operating a system, including the

total cost of acquisition, as well as all costs associated with
its ongoing use and maintenance.

5.23

5.24

5.25

5.26

5.27

Contrast the following terms:

a. Break-even analysis; present value; net present value; re-
turn on investment

b. Economic feasibility; legal and contractual feasibility;
operational feasibility; political feasibility; schedule
feasibility

c. Intangible benefit; tangible benefit

d. Intangible cost; tangible cost

List and describe the steps in the project initiation and
planning process.

What is contained in a BPP? Are the content and format of
all baseline plans the same? Why or why not?

Describe three commonly used methods for performing
economic cost-benefit analysis.

List and discuss the different types of project feasibility
factors. Is any factor most important? Why or why not?

PROBLEMS AND EXERCISES

5.28

5.29

5.30

5.31

5.32

5.33

What are the potential consequences of not assessing the
technical risks associated with an information systems de-
velopment project?

In what ways could you identify that one IS project is riskier
than another?

What are the types or categories of benefits of an IS
project?

What intangible benefits might an organization obtain
from the development of an information system?

Describe the concept of the time value of money. How

does the discount rate affect the value of $1 today versus
one year from today?

Describe the structured walk-through process. What roles
need to be performed during a walk-through?

5.34

5.35

5.36

5.37

Consider the purchase of a PC and laser printer for use
at your home and assess the risk for this project using the
project risk assessment factors in Table 5-7.

Consider your use of a PC at either home or work and list
tangible benefits from an information system. Based on
this list, does your use of a PC seem to be beneficial? Why
or why not? Now do the same using Table 5-3, the intan-
gible benefits from an information system. Does this analy-
sis support or contradict your previous analysis? Based on
both analyses, does your use of a PC seem to be beneficial?

Assume you are put in charge of launching a new website
for a local nonprofit organization. What costs would you
need to account for? Make a list of expected costs and
benefits for the project. You don’t need to list values, just
sources of expense. Consider both one-time and recurring
costs.

Consider the situation you addressed in Problem and Ex-
ercise 5-35. Create numeric cost estimates for each of the
costs you listed. Calculate the net present value and return
on investment. Include a break-even analysis. Assume a
10 percent discount rate and a five-year time horizon.

5.38

5.39

5.40

5.41

5.42

5.43

Consider the situation you addressed in Problem and
Exercise 5-35. Create a sample Project Scope Statement
following the structure shown in Figure 5-10.

Assuming monetary benefits of an information system at
$85,000 per year, one-time costs of $75,000, recurring costs
of $35,000 per year, a discount rate of 12 percent, and a
five-year time horizon, calculate the net present value of
these costs and benefits of an information system. Also
calculate the overall return on investment of the project
and then present a break-even analysis. At what point does
breakeven occur?

Use the outline for the BPP provided in Figure 5-9 to pres-
ent the system specifications for the information system
you chose for Problem and Exercise 5-35.

Change the discount rate for Problem and Exercise 5-35 to
10 percent and redo the analysis.

Change the recurring costs in Problem and Exercise 5-35
to $40,000 and redo the analysis.

Change the time horizon in Problem and Exercise 5-35 to
three years and redo the analysis.

CHAPTER 5

5.44 Assume monetary benefits of an information system of
$40,000 the first year and increasing benefits of $10,000 a
year for the next five years (year 1= $50,000, year 2= $60,000,
year 3 = $70,000, year 4 = $80,000, year 5 = $90,000). One-
time development costs were $80,000 and recurring costs
were $45,000 over the duration of the system’s life. The dis-
count rate for the company was 11 percent. Using a six-year
time horizon, calculate the net present value of these costs
and benefits. Also calculate the overall return on investment
and then present a break-even analysis. At what point does
breakeven occur?

5.45 Change the discount rate for Problem and Exercise 5-43 to
12 percent and redo the analysis.

5.46 Change the recurring costs in Problem and Exercise 5-43
to $40,000 and redo the analysis.

5.47 For the system you chose for Problem and Exercise 5-35,
complete section 1.0, A, Project Overview, of the BPP Re-
port. How important is it that this initial section of the BPP

FIELD EXERCISES

INITIATING AND PLANNING SYSTEMS DEVELOPMENT PROJECTS

141

Report is done well? What could go wrong if this section is
incomplete or incorrect?

5.48 For the system you chose for Problem and Exercise 5-35,
complete section 2.0, A, Alternatives, of the BPP Report.
Without conducting a full-blown feasibility analysis, what is
your gut feeling as to the feasibility of this system?

5.49 For the system you chose for Problem and Exercise 5-35,
complete section 3.0, A-F, Feasibility Analysis, of the BPP
Report. How does this feasibility analysis compare with
your gut feeling from the previous question? What might
go wrong if you rely on your gut feeling in determining
system feasibility?

5.50 For the system you chose for Problem and Exercise 5-35,
complete section 4.0, A—C, Management Issues, of the
BPP Report. Why might people sometimes feel that these
additional steps in the project plan are a waste of time?
What would you say to convince them that these steps are
important?

5.51 Describe several projects you are involved in or plan to
undertake, whether they are related to your education or
to your professional or personal life (e.g., purchasing a
new vehicle, learning a new language, renovating a home).
For each project, sketch out a BPP like that outlined in
Figure 5-9. Focus your efforts on item numbers 1.0 (Intro-
duction) and 2.0 (System Description).

5.52 For each project from the previous question, assess the fea-
sibility in terms of economic, operational, technical, sched-
uling, legal and contractual, as well as political aspects.

5.53 Network with a contact you have in some organization that
conducts projects (these might be information systems
projects, but they could be construction, product develop-
ment, research and development, or any type of project).
Interview a project manager and find out what type of BPP
is constructed. For a typical project, in what ways are base-
line plans modified during the life of a project? Why are
plans modified after the project begins? What does this tell
you about project planning?

REFERENCES

5.54 Through a contact you have in some organization that
uses packaged software, interview an IS manager respon-
sible for systems in an area that uses packaged application
software. What contractual limitations, if any, has the orga-
nization encountered with using the package? If possible,
review the license agreement for the software and make a
list of all the restrictions placed on a user of this software.

5.55 Choose an organization that you are familiar with and
determine what is done to initiate information systems
projects. Who is responsible for initiating projects? Is this
process formal or informal? Does this appear to be a top-
down or bottom-up process? How could this process be
improved?

5.56 Find an organization that does not use BPP for their IS
projects. Why doesn’t this organization use this method?
What are the advantages and disadvantages of not using
this method? What benefits could be gained from imple-
menting the use of BPP? What barriers are there to imple-
menting this method?

Applegate, L. M., R. D. Austin, and D. L. Soule. 2009. Corpo-
rate Information Strategy and Management, 8th ed. New York:
McGraw-Hill.

Brynjolfsson, E., and S. Yang. 1997. The Intangible Benefits and
Costs of Investments: FEvidence from Financial Markets. Proceed-
ings of the International Conference on Information Sys-
tems, pp. 147-66. Available at http://aisel.aisnet.org/cgi/
viewcontent.cgirarticle=1053&context=icis1997. Accessed
February 23, 2015.

Cresswell, A. M. 2004. Return on Investment in Information Tech-
nology: A Guide for Managers Center for Technology in Govern-
ment. University at Albany, SUNY. Available at http://www.
ctg.albany.edu/publications/guides/roi/roi.pdf. Accessed
February 23, 2015.

Hubbard, D. 2007. “The IT Measurement Inversion.” CIO.com,
June 13. Available at http://www.cio.com/article/2438748/
it-organization/the-it-measurement-inversion.html.
Accessed February 23, 2015.

Keen, J. 2003. “Intangible Benefits Can Play Key Role in Busi-
ness Case.” CIO.com, Available at http://www.cio.com/
article/2442083/it-organization/intangible-benefits-can-play-
key-role-in-business-case.html. Accessed February 23, 2015.

King, J. L., and E. Schrems. 1978. “Cost-Benefit Analysis in In-
formation Systems Development and Operation.” ACM
Computing Surveys 10(1): 19-34.

Kirsch, L. J. 2000. “Software Project Management: An Integrated
Perspective for an Emerging Paradigm.” In R. W. Zmud
(ed.), Framing the Domains of IT Management: Projecting the

http://aisel.aisnet.org/cgi/viewcontent.cgi?article=1053&context=icis1997
http://www.ctg.albany.edu/publications/guides/roi/roi.pdf
http://www.cio.com/article/2438748/it-organization/the-it-measurement-inversion.html
http://www.cio.com/article/2442083/it-organization/intangible-benefits-can-playkey-role-in-business-case.html
http://aisel.aisnet.org/cgi/viewcontent.cgi?article=1053&context=icis1997
http://www.ctg.albany.edu/publications/guides/roi/roi.pdf
http://www.cio.com/article/2438748/it-organization/the-it-measurement-inversion.html
http://www.cio.com/article/2442083/it-organization/intangible-benefits-can-playkey-role-in-business-case.html
http://www.cio.com/article/2442083/it-organization/intangible-benefits-can-playkey-role-in-business-case.html

142

Future from the Past, 285-304. Cincinnati, OH: Pinnaflex Ed-
ucational Resources.

Laplante, P. A. 2006. “Software Return on Investment (ROI).” In
P. A. Laplante and T. Costello (eds.), CIO Wisdom II, 163-76.
Upper Saddle River, NJ: Prentice Hall.

Lederer, A. L., and J. Prasad. 1992. “Nine Management Guide-
lines for Better Cost Estimating.” Communications of the ACM
35(2): 51-59.

Morris, R., and B. M. Sember. 2008. Project Management That
Works. AMACOM Division of American Management Asso-
ciation, New York City, NY.

Nash, K. S. 2008. “TCO Versus ROL.” CIO.com, April 9. Avail-
able at http://www.cio.com/article /2436828 /metrics/
tco-versus-roi.html. Accessed February 23, 2015.

Parker, M. M., and R. J. Benson. 1988. Information Economics.
Upper Saddle River, NJ: Prentice Hall.

PART II PLANNING

Pressman, R. S. 2014. Software Engineering, 8th ed. New York:
McGraw-Hill.

Sonje, R. 2008. “Improving Project Estimation Effectiveness.”
Available at http://www.projectperfect.com.au/white-
paper-improving-project-estimation-effectiveness.php.
Accessed February 23, 2015.

Tech Republic. 2005. “Project Risk Factors Checklist.” Version
2.0. Available at http://www.readbag.com/techrepublic-i-
tr-downloads-home-project-risk-factors-checklist. Accessed
February 23, 2015.

White, S., and S. Lui. 2005. “Distinguishing Costs of Coopera-
tion and Control in Alliances.” Strategic Management Journal
26(10): 913-32.

Yourdon, E. 1989. Structured Walkthroughs, 4th ed. Upper Saddle
River, NJ: Prentice Hall.

http://www.cio.com/article/2436828/metrics/tco-versus-roi.html
http://www.projectperfect.com.au/white-paper-improving-project-estimation-effectiveness.php
http://www.projectperfect.com.au/white-paper-improving-project-estimation-effectiveness.php
http://www.readbag.com/techrepublic-i-tr-downloads-home-project-risk-factors-checklist
http://www.readbag.com/techrepublic-i-tr-downloads-home-project-risk-factors-checklist
http://www.cio.com/article/2436828/metrics/tco-versus-roi.html

CHAPTER 6

PETRI PETRIE ELECTRONICS
ELECTRONI

Chapter 5: Initiating and Planning Systems
Development Projects

Now that the “No Customer Escapes” project team has
been formed and a plan has been developed for distrib-
uting project information, Jim can begin working on the
project’s scope statement, workbook, and Baseline Proj-
ect Plan. He first drafted the project’s scope statement
and posted it on the project’s intranet (see PE Figure 5-1).
Once posted on the intranet, he sent a short e-mail mes-
sage to all team members requesting feedback.

Minutes after posting the project charter, Jim’s office
phone rang.

“Jim, it’s Sally. I just looked over the scope statement
and have a few comments.”

“Great,” replied Jim, “It’s just a draft. What do you think?”

“Well, I think that we need to explain more about how
the system will work and why we think this new system
will more than pay for itself.”

“Those are good suggestions; I am sure many others will
also want to know that information. However, the scope
statement is a pretty high-level document and doesn’t get
into too much detail. Basically, its purpose is to just for-
mally announce the project, providing a very high-level
description as well as briefly listing the objectives, key as-
sumptions, and stakeholders. The other documents that
I am working on, the workbook and the Baseline Project
Plan, are intended to provide more details on specific
deliverables, costs, benefits, and so on. So, anyway, that
type of more detailed information will be coming next.”

“Oh, OK, that makes sense. I have never been on a proj-
ect like this, so this is all new to me,” said Sally.

“Don’t worry,” replied Jim, “Getting that kind of feed-
back from you and the rest of the team will be key for us
doing a thorough feasibility analysis. I am going to need
a lot of your help in identifying possible costs and ben-
efits of the system. When we develop the Baseline Proj-
ect Plan, we do a very thorough feasibility analysis—we
examine financial, technical, operational, schedule, legal
and contractual feasibility, as well as potential political is-
sues arising through the development of the system.”

“Wow, we have to do all that? Why can’t we just build the
system? I think we all know what we want,” replied Sally.

“That is another great question,” replied Jim. “I used to
think exactly the same way, but what I learned in my last
job was that there are great benefits to following a fairly
formal project management process with a new system.
By moving forward with care, we are much more likely to
have the right system, on time and on budget.”

“So,” asked Sally, “what is the next step?”

“Well, we need to do the feasibility analysis I just men-
tioned, which becomes part of the project’s Baseline Project
Plan. Once this is completed, we will have a walk-through
presentation to management to make sure they agree with

INITIATING AND PLANNING SYSTEMS DEVELOPMENT PROJECTS

143

and understand the scope, risks, and costs associated with
making ‘No Customer Escapes’ a reality,” said Jim.

“This is going to be a lot of work, but I am sure I am
going to learn a lot,” replied Sally.

“So, let me get to work on the feasibility analyses,” said
Jim. “I will be sending requests out to all the team mem-
bers to get their ideas. I should have this e-mail ready
within an hour or so.”

“Great, I'll look for it and respond as soon as I can,”
answered Sally.

“Thanks, the faster we get this background work done,
the sooner we will be able to move on to what the system
will do,” replied Jim.

“Sounds good, talk to you later. Bye,” Sally said.

“Bye, Sally, and thanks for your quick feedback,”
answered Jim.

Case Questions

5.57 Look over the scope statement (PE Figure 5-1). If
you were an employee at Petrie Electronics, would
you want to work on this project? Why or why not?

5.68 If you were part of the management team at Petrie
Electronics, would you approve the project out-
lined in the scope statement in PE Figure 5-1? What
changes, if any, need to be made to the document?

5.69 Identify a preliminary set of tangible and intangible
costs you think would occur for this project and the
system it describes. What intangible benefits do you
anticipate for the system?

5.60 What do you consider to be the risks of the proj-
ect as you currently understand it? Is this a low-,
medium-, or high-risk project? Justify your answer.
Assuming you were part of Jim’s team, would you
have any particular risks?

5.61 Ifyou were assigned to help Jim with this project, how
would you utilize the concept of incremental commit-
ment in the design of the Baseline Project Plan?

5.62 If you were assigned to Jim’s team for this project,
when in the project schedule (in what phase or af-
ter which activities are completed) do you think you
could develop an economic analysis of the proposed
system? What economic feasibility factors do you
think would be relevant?

5.63 If you were assigned to Jim’s team for this proj-
ect, what activities would you conduct in order to
prepare the details for the Baseline Project Plan?
Explain the purpose of each activity and show a
timeline or schedule for these activities.

5.64 In Case Question 5-59, you analyze the risks associ-
ated with this project. Once deployed, what are the
potential operational risks of the proposed system?
How do you factor operational risks into a systems
development plan?

144

PART II

PLANNING

Petrie Electronics

Scope Statement

Prepared: February 6, 2017

Project Name:
Project Manager:

No Customer Escapes
Jim Watanabe (jwatanabe@petries.com)

Customer:
Project Sponsor:

Project Start/End (projected):

Operations
Ella Whinston (ewhinston@petries.com)

2/5/17 -7/30/18

Project Overview:

This project will design and implement a customer relationship management system

in order to provide superior customer service by rewarding our most loyal customers.
Specifically, the system will track customer purchases, assign points for cumulative
purchases, and allow points to be redeemed for “rewards” at local stores. This goal of
this system is fo provide an incentive to customers to choose Petrie Electronics as their
first and only choice for making electronic purchases. The system will provide Petrie
management with improved information on the purchase behavior of our most loyal

customers.

Objectives:

e Track customer purchases

e Accumulate redeemable points
¢ Reward customer loyalty and provide incentives to remain loyal customers

e Provide improved management information

Key Assumptions:

e System development will be outsourced

o |nterface will be a web browser

e System will access existing customer sales databases

Stakeholders and Responsibilities:

Stakeholder Role Responsibility Signatures
Ella Whinston Chief Operating Officer | Project Vision, Executive Ells Whiuston
Sponsor
Bob Petroski Senior Operations Monitoring, Resources Bol Petnackc
Manager
Jim Watanabe Project Manager Plan, Monitor, Execute Sim Watanabe
Project
Sally Fukuyama Assistant Director, System Functionality Sally Fukuyama
Marketing
Sanjay Agarwal | Lead Analyst Technical Architect Sagjay Aparwed

PE FIGURE 5-1

A Scope Statement for Petrie’s Customer Relationship Management System

mailto:jwatanabe@petries.com
mailto:ewhinston@petries.com

PART THREE

Analysis

T
e

LA
L

};‘;-}-, :
1;1 ¥ =
- R{

L/

'4.'_{:!

W

Chapter 6 Chapter 8

Determining System Requirements Structuring System Data Requirements

Chapter 7

Structuring System Process Requirements

145

S

PART THREE

Analysis

Analysis is the first systems development life cycle (SDLC)
phase where you begin to understand, in depth, the need
for system changes. Systems analysis involves a substantial
amount of effort and cost, and is therefore undertaken
only after management has decided that the systems de-
velopment project under consideration has merit and
should be pursued through this phase. The analysis team
should not take the analysis process for granted or at-
tempt to speed through it. Most observers would agree
that many of the errors in developed systems are directly
traceable to inadequate efforts in the analysis and design
phases of the life cycle. Because analysis is a large and
involved process, we divide it into two main activities to
make the overall process easier to understand:

® Requirements determination. This is primarily a fact-
finding activity.

® Requirements structuring. This activity creates a thor-
ough and clear description of current business op-
erations and new information processing services.

The purpose of analysis is to determine what informa-
tion and information processing services are needed to
support selected objectives and functions of the organi-
zation. Gathering this information is called requirements
determination, the subject of Chapter 6. The fact-finding
techniques in Chapter 6 are used to learn about the cur-
rent system, the organization that the replacement sys-
tem will support, and user requirements or expectations
for the replacement system.

In Chapter 6, we also discuss a major source of new
systems, Business Process Reengineering (BPR). In con-
trast to the incremental improvements that drive many
systems development projects, BPR results in a radical
redesign of the processes that information systems are
designed to support. We show how BPR relates to infor-
mation systems analysis in Chapter 7, where we use data
flow diagrams to support the reengineering process. In
Chapter 6, you will also learn about new requirements de-
termination techniques sometimes used as part of Agile
Methodologies. These include the Planning Game (from
eXtreme Programming) and Usage-Centered Design.

Information about current operations and require-
ments for a replacement system must be organized for
analysis and design. Organizing, or structuring, sys-
tem requirements results in diagrams and descriptions

146

(models) that can be analyzed to show deficiencies, inef-
ficiencies, missing elements, and illogical components of
the current business operation and information systems.
Along with user requirements, they are used to deter-
mine the strategy for the replacement system.

The results of the requirements determination can
be structured according to three essential views of the
current and replacement information systems:

® Process. The sequence of data movement and han-
dling operations within the system.

® Logic and timing. The rules by which data are trans-
formed and manipulated and an indication of what
triggers data transformation.

¢ Data. The inherent structure of data independent of
how or when they are processed.

The process view of a system can be represented by data
flow diagrams, the primary subject of Chapter 7. The
chapter also includes a section on decision tables—one
of the ways to describe the logic and timing of what goes
on inside the process boxes in data flow diagrams. Chap-
ter 7 ends with four appendices. The first three are each
dedicated to one of three techniques from the object-ori-
ented view of development. The first appendix introduc-
es you to use case modeling, an object-oriented method
used to map a system’s functionality. The second appen-
dix introduces you to activity diagrams, while the third
features sequence diagrams. These object-oriented mod-
els focus on system logic and timing. The fourth appen-
dix covers business process modeling, which is not part
of the object-oriented approach. Finally, the data view of
a system, discussed in Chapter 8, shows the rules that gov-
ern the structure and integrity of data and concentrates
on what data about business entities and relationships
among these entities must be accessed within the system.
Chapter 8 features entity relationship techniques in the
body of the chapter and class diagramming techniques
for modeling data in a special object-oriented section at
the end of the chapter. Petrie’s case installments follow
Chapters 7 and 8 to illustrate the processes, logic, and
data models that describe a new system. The cases also il-
lustrate how diagrams and models for each of these three
views of a system relate to one another to form a consist-
ent and thorough structured description of a proposed
system.

Chapter

6

Learning Objectives

After studying this chapter, you should be able to

6.1 describe options for designing and conducting
interviews and develop a plan for conducting an
interview to determine system requirements,

6.2 explain the advantages and pitfalls of observing
workers and analyzing business documents to
determine system requirements,

6.3 explain how computing can provide support for
requirements determination,

7 Determining System
Requirements

= y L —

6.4 participate in and help plan a Joint Application
Design session,

6.5 use prototyping during requirements
determination,

6.6 describe contemporary approaches to
requirements determination, and

6.7 understand how requirements determination
techniques apply to the development of electronic
commerce applications.

Introduction

Systems analysis is the part of the systems development
life cycle in which you determine how the current infor-
mation system functions and assess what users would like
to see in a new system. Analysis has two subphases: re-
quirements determination and requirements structuring.
In this chapter, you will learn about determining system
requirements. Techniques used in requirements determi-
nation have evolved over time to become more structured
and increasingly rely on computer support. We will first
study the more traditional requirements determination
methods, including interviewing, observing users in their
work environment, and collecting procedures and other
written documents. We will then discuss more current
methods for collecting system requirements. The first of
these methods is Joint Application Design (JAD). Next,
you will read about how analysts rely more and more on
information systems to help them perform analysis. As
you will see, CASE tools, discussed in Chapter 1, are use-
ful in requirements determination, and prototyping has
become a key tool for some requirements determination
efforts. Finally, you will learn how requirements analysis
continues to be an important part of systems analysis and
design, whether the approach involves business process
redesign, new Agile techniques (such as constant user

involvement or usage-centered design), or focuses on de-
veloping Internet applications.

PERFORMING REQUIREMENTS
DETERMINATION

As stated earlier and shown in Figure 6-1, there are two
subphases to systems analysis: requirements determina-
tion and requirements structuring. We will address these
as separate steps, but you should consider the steps as par-
allel and iterative. For example, as you determine some
aspects of the current and desired system(s), you begin to
structure these requirements or build prototypes to show
users how a system might behave. Inconsistencies and
deficiencies discovered through structuring and proto-
typing lead you to explore further the operation of cur-
rent system(s) and the future needs of the organization.
Eventually, your ideas and discoveries converge in a thor-
ough and accurate depiction of current operations and
requirements for the new system. As you think about be-
ginning the analysis phase, you are probably wondering
what exactly is involved in requirements determination.
We discuss this process in the next section.

147

148

PART III

ANALYSIS

Maintenance

Planning

Requirements Determination
Requirements Structuring

Analysis

Implementation < Design

FIGURE 6-1

Systems development life cycle with analysis phase highlighted.

The Process of Determining Requirements

Once management has granted permission to pursue development of a new system
(this was done at the end of the project identification and selection phase of the
SDLC) and a project is initiated and planned (see Chapter 5), you begin determining
what the new system should do. During requirements determination, you and other
analysts gather information on what the system should do from as many sources as
possible: from users of the current system; from observing users; and from reports,
forms, and procedures. All of the system requirements are carefully documented and
prepared for structuring, the subject of Chapters 7 and 8.

In many ways, gathering system requirements is like conducting any investiga-
tion. Have you read any of the Sherlock Holmes or similar mystery stories? Do you
enjoy solving puzzles? From these experiences, we can detect some similar character-
istics for a good systems analyst during the requirements determination subphase.
These characteristics include the following:

o Impertinence. You should question everything. You need to ask questions such
as: Are all transactions processed the same way? Could anyone be charged
something other than the standard price? Might we someday want to allow and
encourage employees to work for more than one department?

e Impartiality. Your role is to find the best solution to a business problem or
opportunity. It is not, for example, to find a way to justify the purchase of new
hardware or to insist on incorporating what users think they want into the new
system requirements. You must consider issues raised by all parties and try to
find the best organizational solution.

® Relax constraints. Assume that anything is possible and eliminate the infeasible.
For example, do not accept this statement: “We’ve always done it that way,
so we have to continue the practice.” Traditions are different from rules and
policies. Traditions probably started for a good reason but, as the organization
and its environment change, they may turn into habits rather than sensible
procedures.

® Attention lo details. Every fact must fit with every other fact. One element out of
place means that even the best system will fail at some time. For example, an
imprecise definition of who a customer is may mean that you purge customer
data when a customer has no active orders, yet these past customers may be vital
contacts for future sales.

CHAPTER 6 DETERMINING SYSTEM REQUIREMENTS

® Reframing. Analysis is, in part, a creative process. You must challenge yourself
to look at the organization in new ways. You must consider how each user views
his or her requirements. You must be careful not to jump to the following
conclusion: “I worked on a system like that once—this new system must work
the same way as the one I built before.”

Deliverables and Outcomes

The primary deliverables from requirements determination are the various forms of
information gathered during the determination process: transcripts of interviews;
notes from observation and analysis of documents; sets of forms, reports, job descrip-
tions, and other documents; and computer-generated output such as system proto-
types. In short, anything that the analysis team collects as part of determining system
requirements is included in the deliverables resulting from this subphase of the sys-
tems development life cycle. Table 6-1 lists examples of some specific information
that might be gathered during requirements determination.

These deliverables contain the information you need for systems analysis within
the scope of the system you are developing. In addition, you need to understand the
following components of an organization:

¢ The business objectives that drive what and how work is done

® The information people need to do their jobs

The data (definition, volume, size, etc.) handled within the organization to
support the jobs

When, how, and by whom or what the data are moved, transformed, and stored
The sequence and other dependencies among different data-handling activities
The rules governing how data are handled and processed

Policies and guidelines that describe the nature of the business and the market
and environment in which it operates

* Key events affecting data values and when these events occur

As should be obvious, such a large amount of information must be organized in order
to be useful. This is the purpose of the next subphase—requirements structuring.

From just this subphase of analysis, you have probably already realized that
the amount of information to be gathered could be huge, especially if the scope
of the system under development is broad. The time required to collect and struc-
ture a great deal of information can be extensive and, because it involves so much
human effort, quite expensive. Too much analysis is not productive, and the term
analysis paralysis has been coined to describe a systems development project that has
become bogged down in an abundance of analysis work. Because of the dangers of
excessive analysis, today’s systems analysts focus more on the system to be developed
than on the current system. The techniques you will learn about later in this chapter,
JAD and prototyping, were developed to keep the analysis effort at a minimum yet
still keep it effective. Newer techniques have also been developed to keep require-
ments determination fast and flexible, including continual user involvement, usage-
centered design, and the Planning Game from eXtreme Programming. Traditional
fact-gathering techniques are the subject of the next section.

TABLE 6-1 Deliverables for Requirements Determination

1. Information collected from conversations with or observations of users: interview transcripts,
notes from observation, meeting minutes

2. Existing written information: business mission and strategy statements, sample business forms
and reports and computer displays, procedure manuals, job descriptions, training manuals,
flowcharts and documentation of existing systems, consultant reports

3. Computer-based information: results from JAD sessions, CASE repository contents and reports
of existing systems, and displays and reports from system prototypes

149

150 PARTIII ANALYSIS

TABLE 6-3 Guidelines for Effective
Interviewing

Plan the Interview
® Prepare inferviewee: appoint-
ment, priming questions

e Prepare checklist, agenda, and
questions

Listen carefully and take notes
(record if permitted)

Review notes within 48 hours of
interview

Be neutral
Seek diverse views

TABLE 6-2 Traditional Methods of Collecting System Requirements

e Individually interview people informed about the operation and issues of the current system
and future systems needs

* Interview groups of people with diverse needs to find synergies and contrasts among system
requirements

® Observe workers at selected times to see how data are handled and what information people
need fo do their jobs

e Study business documents fo discover reported issues, policies, rules, and directions as well
as concrete examples of the use of data and information in the organization

TRADITIONAL METHODS FOR DETERMINING
REQUIREMENTS

At the core of systems analysis is the collection of information. At the outset, you
must collect information about the information systems that are currently being used
and how users would like to improve the current systems and organizational opera-
tions with new or replacement information systems. One of the best ways to get this
information is to talk to the people who are directly or indirectly involved in the
different parts of the organizations affected by the possible system changes: users,
managers, funders, and so on. Another way to find out about the current system
is to gather copies of documentation relevant to current systems and business pro-
cesses. In this chapter, you will learn about various ways to get information directly
from stakeholders: interviews, group interviews, the Nominal Group Technique, and
direct observation. You will learn about collecting documentation on the current sys-
tem and organizational operation in the form of written procedures, forms, reports,
and other hard copy. These traditional methods of collecting system requirements
are listed in Table 6-2.

Interviewing and Listening

Interviewing is one of the primary ways analysts gather information about an infor-
mation systems project. Early in a project, an analyst may spend a large amount of
time interviewing people about their work, the information they use to do it, and the
types of information processing that might supplement their work. Other stakehold-
ers are interviewed to understand organizational direction, policies, expectations
managers have on the units they supervise, and other nonroutine aspects of organi-
zational operations. During interviewing you will gather facts, opinions, and specula-
tion and observe body language, emotions, and other signs of what people want and
how they assess current systems.

There are many ways to effectively interview someone, and no one method is
necessarily better than another. Some guidelines you should keep in mind when you
interview, summarized in Table 6-3, are discussed next.

First, you should prepare thoroughly before the interview. Set up an appoint-
ment at a time and for a duration convenient for the interviewee. The general nature
of the interview should be explained to the interviewee in advance. You may ask the
interviewee to think about specific questions or issues or to review certain documen-
tation to prepare for the interview. You should spend some time thinking about what
you need to find out and write down your questions. Do not assume that you can
anticipate all possible questions. You want the interview to be natural, and, to some
degree, you want to spontaneously direct the interview as you discover what expertise
the interviewee brings to the session.

You should prepare an interview guide or checklist so that you know in which
sequence you intend to ask your questions and how much time you want to spend
in each area of the interview. The checklist might include some probing questions

CHAPTER 6 DETERMINING SYSTEM REQUIREMENTS 151

to ask as follow-up if you receive certain anticipated responses. You can, to some de-
gree, integrate your interview guide with the notes you take during the interview, as
depicted in a sample guide in Figure 6-2. This same guide can serve as an outline for
a summary of what you discover during an interview.

The first page of the sample interview guide contains a general outline of the
interview. Besides basic information on who is being interviewed and when, you list
major objectives for the interview. These objectives typically cover the most impor-
tant data you need to collect, a list of issues on which you need to seek agreement
(e.g., content for certain system reports), and which areas you need to explore, not
necessarily with specific questions. You also include reminder notes to yourself on
key information about the interviewee (e.g., job history, known positions taken on is-
sues, and role with current system). This information helps you to be personal, shows
that you consider the interviewee to be important, and may assist you in interpreting
some answers. Also included is an agenda for the interview with approximate time
limits for different sections of the interview. You may not follow the time limits pre-
cisely, but the schedule helps you cover all areas during the time the interviewee is
available. Space is also allotted for general observations that do not fit under specific
questions and for notes taken during the interview about topics skipped or issues
raised that could not be resolved.

On subsequent pages you list specific questions; the sample form in Figure 6-2
includes space for taking notes on these questions. Because unanticipated informa-
tion arises, you will not strictly follow the guide in sequence. You can, however, check
off the questions you have asked and write reminders to yourself to return to or skip
certain questions as the dynamics of the interview unfold.

Choosing Interview Questions You need to decide what mix and sequence of open-
ended and closed-ended questions you will use. Open-ended questions are usually
used to probe for information for which you cannot anticipate all possible responses
or for which you do not know the precise question to ask. The person being inter-
viewed is encouraged to talk about whatever interests him or her within the general
bounds of the question. An example is, “What would you say is the best thing about
the information system you currently use to do your job?” or “List the three most
frequently used menu options.” You must react quickly to answers and determine
whether or not any follow-up questions are needed for clarification or elaboration.
Sometimes body language will suggest that a user has given an incomplete answer or
is reluctant to divulge some information; a follow-up question might yield additional
insight. One advantage of open-ended questions is that previously unknown informa-
tion can surface. You can then continue exploring along unexpected lines of inquiry
to reveal even more new information. Open-ended questions also often put the inter-
viewees at ease because they are able to respond in their own words using their own
structure; open-ended questions give interviewees more of a sense of involvement
and control in the interview. A major disadvantage of open-ended questions is the
length of time it can take for the questions to be answered. In addition, open-ended
questions can be difficult to summarize.

Closed-ended questions provide a range of answers from which the interviewee
may choose. Here is an example:

Which of the following would you say is the one best thing about the information system
you currently use to do your job (pick only one)?

a. Having easy access to all of the data you need
b. The system’s response time
c. The ability to access the system from remote locations

Closed-ended questions work well when the major answers to questions are well
known. Another plus is that interviews based on closed-ended questions do not nec-
essarily require a large time commitment—more topics can be covered. You can see
body language and hear voice tone, which can aid in interpreting the interviewee’s

Open-ended questions
Questions in interviews that have no
prespecified answers.

Closed-ended questions
Questions in interviews that ask those
responding fo choose from among a sef of
specified responses.

152 PART I

FIGURE 6-2
Typical interview guide

ANALYSIS

Interview Outline

Interviewee:
Name of person being interviewed

Interviewer:
Name of person leading interview

Location/Medium:

Appointment Date:

Office, conference room, Start Time:
or phone number End Time:
Objectives: Reminders:

What data to collect
On what to gain agreement
What areas to explore

Background/experience of interviewee
Known opinions of interviewee

Agenda:

Introduction

Background on Project

Overview of Interview
Topics to Be Covered
Permission to Record

Topic 1 Questions

Topic 2 Questions

Summary of Major Points
Questions from Interviewee
Closing

Approximate Time:
1 minute
2 minutes

1 minute

5 minutes
7 minutes

2 minutes
5 minutes
1 minute

General Observations:

Interviewee seemed busy probably need to call in a few days for follow-up questions because he gave

only short answers. PC was turned off —probably not a regular PC user.

Unresolved Issues, Topics Not Covered:

He needs to look up sales ﬁgumj from 1999. He raised the issue of how to handle returned 5000(1’,

but we did not have time to discuss.

Interviewee: Date:
Questions: Notes:
When to ask question, if conditional Answer

Question: 1
Have you used the current sales
tmckivwg j&,ﬁ:em? If s0, how often ?

If yes, go to Question 2

Yes, | ask for a report on my
product line weekly.

Observations
Seemed anxious —may be

overestimating usage frequency.

Question: 2
What do you like least about the
Sy stem?

Answer
Sales are shown in units, not
dollars.

Observations
System can show sales in dollars,
but user does not kinow this.

CHAPTER 6 DETERMINING SYSTEM REQUIREMENTS

responses. Closed-ended questions can also be an easy way to begin an interview
and to determine which line of open-ended questions to pursue. You can include
an “other” option to encourage the interviewee to add unanticipated responses. A
major disadvantage of closed-ended questions is that useful information that does
not quite fit into the defined answers may be overlooked as the respondent tries to
make a choice instead of providing his or her best answer.

Closed-ended questions, like objective questions on an examination, can follow
several forms, including the following choices:

¢ True or false.

¢ Multiple choice (with only one response or selecting all relevant choices).

e Rating a response or idea on a scale, say from bad to good or strongly agree to
strongly disagree. Each point on the scale should have a clear and consistent
meaning to each person, and there is usually a neutral point in the middle of
the scale.

¢ Ranking items in order of importance.

Interview Guidelines First, with either open- or closed-ended questions, do not
phrase a question in a way that implies a right or wrong answer. The respondent must
feel that he or she can state his or her true opinion and perspective and that his or
her idea will be considered equally with those of others. Questions such as “Should
the system continue to provide the ability to override the default value, even though
most users now do not like the feature?” should be avoided because such wording
predefines a socially acceptable answer.

The second guideline to remember about interviews is to listen very carefully to
what is being said. Take careful notes or, if possible, record the interview (be sure to
ask permission first!). The answers may contain extremely important information for
the project. Also, this may be the only chance you have to get information from this
particular person. If you run out of time and still need to get information from the
person you are talking to, ask to schedule a follow-up interview.

Third, once the interview is over, go back to your office and type up your notes
within 48 hours. If you recorded the interview, use the recording to verify the material
in your notes. After 48 hours, your memory of the interview will fade quickly. As you
type and organize your notes, write down any additional questions that might arise
from lapses in your notes or from ambiguous information. Separate facts from your
opinions and interpretations. Make a list of unclear points that need clarification. Call
the person you interviewed and get answers to these new questions. Use the phone
call as an opportunity to verify the accuracy of your notes. You may also want to send a
written copy of your notes to the person you interviewed so the person can check your
notes for accuracy. Finally, make sure you thank the person for his or her time. You may
need to talk to your respondent again. If the interviewee will be a user of your system or
is involved in another way in the system’s success, you want to leave a good impression.

Fourth, be careful during the interview not to set expectations about the new
or replacement system unless you are sure these features will be part of the delivered
system. Let the interviewee know that there are many steps to the project and the
perspectives of many people need to be considered, along with what is technically
possible. Let respondents know that their ideas will be carefully considered, but that
due to the iterative nature of the systems development process, it is premature to say
now exactly what the ultimate system will or will not do.

Fifth, seek a variety of perspectives from the interviews. Find out what potential
users of the system, users of other systems that might be affected by changes, manag-
ers and superiors, information systems staff who have experience with the current
system, and others think the current problems and opportunities are and what new
information services might better serve the organization. You want to understand
all possible perspectives so that in a later approval step you will have information on
which to base a recommendation or design decision that all stakeholders can accept.

153

154 PART III ANALYSIS

Nominal Group Technique
(NGT)

A facilitated process that supports idea
generafion by groups. At the beginning of
the process, group members work alone to
generafe ideas. The ideas are then pooled
under the guidance of a trained facilitator.

Interviewing Groups

One drawback to using interviews to collect systems requirements is the need for the
analyst to reconcile apparent contradictions in the information collected. A series
of interviews may turn up inconsistent information about the current system or its
replacement. You must work through all of these inconsistencies to figure out what
might be the most accurate representation of current and future systems. Such a
process requires several follow-up phone calls and additional interviews. Catching
important people in their offices is often difficult and frustrating, and scheduling
new interviews may become very time consuming. In addition, new interviews may
reveal new questions that in turn require additional interviews with those interviewed
earlier. Clearly, gathering information about an information system through a series
of individual interviews and follow-up calls is not an efficient process.

Another option available to you is the group interview. In a group interview,
several key people are interviewed at once. To make sure all of the important infor-
mation is collected, you may conduct the interview with one or more analysts. In
the case of multiple interviewers, one analyst may ask questions while another takes
notes, or different analysts might concentrate on different kinds of information. For
example, one analyst may listen for data requirements while another notes the timing
and triggering of key events. The number of interviewees involved in the process may
range from two to however many you believe can be comfortably accommodated.

A group interview has a few advantages. One, it is a much more effective use of
your time than a series of interviews with individuals (although the time commitment
of the interviewees may be more of a concern). Two, interviewing several people
together allows them to hear the opinions of other key people and gives them the
opportunity to agree or disagree with their peers. Synergies also often occur. For
example, the comments of one person might cause another person to say, “That
reminds me of” or “I didn’t know that was a problem.” You can benefit from such
a discussion as it helps you identify issues on which there is general agreement and
areas where views diverge widely.

The primary disadvantage of a group interview is the difficulty in scheduling
it. The more people who are involved, the more difficult it will be finding a conve-
nient time and place for everyone. Modern videoconferencing technology can mini-
mize the geographical dispersion factors that make scheduling meetings so difficult.
Group interviews are at the core of the JAD process, which we discuss in a later sec-
tion in this chapter. A specific technique for working with groups, Nominal Group
Technique, is discussed next.

Nominal Group Technique Many different techniques have been developed over
the years to improve the process of working with groups. One of the more popular
techniques for generating ideas among group members is called Nominal Group
Technique (NGT). NGT is exactly what the name indicates—the individuals working
together to solve a problem are a group in name only, or nominally. Group members
may be gathered in the same room for NGT, but they all work alone for a period of
time. Typically, group members make a written list of their ideas. At the end of the
idea-generation time, group members pool their individual ideas under the guid-
ance of a trained facilitator. Pooling usually involves having the facilitator ask each
person in turn for an idea that has not been presented before. As the person reads
the idea aloud, someone else writes down the idea on a blackboard or flip chart.
After all of the ideas have been introduced, the facilitator will then ask for the group
to openly discuss each idea, primarily for clarification.

Once all of the ideas are understood by all of the participants, the facilitator
will try to reduce the number of ideas the group will carry forward for additional
consideration. There are many ways to reduce the number of ideas. The facilitator
may ask participants to choose only a subset of ideas that they believe are important.
Then the facilitator will go around the room, asking each person to read aloud an

CHAPTER 6 DETERMINING SYSTEM REQUIREMENTS

idea that is important to him or her that has not yet been identified by someone else.
Or the facilitator may work with the group to identify and either eliminate or com-
bine ideas that are very similar to others. At some point, the facilitator and the group
end up with a tractable set of ideas, which can be further prioritized.

In a requirements determination context, the ideas being sought in an NGT
exercise would typically apply to problems with the existing system or ideas for new
features in the system being developed. The end result would be a list of either prob-
lems or features that group members themselves had generated and prioritized.
There should be a high level of ownership of such a list, at least for the group that
took part in the NGT exercise.

There is some evidence to support the use of NGT to help focus and refine the
work of a group in that the number and quality of ideas that result from an NGT may
be higher than what would normally be obtained from an unfacilitated group meet-
ing. An NGT exercise could be used to complement the work done in a typical group
interview or as part of a Joint Application Design effort, described in more detail
later in this chapter.

Directly Observing Users

All the methods of collecting information that we have been discussing up until now
involve getting people to recall and convey information they have about an organi-
zational area and the information systems that support these processes. People, how-
ever, are not always very reliable informants, even when they try to be reliable and
tell what they think is the truth. As odd as it may sound, people often do not have a
completely accurate appreciation of what they do or how they do it. This is especially
true concerning infrequent events, issues from the past, or issues for which people
have considerable passion. Because people cannot always be trusted to reliably inter-
pret and report their own actions, you can supplement and corroborate what people
tell you by watching what they do or by obtaining relatively objective measures of
how people behave in work situations. (See the box “Lost Soft Drink Sales” for an
example of the importance of systems analysts learning firsthand about the business
for which they are designing systems.)

For example, one possible view of how a hypothetical manager does her job
is that a manager carefully plans her activities, works for long periods of time and
consistently on solving problems, and controls the pace of her work. A manager
might tell you that is how she spends her day. When Mintzberg (1973) observed how
managers work, however, he found that a manager’s day is actually punctuated by
many, many interruptions. Managers work in a fragmented manner, focusing on a
problem or on a communication for only a short time before they are interrupted
by phone calls or visits from their subordinates and other managers. An information
system designed to fit the work environment described by our hypothetical manager
would not effectively support the actual work environment in which that manager
finds herself.

As another example, consider the difference between what another employee
might tell you about how much he uses e-mail and how much e-mail use you might
discover through more objective means. An employee might tell you he is swamped
with e-mail messages and that he spends a significant proportion of his time respond-
ing to e-mail. However, if you were able to check electronic mail records, you might
find that this employee receives only 3 e-mail messages per day on average, and that
the most messages he has ever received during one eight-hour period is 10. In this
case, you were able to obtain an accurate behavioral measure of how much e-mail
this employee copes with without having to watch him read his e-mail.

The intent behind obtaining system records and direct observation is the same,
however, and that is to obtain more firsthand and objective measures of employee
interaction with information systems. In some cases, behavioral measures will be
a more accurate reflection of reality than what employees believe. In other cases,

155

156 PART III ANALYSIS

Lost Soft Drink Sales

A systems analyst was quite surprised to read that sales of all
soft-drink products were lower, instead of higher, after a new
delivery truck routing system was installed. The software was
designed to reduce stock-outs at customer sites by allowing
drivers to visit each customer more offen using more efficient
delivery routes.

Confused by the results, management asked the analyst to
delay a scheduled vacation, but he insisted that he could look
afresh at the system only after a few overdue days of rest and
relaxation.

Instead of taking a vacation, however, the analyst called
a delivery dispatcher he interviewed during the design of the
system and asked to be given a route for a few days. The
analyst drove a route (for a regular driver who was actually on
vacation), following the schedule developed from the new sys-
tem. What the analyst discovered was that the route was very
efficient, as expected; so at first the analyst could not see any
reason for lost sales.

During the third and last day of his “vacation,” the analyst
stayed overtime at one store to ask the manager if she had

any ideas why sales might have dropped off in recent weeks.
The manager had no explanation but did make a seemingly
unrelated observation that the regular route driver appeared
to have less time to spend in the store. He did not seem to take
as much inferest in where the products were displayed and did
not ask for promotional signs to be displayed, as he had often
done in the past.

From this conversation, the analyst concluded that the new
delivery truck routing system was, in one sense, too good.

It placed the driver on such a tight schedule that he had no
time left for the “schmoozing” required to get special treaf-
ment, which gave the company’s products an edge over the
competition.

Without firsthand observation of the system in action
gained by participating as a system user, the analyst might
never have discovered the true problem with the system
design. Once time was allotted for not only stocking new
products but also for necessary marketing work, product sales
returned to and exceeded levels achieved before the new sys-
tem had been introduced.

the behavioral information will substantiate what employees have told you directly.
Although observation and obtaining objective measures are desirable ways to collect
pertinent information, such methods are not always possible in real organizational
settings. Thus, these methods are not totally unbiased, just as no other one data-
gathering method is unbiased.

For example, observation can cause people to change their normal operating
behavior. Employees who know they are being observed may be nervous and make
more mistakes than normal, may be careful to follow exact procedures they do not
typically follow, and may work faster or slower than normal. Moreover, because ob-
servation typically cannot be continuous, you receive only a snapshot image of the
person or task you observe, which may not include important events or activities.
Because observation is very time consuming, you will not only observe for a limited
time, but also a limited number of people and a limited number of sites. Again, obser-
vation yields only a small segment of data from a possibly vast variety of data sources.
Exactly which people or sites to observe is a difficult selection problem. You want
to pick both typical and atypical people and sites, and observe during normal and
abnormal conditions and times to receive the richest possible data from observation.

Analyzing Procedures and Other Documents

As noted earlier, asking questions of the people who use a system every day or who
have an interest in a system is an effective way to gather information about current
and future systems. Observing current system users is a more direct way of seeing how
an existing system operates, but even this method provides limited exposure to all as-
pects of current operations. These methods of determining system requirements can
be enhanced by examining system and organizational documentation to discover
more details about current systems and the organization these systems support.
Although we discuss here several important types of documents that are useful in
understanding possible future system requirements, our discussion does not exhaust
all possibilities. You should attempt to find all written documents about the organiza-
tional areas relevant to the systems under redesign. Besides the few specific documents

CHAPTER 6 DETERMINING SYSTEM REQUIREMENTS 157

we discuss, organizational mission statements, business plans, organization charts,
business policy manuals, job descriptions, internal and external correspondence, and
reports from prior organizational studies can all provide valuable insight.

What can the analysis of documents tell you about the requirements for a new
system? In documents you can find information about the following:

® Problems with existing systems (e.g., missing information or redundant steps)

* Opportunities to meet new needs if only certain information or information
processing were available (e.g., analysis of sales based on customer type)

¢ Organizational direction that can influence information system requirements
(e.g., trying to link customers and suppliers more closely to the organization)

¢ Titles and names of key individuals who have an interest in relevant existing
systems (e.g., the name of a sales manager who led a study of the buying
behavior of key customers)

¢ Values of the organization or individuals who can help determine priorities for
different capabilities desired by different users (e.g., maintaining market share
even if it means lower short-term profits)

¢ Special information processing circumstances that occur irregularly that may
not be identified by any other requirements determination technique (e.g.,
special handling needed for a few large-volume customers that requires use of
customized customer ordering procedures)

e The reason why current systems are designed as they are, which can suggest
features left out of current software, which may now be feasible and more
desirable (e.g., data about a customer’s purchase of competitors’ products were
not available when the current system was designed; these data are now available
from several sources)

® Data, rules for processing data, and principles by which the organization
operates that must be enforced by the information system (e.g., each customer
is assigned exactly one sales department staff member as a primary contact if the
customer has any questions)

One type of useful document is a written work procedure for an individual or
a work group. The procedure describes how a particular job or task is performed,
including data and information that are used and created in the process of perform-
ing the job. For example, the procedure shown in Figure 6-3 includes the data (list
of features and advantages, drawings, inventor name, and witness names) that are
required to prepare an invention disclosure. It also indicates that besides the inven-
tor, the vice president for research, the department head, and the dean must review
the material, and that a witness is required for any filing of an invention disclosure.
These insights clearly affect what data must be kept, to whom information must be
sent, and the rules that govern valid forms.

Procedures are not trouble-free sources of information, however. Sometimes
your analysis of several written procedures will reveal a duplication of effort in two
or more jobs. You should call such duplication to the attention of management as an
issue to be resolved before system design can proceed. That is, it may be necessary to
redesign the organization before the redesign of an information system can achieve
its full benefits. Another problem you may encounter with a procedure occurs when
the procedure is missing. Again, it is not your job to create a document for a missing
procedure—that is up to management. A third and common problem with a written
procedure happens when the procedure is out of date. You may realize the procedure
is out of date when you interview the person responsible for performing the task de-
scribed in the procedure. Once again, the decision to rewrite the procedure so that it
matches reality is made by management, but you may make suggestions based upon
your understanding of the organization. A fourth problem often encountered with
written procedures is that the formal procedures may contradict information you col-
lected from interviews and observation about how the organization operates and what
information is required. As in the other cases, resolution rests with management.

158 PARTIII ANALYSIS

FIGURE 6-3
Example of a procedure

GUIDE FOR PREPARATION OF INVENTION DISCLOSURE
(See FACULTY and STAFF MANUALS for Detailed
Patent Policy and Routing Procedures.)

(1) DISCLOSE ONLY ONE INVENTION PER FORM.
(2) PREPARE COMPLETE DISCLOSURE.

The disclosure of your invention is adequate for patent purposes ONLY if it enables a
person skilled in the art to understand the invention.

(8) CONSIDER THE FOLLOWING IN PREPARING A COMPLETE DISCLOSURE:

(@) All essential elements of the invention, their relationship to one another, and their
mode of operation.

(b) Equivalents that can be substituted for any elements.

(c) List of features believed to be new

(d) Advantages this invention has over the prior art.

(e) Whether the invention has been built and/or tested.
(4) PROVIDE APPROPRIATE ADDITIONAL MATERIAL.

Drawings and descriptive material should be provided as needed to clarify the dis-
closure. Each page of this material must be signed and dated by each inventor and
properly witnessed. A copy of any current and/or planned publication relating to the
invention should be included.

(5) INDICATE PRIOR KNOWLEDGE AND INFORMATION.

Pertinent publications, patents or previous devices, and related research or engineer-
ing activities should be identified.

(6) HAVE DISCLOSURE WITNESSED.

Persons other than coinventors should serve as withesses and should sign each
sheet of the disclosure only after reading and understanding the disclosure.

(7) FORWARD ORIGINAL PLUS ONE COPY (two copies if supported by grant/contract)
TO VICE PRESIDENT FOR RESEARCH VIA DEPARTMENT HEAD AND DEAN.

Formal system
The official way a system works as
described in organizational documentation.

Informal system
The way a system actually works.

All of these problems illustrate the difference between formal systems and
informal systems. Formal systems are recognized in the official documentation of
the organization; informal systems are the way in which the organization actually
works. Informal systems develop because of inadequacies of formal procedures, in-
dividual work habits and preferences, resistance to control, and other factors. It is
important to understand both formal and informal systems because each provides
insight into information requirements and what will be required to convert from
present to future information services.

A second type of document useful to systems analysts is a business form (see
Figure 6-4). Forms are used for all types of business functions, from recording an order
acknowledging the payment of a bill to indicating what goods have been shipped.
Forms are important for understanding a system because they explicitly indicate what

CHAPTER 6 DETERMINING SYSTEM REQUIREMENTS 159

FIGURE 6-4
An invoice form from Microsoft Excel
(Source: Microsoft Corporation.)
Your Company Name DATE: March 13, 2017
Your Company Slogan INVOICE # 100
FOR: Project or Service Description
Street Address
City, ST ZIP Code BILL TO: Name
Phone: Company Name
Fax: Street Address
’ City, ST ZIP Code
Phone:
DESCRIPTION T AMOUNT
T
SUBTOTAL |'$ =
TAX RATE 8.60%
Make all checks payable to Your Company Name. If you have any SALES TAX [$
questions concerning this invoice, contact Name, Phone Number, Email OTHER _
THANK YOU FOR YOUR BUSINESS! TOTAL | g _

data flow in or out of a system and which are necessary for the system to function.
In the sample invoice form in Figure 6-4, we see locations for data such as the name
and bill-to address of the customer, the invoice number, data (quantity, description,
amount) about each line item on the invoice, and calculated data such as the total.
A form gives us crucial information about the nature of the organization. For
example, the company can ship and bill to different addresses; customers can have
discounts applied; and the freight expense is charged to the customer. A printed form
may correspond to a computer display that the system will generate for someone to
enter and maintain data or to display data to online users. Forms are most useful to
you when they contain actual organizational data because this allows you to determine
the characteristics of the data that are actually used by the application. The ways in
which people use forms change over time, and data that were needed when a form was
designed may no longer be required. You can use the systems analysis techniques pre-
sented in Chapters 7 and 8 to help you determine which data are no longer required.
A third type of useful document is a report generated by current systems. As
the primary output for some types of systems, a report enables you to work backward
from the information on the report to the data that must have been necessary to gen-
erate them. Figure 6-5 presents an example of a typical financial report, a statement

160 PARTIII ANALYSIS

FIGURE 6-5
An example of a report: a statement of
cash flows

Mellankamp Industries
Statement of Cash Flows

October 1 through December 31, 2017

Oct 1-Dec 31, 2017

OPERATING ACTIVITIES
Net Income $38,239.15
Adjustments to reconcile Net Income to net
cash provided by operations:
Accounts Receivable -$46,571.69
Employee Loans -62.00
Inventory Asset -18,827.16
Retainage -2,461.80
Accounts Payable 29,189.66
Business Credit Card 70.00
BigQil Card -18.86
Sales Tax Payable 687.65
Net cash provided by Operating Activities $244.95
INVESTING ACTIVITIES
Equipment -$44,500.00
Prepaid Insurance 2,322.66
Net cash provided by Investing Activities -$42,177.34
FINANCING ACTIVITIES
Bank Loan -$868.42
Emergency Loan 3,911.32
Note Payable -17,059.17
Equipment Loan 43,013.06
Opening Balance Equity -11,697.50
Owner’s Equity: Owner’s Draw —6,000.00
Retained Earnings 8,863.39
Net cash provided by Financing Activities $20,162.68
Net cash increase for period -$21,769.71
Cash at beginning of period -$21,818.48
Cash at end of period -$43,588.19

CHAPTER 6 DETERMINING SYSTEM REQUIREMENTS 161

TABLE 6-4 Comparison of Observation and Document Analysis

Characteristic Observation Document Analysis

Information Richness High (many channels) Low (passive) and old

Time Required Can be extensive Low to moderate

Expense Can be high Low to moderate

Chance for Follow-Up Good: probing and clarification Limited: probing possible

and Probing questions can be asked during only if original author is

or after observation available

Confidentiality Observee is known to interviewer; Depends on nature of
observee may change behavior document; does not change
when observed simply by being read

Involvement of Subject Interviewees may or may not None, no clear commitment

be involved and committed
depending on whether they know
if they are being observed
Potential Audience Limited numbers and limited time Potentially biased by which
(snapshot) of each documents were kept or
because document was not
created for this purpose

of cash flows. You would analyze such reports to determine which data need to be
captured over what time period and what manipulation of these raw data would be
necessary to produce each field on the report.

If the current system is computer-based, a fourth set of useful documents are
those that describe the current information systems—how they were designed and
how they work. A lot of different types of documents fit this description, everything
from flowcharts to data dictionaries and CASE tool reports to user manuals. An ana-
lyst who has access to such documents is lucky; many information systems developed
in-house lack complete documentation (unless a CASE tool has been used).

Analysis of organizational documents and observation, along with interviewing,
are the methods most often used for gathering system requirements. Table 6-4 summa-
rizes the comparative features of observation and analysis of organizational documents.

CONTEMPORARY METHODS FOR DETERMINING
SYSTEM REQUIREMENTS

Even though we called interviews, observation, and document analysis traditional
methods for determining a system’s requirements, all of these methods are still very
much used by analysts to collect important information. Today, however, there are
additional techniques to collect information about the current system, the organiza-
tional area requesting the new system, and what the new system should be like. In this
section, you will learn about several contemporary information-gathering techniques
for analysis (listed in Table 6-5): JAD, CASE tools to support JAD, and prototyping.
As we said earlier, these techniques can support effective information collection and
structuring while reducing the amount of time required for analysis.

TABLE 6-5 Contemporary Methods for Collecting System Requirements

* Bringing session users, sponsors, analysts, and others together in a JAD session to discuss and
review system requirements

e Using CASE tools during a JAD to analyze current systems to discover requirements that will
meet changing business conditions

e lteratively developing system prototypes that refine the understanding of system requirements in
concrete ferms by showing working versions of system features

162 PARTIII ANALYSIS

Joint Application Design
(JAD)

A structured process in which users,
managers, and analysts work fogether
for several days in a series of intensive
meetings 1o specify or review system
requirements.

JAD session leader
The trained individual who plans and leads
Joint Application Design sessions.

Scribe

The person who makes defailed notes
of the happenings at a Joint Application
Design session.

Joint Application Design

Joint Application Design (JAD) started in the late 1970s at IBM, and since then the
practice of JAD has spread throughout many companies and industries. For exam-
ple, it is quite popular in the insurance industry in Connecticut, where a JAD users’
group has been formed. In fact, several generic approaches to JAD have been docu-
mented and popularized (see Wood and Silver, 1995, for an example). The main
idea behind JAD is to bring together the key users, managers, and systems analysts
involved in the analysis of a current system. In that respect, JAD is similar to a group
interview; a JAD, however, follows a particular structure of roles and agenda that is
quite different from a group interview during which analysts control the sequence of
questions answered by users. The primary purpose of using JAD in the analysis phase
is to collect systems requirements simultaneously from the key people involved with
the system. The result is an intense and structured, but highly effective, process. As
with a group interview, having all the key people together in one place at one time al-
lows analysts to see where there are areas of agreement and where there are conflicts.
Meeting with all of these important people for over a week of intense sessions allows
you the opportunity to resolve conflicts, or at least to understand why a conflict may
not be simple to resolve.

JAD sessions are usually conducted at a location other than the place where
the people involved normally work. The idea behind such a practice is to keep par-
ticipants away from as many distractions as possible so that they can concentrate on
systems analysis. A JAD may last anywhere from four hours to an entire week and
may consist of several sessions. A JAD employs thousands of dollars of corporate re-
sources, the most expensive of which is the time of the people involved. Other ex-
penses include the costs associated with flying people to a remote site and putting
them up in hotels and feeding them for several days.

The typical participants in a JAD are listed below:

e JAD session leader. The JAD session leader organizes and runs the JAD. This
person has been trained in group management and facilitation as well as in
systems analysis. The JAD leader sets the agenda and sees that it is met; he or
she remains neutral on issues and does not contribute ideas or opinions, but
rather concentrates on keeping the group on the agenda, resolving conflicts
and disagreements, and soliciting all ideas.

e Users. The key users of the system under consideration are vital participants in a
JAD. They are the only ones who have a clear understanding of what it means to
use the system on a daily basis.

® Managers. Managers of the work groups who use the system in question
provide insight into new organizational directions, motivations for and
organizational impacts of systems, and support for requirements determined
during the JAD.

e Sponsor. As a major undertaking due to its expense, a JAD must be sponsored
by someone at a relatively high level in the company. If the sponsor attends any
sessions, it is usually only at the very beginning or the end.

® Systems analysts. Members of the systems analysis team attend the JAD, although
their actual participation may be limited. Analysts are there to learn from users
and managers, not to run or dominate the process.

e Scribe. The scribe takes notes during the JAD sessions. This is usually done on a
laptop. Notes may be taken using a word processor, or notes and diagrams may
be entered directly into a CASE tool.

®]S staff. Besides systems analysts, other information systems (IS) staff, such
as programmers, database analysts, IS planners, and data center personnel,
may attend to learn from the discussion and possibly contribute their ideas
on the technical feasibility of proposed ideas or the technical limitations of
current systems.

CHAPTER 6 DETERMINING SYSTEM REQUIREMENTS 163

NN (I e

-— Projector

Or‘der
Processing
Overview

ASRIcE Flip Chart

1. Overview

-DD Screen
=

—f

Flip Chart
Sheets

2

3

4

5. ...

Bl Open
7 Issues
8

9

FIGURE 6-6
Illustration of the typical room layout for
JAD sessions are usually held in special-purpose rooms where participants sitaround ?SJAD Based on Wood and Sil
. . . . ource: based on yood an 11VeT,
horseshoe-shaped tables, as shown in Figure 6-6. These rooms are typically equipped 1995.)

with whiteboards. Other audiovisual tools may be used, such as magnetic symbols that
can be easily rearranged on a whiteboard, flip charts, and computer-generated displays.
Flip-chart paper is typically used for keeping track of issues that cannot be resolved dur-
ing the JAD or for those issues requiring additional information that can be gathered
during breaks in the proceedings. Computers may be used to create and display form or
report designs, diagram existing or replacement systems, or create prototypes.

When a JAD is completed, the end result is a set of documents that detail
the workings of the current system related to the study of a replacement system.
Depending on the exact purpose of the JAD, analysts may also walk away from the
JAD with some detailed information on what is desired of the replacement system.

Taking Part in @ JAD Imagine that you are a systems analyst taking part in your first
JAD. What might participating in a JAD be like? Typically, JADs are held offsite at
comfortable conference facilities. On the first morning of the JAD, you and your fel-
low analysts walk into a room that looks much like the one depicted in Figure 6-6. The
JAD facilitator is already there; she is finishing writing the day’s agenda on a flip chart.
The scribe is seated in a corner with his laptop, preparing to take notes on the day’s
activities. Users and managers begin to enter in groups and seat themselves around
the U-shaped table. You and the other analysts review your notes that describe what
you have learned so far about the information system you are all here to discuss. The
session leader opens the meeting with a welcome and a brief rundown of the agenda.
The first day will be devoted to a general overview of the current system and major
problems associated with it. The next two days will be devoted to an analysis of current
system screens. The last two days will be devoted to analysis of reports.

164

PART III

ANALYSIS

The session leader introduces the corporate sponsor, who talks about the or-
ganizational unit and current system related to the systems analysis study and the
importance of upgrading the current system to meet changing business conditions.
He leaves, and the JAD session leader takes over. She yields the floor to the senior
analyst, who begins a presentation on key problems with the system that have already
been identified. After the presentation, the session leader opens the discussion to
the users and managers in the room.

After a few minutes of talk, a heated discussion begins between two users from
different corporate locations. One user, who represents the office that served as the
model for the original systems design, argues that the system’s perceived lack of flex-
ibility is really an asset, not a problem. The other user, who represents an office that
was part of another company before a merger, argues that the current system is so
inflexible as to be virtually unusable. The session leader intervenes and tries to help
the users isolate particular aspects of the system that may contribute to the system’s
perceived lack of flexibility.

Questions arise about the intent of the original developers. The session leader
asks the analysis team about their impressions of the original system design. Because
these questions cannot be answered during this meeting (none of the original de-
signers are present and none of the original design documents are readily available),
the session leader assigns the question about intent to the “to do” list. This question
becomes the first one on a flip-chart sheet of “to do” items, and the session leader
gives you the assignment of finding out about the intent of the original designers.
She writes your name next to the “to do” item on the list and continues with the ses-
sion. Before the end of the JAD, you must get an answer to this question.

The JAD will continue like this for its duration. Analysts will make presenta-
tions, help lead discussions on form and report design, answer questions from users
and managers, and take notes on what is being said. After each meeting, the analy-
sis team will meet, usually informally, to discuss what has occurred that day and to
consolidate what they have learned. Users will continue to contribute during the
meetings, and the session leader will facilitate, intervening in conflicts and seeing
that the group follows the agenda. When the JAD is over, the session leader and her
assistants must prepare a report that documents the findings in the JAD and is circu-
lated among users and analysts.

CASE Tools During JAD For requirements determination and structuring, the most
useful CASE tools are for diagramming and form and report generation. The more
interaction analysts have with users during this phase, the more useful this set of
tools is. The analyst can use diagramming and prototyping tools to give graphic form
to system requirements, show the tools to users, and make changes based on the
users’ reactions. The same tools are very valuable for requirements structuring as
well. Using common CASE tools during requirements determination and structuring
makes the transition between these two subphases easier and reduces the total time
spent. In structuring, CASE tools that analyze requirements information for correct-
ness, completeness, and consistency are also useful. Finally, for alternative genera-
tion and selection, diagramming and prototyping tools are key to presenting users
with graphic illustrations of what the alternative systems will look like. Such a practice
provides users and analysts with better information to select the most desirable alter-
native system.

Some observers advocate using CASE tools during JADs (Lucas, 1993). Running
a CASE tool during a JAD enables analysts to enter system models directly into a
CASE tool, providing consistency and reliability in the joint model-building process.
The CASE tool captures system requirements in a more flexible and useful way than
can a scribe or an analysis team making notes. Further, the CASE tool can be used to
project menu, display, and report designs, so users can directly observe old and new
designs and evaluate their usefulness for the analysis team.

CHAPTER 6 DETERMINING SYSTEM REQUIREMENTS 165

Using Prototyping During Requirements Determination

Prototyping is an iterative process involving analysts and users whereby a rudimen- Prototyping
tary version of an information system is built and rebuilt according to user feedback. ~An iferaiive process of sysiems development
Prototyping can replace the systems development life cycle or augment it. What we " which requirements are converted fo

it ted in here is h Ot t th . ts det . working sysfem that is continually revised
are mterested 1 here 1s now prototyping can augmen € requirements determina- TI’UOUgh close collaboration between an

tion process. analyst and users.
In order to gather an initial basic set of requirements, you will still have to inter-

view users and collect documentation. Prototyping, however, will enable you to quickly
convert basic requirements into a working, though limited, version of the desired in-
formation system. The prototype will then be viewed and tested by the user. Typically,
seeing verbal descriptions of requirements converted into a physical system will prompt
the user to modify existing requirements and generate new ones. For example, in the
initial interviews, a user might have said that he wanted all relevant utility billing infor-
mation (e.g., the client’s name and address, the service record, and payment history)
on a single computer display form. Once the same user sees how crowded and confus-
ing such a design would be in the prototype, he might change his mind and instead
ask to have the information organized on several screens, but with easy transitions
from one screen to another. He might also be reminded of some important require-
ments (data, calculations, etc.) that had not surfaced during the initial interviews.

You would then redesign the prototype to incorporate the suggested changes
(Figure 6-7). Once modified, users would again view and test the prototype. And,
once again, you would incorporate their suggestions for change. Through such an it-
erative process, the chances are good that you will be able to better capture a system’s
requirements.

As the prototype changes through each iteration, more and more of the design
specifications for the system are captured in the prototype. The prototype can then
serve as the basis for the production system in a process called evolutionary prototyp-
ing. Alternatively, the prototype can serve only as a model, which is then used as a
reference for the construction of the actual system. In this process, called throwaway
prototyping, the prototype is discarded after it has been used.

Evolutionary Prototyping In evolutionary prototyping, you begin by modeling
parts of the target system and, if the prototyping process is successful, you evolve the
rest of the system from those parts (McConnell, 1996). A life-cycle model of evolu-
tionary prototyping illustrates the iterative nature of the process and the tendency to
refine the prototype until it is ready to release (Figure 6-8). One key aspect of this ap-
proach is that the prototype becomes the actual production system. Because of this,
you often start with those parts of the system that are most difficult and uncertain.

Initial
Identify Requirements > Develop
Problem Prototype
XS
Convert to 3
Operational <
.QQ
System &
& New Requirements
If Prototype
Inefficient FIGURE 6-7
The prototyping methodology
Problems y . « I
Implement and P> Revise and Enhance (Source: Based on "Prototyping: The New
Use Prototype Prototype Paradigm for Systems Development,” by
< J. D. Naumann and A. M. Jenkins, MIS

Next Version Quarterly 6(3): 29-44.)

166 PART III ANALYSIS

FIGURE 6-8
McConnell’s evolutionary prototyping
model

Initial Concept Design and Refine Prototype| Complete and
Implement until Acceptable | Release
Initial Prototype Prototype

Although a prototype system may do a great job of representing easy-to-see as-
pects of a system, such as the user interface, the production system itself will perform
many more functions, several of which are transparent or invisible to the users. Any
given system must be designed to facilitate database access, database integrity, system
security, and networking. Systems also must be designed to support scalability, mul-
tiuser support, and multiplatform support. Few of these design specifications will be
coded into a prototype. Further, as much as 90 percent of a system’s functioning is
devoted to handling exceptional cases (McConnell, 1996). Prototypes are designed
to handle only the typical cases, so exception handling must be added to the proto-
type as it is converted to the production system. Clearly, the prototype captures only
part of the system requirements.

Throwaway Prototyping Unlike evolutionary prototyping, throwaway prototyping
does not preserve the prototype that has been developed. With throwaway prototyp-
ing, there is never any intention to convert the prototype into a working system.
Instead, the prototype is developed quickly to demonstrate some aspect of a system
design that is unclear or to help users decide among different features or interface
characteristics. Once the uncertainty the prototype was created to address has been
reduced, the prototype can be discarded, and the principles learned from its cre-
ation and testing can then become part of the requirements determination.
Prototyping is most useful for requirements determination when

® user requirements are not clear or well understood, which is often the case for
totally new systems or systems that support decision making;

® one or a few users and other stakeholders are involved with the system;

® possible designs are complex and require concrete form to fully evaluate;

® communication problems have existed in the past between users and analysts
and both parties want to be sure that system requirements are as specific as
possible; and

® tools (such as form and report generators) and data are readily available to
rapidly build working systems.

Prototyping also has some drawbacks as a tool for requirements determination.
These include the following:

® Prototypes have a tendency to avoid creating formal documentation of system
requirements, which can then make the system more difficult to develop into a
fully working system.

® Prototypes can become very idiosyncratic to the initial user and difficult to
diffuse or adapt to other potential users.

® Prototypes are often built as stand-alone systems, thus ignoring issues of sharing
data and interactions with other existing systems, as well as issues with scaling up
applications.

¢ Checks in the SDLC are bypassed so that some more subtle, but still important,
system requirements might be forgotten (e.g., security, some data entry controls,
or standardization of data across systems).

CHAPTER 6 DETERMINING SYSTEM REQUIREMENTS 167

RADICAL METHODS FOR DETERMINING SYSTEM
REQUIREMENTS

Whether traditional or contemporary, the methods for determining system require-
ments that you have read about in this chapter apply to any requirements determi-
nation effort, regardless of its motivation. But most of what you have learned has
traditionally been applied to systems development projects that involve automating
existing processes. Analysts use system requirements determination to understand
current problems and opportunities, as well as to determine what is needed and de-
sired in future systems. Typically, the current way of doing things has a large impact on
the new system. In some organizations, though, management is looking for new ways
to perform current tasks. These new ways may be radically different from how things
are done now, but the payoffs may be enormous: Fewer people may be needed to do
the same work, relationships with customers may improve dramatically, and processes
may become much more efficient and effective, all of which can result in increased
profits. The overall process by which current methods are replaced with radically new
methods is generally referred to as business process reengineering (BPR). Although
the term BPR is usually associated with a management fad that occurred in the 1990s,
businesses remain vitally interested in business processes and how to improve them
(Sharp and McDermott, 2001). Even if the term business process reengineering may seem
dated to some, process orientation remains a lasting legacy of the BPR movement.

To better understand BPR, consider the following analogy. Suppose you are a
successful European golfer who has tuned your game to fit the style of golf courses
and weather in Europe. You have learned how to control the flight of the ball in
heavy winds, roll the ball on wide open greens, putt on large and undulating greens,
and aim at a target without the aid of the landscaping common on North American
courses. When you come to the United States to make your fortune on the US tour,
you discover that incrementally improving your putting, driving accuracy, and sand
shots will help, but the new competitive environment is simply not suited to your style
of the game. You need to reengineer your whole approach, learning how to aim at
targets, spin and stop a ball on the green, and manage the distractions of crowds and
the press. If you are good enough, you may survive, but without reengineering, you
will never be a winner.

Just as the competitiveness of golf forces good players to adapt their games to
changing conditions, the competitiveness of our global economy has driven most
companies into a mode of continuously improving the quality of their products and
services (Dobyns and Crawford-Mason, 1991). Organizations realize that creatively
using information technologies can yield significant improvements in most business
processes. The idea behind BPR is not just to improve each business process, but, in a
systems modeling sense, to reorganize the complete flow of data in major sections of
an organization to eliminate unnecessary steps, achieve synergies among previously
separate steps, and become more responsive to future changes. Companies such as
IBM, Procter & Gamble, Walmart, and Ford are actively pursuing BPR efforts and
have had great success. Yet many other companies have found difficulty in apply-
ing BPR principles (Moad, 1994). Nonetheless, BPR concepts are actively applied in
both corporate strategic planning and information systems planning as a way to radi-
cally improve business processes (as described in Chapter 4).

BPR advocates suggest that radical increases in the quality of business processes
can be achieved through creative application of information technologies. BPR advo-
cates also suggest that radical improvement cannot be achieved by tweaking existing
processes but rather by using a clean sheet of paper and asking, “If we were a new
organization, how would we accomplish this activity?” Changing the way work is per-
formed also changes the way information is shared and stored, which means that the
results of many BPR efforts are the development of information system maintenance
requests or requests for system replacement. It is likely that you will encounter or
have encountered BPR initiatives in your own organization.

Business process
reengineering (BPR)

The search for, and implementation of,
radical change in business processes to
achieve breakthrough improvements in
products and services.

168 PARTIII ANALYSIS

Key business processes

The structured, measured set of activities
designed to produce a specific output for a
particular customer or market.

Disruptive technologies
Technologies that enable breaking long-
held business rules that inhibit organizations
from making radical business changes.

Identifying Processes to Reengineer

A first step in any BPR effort relates to understanding what processes to change.
To do this, you must first understand which processes represent the key business
processes for the organization. Key business processes are the structured set of mea-
surable activities designed to produce a specific output for a particular customer or
market. The important aspect of this definition is that key processes are focused on
some type of organizational outcome, such as the creation of a product or the deliv-
ery of a service. Key business processes are also customer focused. In other words, key
business processes would include all activities used to design, build, deliver, support,
and service a particular product for a particular customer. BPR efforts, therefore,
first try to understand those activities that are part of the organization’s key business
processes and then alter the sequence and structure of activities to achieve radical
improvements in speed, quality, and customer satisfaction. The same techniques you
learned to use for systems requirement determination can be used to discover and
understand key business processes. Interviewing key individuals, observing activities,
reading and studying organizational documents, and conducting JADs can all be
used to find and fathom key business processes.

After identifying key business processes, the next step is to identify specific ac-
tivities that can be radically improved through reengineering. Hammer and Champy
(1993), who are most closely identified with the term BPR and the process itself, sug-
gest asking three questions to identify activities for radical change:

1. How important is the activity to delivering an outcome?
2. How feasible is changing the activity?
3. How dysfunctional is the activity?

The answers to these questions provide guidance for selecting which activi-
ties to change. Those activities deemed important, changeable, yet dysfunctional,
are primary candidates. To identify dysfunctional activities, they suggest you look
for activities where there are excessive information exchanges between individuals,
where information is redundantly recorded or needs to be rekeyed, where there are
excessive inventory buffers or inspections, and where there is a lot of rework or com-
plexity. Many of the tools and techniques for modeling data, processes, events, and
logic within the IS development process are also being applied to model business
processes within BPR efforts (see Davenport, 1993). Thus, the skills of a systems ana-
lyst are often central to many BPR efforts.

Disruptive Technologies

Once key business processes and activities have been identified, information technol-
ogies must be applied to radically improve business processes. To do this, Hammer
and Champy (1993) suggest that organizations think “inductively” about information
technology. Induction is the process of reasoning from the specific to the general,
which means that managers must learn the power of new technologies and think of
innovative ways to alter the way work is done. This is contrary to deductive thinking,
where problems are first identified and solutions are then formulated.

Hammer and Champy suggest that managers especially consider disruptive
technologies when applying deductive thinking. Disruptive technologies are those
that enable breaking long-held business rules that inhibit organizations from making
radical business changes. For example, Procter & Gamble (P&G), the huge consumer
products company, uses information technology to “innovate innovation” (Teresko,
2004). Technology helps different organizational units work together seamlessly on
new products. P&G also uses computer simulations to expedite product design and
test potential products with consumers early in the design process. Table 6-6 shows
several long-held business rules and beliefs that constrain organizations from making
radical process improvements. For example, the first rule suggests that information

CHAPTER 6

TABLE 6-6 Long-Held Organizational Rules That Are Being Eliminated through Disruptive

Technologies

Rule

Disruptive Technology

Information can appear in only one place
at a time.

Businesses must choose between
centralization and decentralization.

Managers must make all decisions.

Field personnel need offices where they
can receive, store, refrieve, and transmit
information.

The best contact with a potential buyer is
personal contact.

You have to find out where things are.

Plans get revised periodically.

Distributed databases allow the sharing of
information.

Advanced telecommunications networks can
support dynamic organizational structures.

Decision-support tools can aid nonmanagers.

Wireless data communication and portable
computers provide a “virtual” office for
workers.

Interactive communication technologies allow
complex messaging capabilities.

Automatic identification and tracking
technology knows where things are.

High-performance computing can provide

DETERMINING SYSTEM REQUIREMENTS

realtime updating.

can only appear in one place at a time. However, the advent of distributed databases
(see Chapter 12) and pervasive wireless networking have “disrupted” this long-held
business belief.

REQUIREMENTS DETERMINATION USING AGILE
METHODOLOGIES

You've already learned about many different ways to determine the requirements for
a system. Yet new methods and techniques are constantly being developed. Three
more requirements determination techniques are presented in this section. The first
is continual user involvement in the development process, a technique that works
especially well with small and dedicated development teams. The second approach
is a JAD-like process called Agile Usage-Centered Design. The third approach is the
Planning Game, which was developed as part of eXtreme Programming.

Continual User Involvement

In Chapter 1, you read about the criticisms of the traditional waterfall SDLC. One
of those criticisms was that the waterfall SDLC allowed users to be involved in the
development process only in the early stages of analysis. Once requirements had
been gathered from them, the users were not involved again in the process until
the system was being installed and they were asked to sign off on it. Typically, by the
time the users saw the system again, it was nothing like what they had imagined.
Also, given how their business processes had changed since analysis ended, the sys-
tem most likely did not adequately address user needs. This view of the traditional
waterfall SDLC and user involvement is a stereotype of the process, and it does not
describe every systems development project that used the waterfall model. However,
limited user involvement has been common enough to be perceived as a real and
serious problem in systems development.

One approach to the problem of limited user involvement is to involve the users
continually, throughout the entire analysis and design process. Such an approach
works best when development can follow the analysis—design—code—test cycle favored
by the Agile Methodologies (Figure 6-9), because the user can provide information on
requirements and then watch and evaluate as those requirements are designed, coded,
and tested. This iterative process can continue through several cycles, until most of
the major functionality of the system has been developed. Extensive involvement of

170 PART III ANALYSIS

FIGURE 6-9
The iterative analysis—design—code-test
cycle

Analyze

Test Design

Code

users in the analysis and design process is a key part of many Agile approaches, but it
was also a key part of Rapid Application Development (see Chapter 1).

Continual user involvement was a key aspect of the success of Boeing’s Wire
Design and Wire Install system for the 757 aircraft (Bedoll, 2003). The system was
intended to support engineers who customize plane configurations for customers,
allowing them to analyze all 50,000 wires that can possibly be installed on a 757. A
previous attempt at building a similar system took over three years, and the resulting
system was never used. The second attempt, relying on Agile Methodologies, resulted
in a system that was in production after only six weeks. One of the keys to success
was a user liaison who spent half of his time with the small development team and
half with the other end users. In addition to following the analysis—design—code—test
cycle, the team also had weekly production releases. The user liaison was involved
every step of the way. Obviously, for such a requirements determination to succeed,
the user who works with the development team must be very knowledgeable, but he
or she must also be in a position to give up his or her normal business responsibilities
in order to become heavily involved in the system’s development.

Agile Usage-Centered Design

Continual user involvement in systems development is an excellent way to ensure
that requirements are captured accurately and immediately implemented in system
design. However, such constant interaction works best when the development team
is small, as was the case in the Boeing example. Also, it is not always possible to have
continual access to users for the duration of a development project. Thus, Agile de-
velopers have come up with other means for effectively involving users in the re-
quirements determination process. One such method is called Agile Usage-Centered
Design, originally developed by Larry Constantine (2002) and adapted for Agile
Methodologies by Jeff Patton (2002). Patton describes the process in nine steps,
which we have adapted and presented as eight steps in Table 6-7.

Notice how similar the overall process is to a JAD meeting. All of the experts
are gathered together and work with the help of the facilitator. What is unique about
the Agile Usage-Centered Design is the process that supports it, which focuses on
user roles, user goals, and the tasks necessary to achieve those goals. Then, tasks are
grouped and turned into paper-and-pencil prototypes before the meeting is over.
Requirements captured from users and developers are captured as prototyped system
screens. Patton (2002) believes that the two most effective aspects of this approach
are the venting session, which lets everyone get their complaints out in the open, and

CHAPTER 6 DETERMINING SYSTEM REQUIREMENTS 171

TABLE 6-7 Steps in the Agile Usage-Centered Design Method for Requirements Determination

1. Gather a group of people, including analysts, users, programmers, and testing staff, and
sequester them in a room to collaborate on this design. Include a facilitator who knows this
process.

2. Give everyone a chance to vent about the current system and to talk about the features
everyone wants in the new system. Record all of the complaints and suggestions for change
on whiteboards or flip charts for everyone to see.

3. Determine what the most important user roles would be. Determine who will be using the
system and what their goals are for using the system. Write the roles on 3 x 5 cards. Sort
the cards so that similar roles are close to each other. Patton (2002) calls this a role model.

4. Determine what tasks user roles will have to complete in order to achieve their goals. Write
these down on 3 x 5 cards. Order tasks by importance and then by frequency. Place the
cards together based on how similar the tasks are to each other. Patton calls this a task model.

5. Task cards will be grouped together on the table based on their similarity. Grab a stack of
cards. This is called an inferaction context.

6. For each task card in the inferaction context, write a description of the task directly on
the task card. List the steps that are necessary to complete the task. Keep the descriptions
conversational to make them easy to read. Simplify.

7. Treat each stack as a fentative set of tasks to be supported by a single aspect of the user
inferface, such as a screen, page, or dialogue, and create a paper-and-pencil prototype for
that part of the interface. Show the basic size and placement of the screen components.

8. Take on a user role and step through each task in the interaction context as modeled in
the paper-and-pencil prototype. Make sure the user role can achieve its goals by using the
prototype. Refine the prototype accordingly.

the use of 3 x 5 cards, which serve as very effective communication tools. As with any
analysis and design process or technique, however, Agile Usage-Centered Design will
not work for every project or every company.

The Planning Game from eXtreme Programming

You read about eXtreme Programming in Chapter 1, and you know that it is an
approach to software development put together by Kent Beck (Beck and Andres,
2004). You also know that it is distinguished by its short cycles, its incremental plan-
ning approach, its focus on automated tests written by programmers and customers
to monitor the process of development, and its reliance on an evolutionary approach
to development that lasts throughout the lifetime of the system. One of the key em-
phases of eXtreme Programming is its use of two-person programming teams and
having a customer on-site during the development process. The relevant parts of
eXtreme Programming that relate to requirements determination are (1) how plan-
ning, analysis, design, and construction are all fused together into a single phase of
activity and (2) its unique way of capturing and presenting system requirements and
design specifications. All phases of the life cycle converge into a series of activities
based on the basic processes of coding, testing, listening, and designing.

What is of interest here, however, is the way requirements and specifications
are dealt with. Both of these activities take place in what Beck calls the “Planning
Game.” The Planning Game is really just a stylized approach to development that
seeks to maximize fruitful interaction between those who need a new system and
those who build it. The players in the Planning Game, then, are Business and
Development. Business is the customer and is ideally represented by someone who
knows the processes to be supported by the system being developed. Development
is represented by those actually designing and constructing the system. The game
pieces are what Beck calls “Story Cards.” These cards are created by Business and
contain a description of a procedure or feature to be included in the system. Each
card is dated and numbered and has space on it for tracking its status throughout the
development effort.

172 PART III ANALYSIS

EXPLORATION
Business writes a Story Card.
Development provides an estimate.

FIGURE 6-10

eXtreme Programming’s Planning Game
Sources: Top to bottom: imtmphoto/
Shutterstock; nenetus/Fotolia;
rilueda/Fotolia

w L \ .
COMMITMENT

Business sorts Stories by necessity.
Development sorts Stories by risk.
Business chooses Stories for next release.

STEERING
Business reviews progress.
Business and Development adjust plan.

The Planning Game has three phases: exploration, commitment, and steering
(Figure 6-10). In exploration, Business creates a Story Card for something it wants
the new system to do. Development responds with an estimation of how long it would
take to implement the procedure. At this point, it may make sense to split a Story
Card into multiple Story Cards, as the scope of features and procedures becomes
more clear during discussion. In the commitment phase, Business sorts Story Cards
into three stacks: one for essential features, one for features that are not essential but
would still add value, and one for features that would be nice to have. Development
then sorts Story Cards according to risk, based on how well they can estimate the
time needed to develop each feature. Business then selects the cards that will be
included in the next release of the product. In the final phase, steering, Business
has a chance to see how the development process is progressing and to work with
Development to adjust the plan accordingly. Steering can take place as often as once
every three weeks.

The Planning Game between Business and Development is followed by the
Iteration Planning Game, played only by programmers. Instead of Story Cards, pro-
grammers write Task Cards, which are based on Story Cards. Typically, several Task
Cards are generated for each Story Card. The Iteration Planning Game has the same
three phases as the Planning Game: exploration, commitment, and steering. During
exploration, programmers convert Story Cards into Task Cards. During commitment,
they accept responsibility for tasks and balance their workloads. During steering, the
programmers write the code for the feature and test it. If it works, they integrate the
feature into the product being developed. The Iteration Planning Game takes place
during the time intervals between steering phase meetings in the Planning Game.

You can see how the Planning Game is similar in some ways to Agile Usage-
Centered Design. Both rely on participation by users, rely on cards as communica-
tion devices, and focus on tasks the system being designed is supposed to perform.
Although these approaches differ from some of the more traditional ways of deter-
mining requirements, such as interviews and prototyping, many of the core prin-
ciples are the same. Customers, or users, remain the source for what the system is
supposed to do. Requirements are still captured and negotiated. The overall process

CHAPTER 6 DETERMINING SYSTEM REQUIREMENTS

is still documented, although the extent and formality of the documentation may
differ. Given the way requirements are identified and recorded and broken down
from stories to tasks, design specifications can easily incorporate the characteristics
of quality requirements: completeness, consistency, modifiability, and traceability.

ELECTRONIC COMMERCE APPLICATIONS:
DETERMINING SYSTEM REQUIREMENTS

Determining system requirements for an Internet-based electronic commerce appli-
cation is no different than the process followed for other applications. In the last
chapter, you read how PVF’s management began the WebStore project, a project
to sell furniture products over the Internet. In this section, we examine the process
followed by PVF to determine system requirements and highlight some of the issues
and capabilities that you may want to consider when developing your own Internet-
based application.

Determining System Requirements for Pine Valley Furniture’s
WebStore

To collect system requirements as quickly as possible, Jim and Jackie decided to
hold a three-day JAD session. In order to get the most out of these sessions, they in-
vited a broad range of people, including representatives from Sales and Marketing,
Operations, and Information Systems. Additionally, they asked an experienced JAD
facilitator, Cheri Morris, to conduct the session. Together with Cheri, Jim and Jackie
developed a very ambitious and detailed agenda for the session. Their goal was to
collect requirements on the following items:

e System Layout and Navigation Characteristics

* WebStore and Site Management System Capabilities

¢ Customer and Inventory Information

e System Prototype Evolution

In the remainder of this section, we briefly highlight the outcomes of the JAD
session.

System Layout and Navigation Characteristics As part of the process of prepar-
ing for the JAD session, all participants were asked to visit several established re-
tail websites, including www.amazon.com, www.landsend.com, www.sony.com, and www.
pierl.com. At the JAD session, participants were asked to identify characteristics
of these sites that they found appealing and those characteristics that they found
cumbersome. This allowed participants to identify and discuss those features that

they wanted the WebStore to possess. The outcomes of this activity are summarized
in Table 6-8.

TABLE 6-8 Desired Layout and Navigation Feature of WebStore

Layout and Design ~ ® Navigation menu and logo placement should remain consistent
throughout the entire site (this allows users to maintain familiarity while
using the site and minimizes users who get “lost” in the site)

 Graphics should be lightweight to allow for quick page display
e Text should be used over graphics whenever possible

Navigation ® Any section of the store should be accessible from any other section via
the navigation menu

e Users should always be aware of what section they are currently in

PINE
VALLEY
FURNITURE

173

http://www.amazon.com
http://www.landsend.com
http://www.sony.com
http://www.pier1.com
http://www.pier1.com

174 PART III ANALYSIS

TABLE 6-9 System Structure of the WebStore and Site Management Systems

WebStore System Site Management System
Q Main Page Q User Profile Manager
¢ Product Line (catalog) Q Order Maintenance Manager
v Desks Q Content (catalog) Manager
v Chairs Q Reports
v Tables e Total Hits
v File Cabinets ® Most Frequent Page Views
o Shopping Cart e Users/Time of Day
e Checkout e Users/Day of Week
e Account Profile e Shoppers Not Purchasing (used shopping cart—did
o Order Status/History not checkout)

e Cusfomer Comments e Feedback Analysis

Q Company Info
0 Feedback
Q Contact Information

WebStore and Site Management System Capabilities After agreeing to the general
layout and navigational characteristics of the WebStore, the session then turned its
focus to the basic system capabilities. To assist in this process, systems analysts from
the Information Systems Department developed a draft skeleton of the WebStore.
This skeleton was based on the types of screens common to and capabilities of
popular retail websites. For example, many retail websites have a “shopping cart”
feature that allows customers to accumulate multiple items before checking out
rather than buying a single item at a time. After some discussion, the participants
agreed that the system structure shown in Table 6-9 would form the foundation for the
WebStore system.

In addition to the WebStore capabilities, members of the Marketing and Sales
Department described several reports that would be necessary to effectively manage
customer accounts and sales transactions. In addition, the department wants to be
able to conduct detailed analyses of site visitors, sales tracking, and so on. Members
of the Operations Department expressed a need to easily update the product catalog.
These collective requests and activities were organized into a system design structure
called the Site Management System, which is summarized in Table 6-9. The structures
of both the WebStore and Site Management Systems will be given to the Information
Systems Department as the baseline for further analysis and design activities.

Customer and Inventory Information The WebStore will be designed to support
the furniture purchases of three distinct types of customers:

e Corporate customers
e Home office customers
e Student customers

To effectively track the sales to these different types of customers, distinct informa-
tion must be captured and stored by the system. Table 6-10 summarizes this informa-
tion for each customer type that was identified during the JAD session. In addition
to the customer information, information about the products ordered must also be
captured and stored. Orders reflect the range of product information that must be
specified to execute a sales transaction. Thus, in addition to capturing the customer
information, product and sales data must also be captured and stored. Table 6-10 lists
the results of this analysis.

CHAPTER 6 DETERMINING SYSTEM REQUIREMENTS 175

TABLE 6-10 Customer and Inventory Information for WehStore

Corporate Customer Home Office Customer Student Customer

e Company Name * Name ® Name

e Company Address Doing Business as e School

e Company Phone (company name) e Address

e Company Fax * Address e Phone

e Company Preferred Shipping ® Phone e E-Mail
Method ® Fax

e Buyer Name e E-Mail

e Buyer Phone

e Buyer E-Mail

Inventory Information

e SKU Finished Product Size Available Colors
e Name e Finished Product Weight e Price
e Description Available Materials

Lead Time

System Prototype Evolution As a final activity, the JAD participants, benefiting
from extensive input from the Information Systems staff, discussed how the system
implementation should evolve. After completing analysis and design activities, it
was agreed that the system implementation should progress in three main stages so
that changes to the requirements could be more easily identified and implemented.
Table 6-11 summarizes these stages and the functionality that would be incorporated
at each stage of the implementation.

At the conclusion of the JAD session there was a good feeling among the partic-
ipants. All felt that a lot of progress had been made and that clear requirements had
been identified. With these requirements in hand, Jim and the Information Systems
staff could now begin to turn these lists of requirements into formal analysis and
design specifications. To show how information flows through the WebStore, data
flow diagrams (Chapter 7) will be produced. To show a conceptual model of the data
used within WebStore, an entity-relationship diagram (Chapter 8) will be produced.
Both of these analysis documents will become part of the foundation for detailed
system design and implementation.

TABLE 6-11 Stages of System Implementation of WebStore

Stage 1—Basic Functionality:

e Simple catalog navigation; two products per section—limited attributes set
® 25 sample users

e Simulated credit card transaction

e Full shopping cart functionality

Stage 2—Look and Feel:

e Full product attribute set and media (images, video)—commonly referred to as the “product
data catalog”

e Full site layout

e Simulated integration with Purchasing Fulfillment and Customer Tracking systems
Stage 3— Staging/Preproduction:

e Full integration with Purchasing Fulfillment and Customer Tracking systems

e Full credit card processing integration

e Full product data catalog

176
SUMMARY

PART IIIT ANALYSIS

As we saw in Chapter 1, there are two subphases in the sys-
tems analysis phase of the systems development life cycle:
requirements determination and requirements structur-
ing. Chapter 6 has focused on requirements determina-
tion, the gathering of information about current systems
and the need for replacement systems. Chapters 7 and 8
will address techniques for structuring the requirements
elicited during requirements determination.

For requirements determination, the traditional
sources of information about a system include interviews;
observation; group interviews; and procedures, forms, and
other useful documents. Often many or even all of these
sources are used to gather perspectives on the adequacy
of current systems and the requirements for replacement
systems. Each form of information collection has its advan-
tages and disadvantages. Selecting the methods to use de-
pends on the need for rich or thorough information, the
time and budget available, the need to probe deeper once
initial information is collected, the need for confiden-
tiality for those providing assessments of system require-
ments, the desire to get people involved and committed to
a project, and the potential audience from which require-
ments should be collected.

Both open- and closed-ended questions can be
posed during interviews. In either case, you must be very
precise in formulating a question in order to avoid ambi-
guity and to ensure a proper response. During observa-
tion you must try not to intrude or interfere with normal
business activities so that the people being observed do
not modify their activities from normal processes. The
results of all requirements-gathering methods should be
compared because there may be differences between the
formal or official system and the way people actually work,
the informal system.

You also learned about contemporary methods to
collect requirements information, many of which make
use of information systems. JAD begins with the idea of
the group interview and adds structure and a JAD ses-
sion leader to it. Typical JAD participants include the ses-
sion leader, a scribe, key users, managers, a sponsor, and

systems analysts. JAD sessions are usually held off-site and
may last as long as one week.

Systems analysis is increasingly performed with com-
puter assistance, as is the case in using CASE tools and
prototyping to support requirements determination. As
part of the prototyping process, users and analysts work
closely together to determine requirements that the ana-
lyst then builds into a model. The analyst and user then
work together to revise the model until it is close to what
the user desires.

BPR is an approach to radically changing business
processes. BPR efforts are a source of new information re-
quirements. Information systems and technologies often
enable BPR by allowing an organization to eliminate or
relax constraints on traditional business rules. Agile re-
quirements determination techniques are another contem-
porary approach to figuring out what a new or improved
system is supposed to do. Continual customer involvement
relies on high levels of user participation. Agile Usage-
Centered Design and the Planning Game rely on novel in-
teractions between users and developers to uncover basic
tasks and features the new system should include.

Most of the same techniques used for requirements
determination for traditional systems can also be fruit-
fully applied to the development of Internet applications.
Accurately capturing requirements in a timely manner for
Internet applications is just as important as for more tradi-
tional systems.

The result of requirements determination is a thor-
ough set of information, including some charts, that de-
scribes the current systems being studied and the need
for new and different capabilities to be included in the
replacement systems. This information, however, is not
in a form that makes analysis of true problems and clear
statements of new features possible. Thus, you and other
analysts will study this information and structure it into
standard formats suitable for identifying problems and un-
ambiguously describing the specifications for new systems.
We discuss a variety of popular techniques for structuring
requirements in the next two chapters.

KEY TERMS
6.1 Business process reengineering 6.5 Informal system 6.9 Nominal Group Technique
(BPR) 6.6 JAD session leader (NGT)

6.2 Closed-ended questions
6.3 Disruptive technologies
6.4 Formal system

6.7 Joint Application
Design (JAD)
6.8 Key business processes

6.10 Open-ended questions
6.11 Prototyping
6.12 Scribe

CHAPTER 6

Match each of the key terms above with the definition that best
fits it.

Questions in interviews that ask those responding to
choose from among a set of specified responses.

Technologies that enable breaking long-held business
rules that inhibit organizations from making radical busi-
ness changes.

A facilitated process that supports idea generation by
groups. At the beginning of the process, group members
work alone to generate ideas. The ideas are then pooled
under the guidance of a trained facilitator.

The structured, measured set of activities designed to pro-
duce a specific output for a particular customer or market.

An iterative process in which requirements are converted
to a working system that is continually revised through or-
ganized user collaboration.

REVIEW QUESTIONS

DETERMINING SYSTEM REQUIREMENTS 177

The official way a system works as described in organiza-

tional documentation.

The search for, and implementation of, radical change in
business processes to achieve breakthrough improvements
in products and services.

The way a system actually works.

The person who makes detailed notes of the happenings
at a JAD session.

Questions in interviews that have no prespecified answers.
The trained individual who plans and leads JAD sessions.

A structured process in which users, managers, and ana-
lysts work together for several days in a series of meetings
to clarify or review requirements.

6.13 Describe systems analysis and the major activities that
occur during this phase of the systems development life
cycle.

6.14 Describe four traditional techniques for collecting infor-
mation during analysis. When might one be better than
another?

6.15 What is JAD? How is it better than traditional information-
gathering techniques? What are its weaknesses?

6.16 How has computing been used to support requirements
determination?

6.17 How can NGT be used for requirements determination?

6.18 How can CASE tools be used to support requirements de-
termination? Which type of CASE tool is appropriate for
use during requirements determination?

PROBLEMS AND EXERCISES

6.19

6.20

6.21

6.22

6.23

Describe how prototyping can be used during require-
ments determination. How is it better or worse than tradi-
tional methods?

When conducting a business process reengineering study,
what should you look for when trying to identify a business
process to change? Why?

What are disruptive technologies and how do they enable
organizations to radically change their business processes?

Why is continual user involvement a useful way to discover
system requirements? Under what conditions might it be
used? Under what conditions might it not be used?

Describe Agile Usage-Centered Design. Describe the Plan-
ning Game. Compare and contrast these two requirements
determination techniques.

6.24 Choose either CASE or prototyping as a topic and review
a related article from the popular press and from the aca-
demic research literature. Summarize the two articles and,
based on your reading, prepare a list of arguments for why
this type of system would be useful in a JAD session. Also
address the limits for applying this type of system in a JAD
setting.

6.25 As mentioned in this chapter, one of the potential prob-
lems with gathering information requirements by observ-
ing potential system users is that people may change their
behavior when they are being observed. What could you
do to overcome this potential confounding factor in accu-
rately determining information requirements?

6.26 Summarize the problems with the reliability and usefulness
of analyzing business documents as a method for gathering
information requirements. How could you cope with these

6.27

6.28

6.29

problems to effectively use business documents as a source
of insights on system requirements?

Suppose you were asked to lead a JAD session. List 10
guidelines you would follow to assist you in playing the
proper role of a JAD session leader.

Prepare a plan, similar to Figure 6-2, for an interview with
your academic advisor to determine which courses you
should take to develop the skills you need to be hired as a
programmer/analyst.

Write at least three closed-ended questions that you might
use in an interview of users of a word-processing package
in order to develop ideas for the next version of the pack-
age. Test these questions by asking a friend to answer the
questions; then interview your friend to determine why she
responded as she did. From this interview, determine if she

178

6.30

6.31

PART IIIT ANALYSIS

misunderstood any of your questions and, if so, rewrite the
questions to be less ambiguous.

Figure 6-2 shows part of a guide for an interview. How
might an interview guide differ when a group interview is
to be conducted?

Group interviews and JADs are very powerful ways to col-
lect system requirements, but special problems arise dur-
ing group requirements collection sessions. Summarize
the special interviewing and group problems that arise in
such group sessions and suggest ways that you, as a group

FIELD EXERCISES

6.32

6.33

interviewer or group facilitator, might deal with these
problems.

Review the material in Chapter 4 on corporate and infor-
mation systems strategic planning. How are these processes
different from BPR? What new perspectives might BPR
bring that classical strategic planning methods may not
have?

Research other Agile methodologies and write a re-
port about how they handle systems requirements
determination.

6.34

Effective interviewing is not something that you can learn
from just reading about it. You must first do some inter-
viewing, preferably a lot of it, because interviewing skills
improve only with experience. To get an idea of what in-
terviewing is like, try the following: Find three friends or
classmates to help you complete this exercise. Organize
yourselves into pairs. Write down a series of questions
you can use to find out about a job your partner now has
or once held. You decide what questions to use, but at a
minimum, you must find out the following: (1) the job’s
title; (2) the job’s responsibilities; (3) who your partner re-
ported to; (4) who reported to your partner, if anyone did,;
and (5) what information your partner used to do his or
her job. At the same time, your partner should be prepar-
ing questions to ask you about a job you had. Now conduct
the interview. Take careful notes. Organize what you find
into a clear form that another person could understand.
Now repeat the process, but this time, your partner inter-
views you.

While the two of you have been interviewing each
other, your two other friends should have been doing the
same thing. When all four of you are done, switch partners
and repeat the entire process. When you are all done, each
of you should have interviewed two people, and each of you
should have been interviewed by two people. Now, you and
the person who interviewed your original partner should
compare your findings. Most likely, your findings will not
be identical to what the other person found. If your find-
ings differ, discover why. Did you use the same questions?
Did the other person do a more thorough job of inter-
viewing your first partner because it was the second time
he or she had conducted an interview? Did you both ask
follow-up questions? Did you both spend about the same
amount of time on the interview? Prepare a report with this
person about why your findings differed. Now find both of
the people who interviewed you. Does one set of findings
differ from the other? If so, try to figure out why. Did one
of them (or both of them) misrepresent or misunderstand
what you told them? Each person should now write a report
on their experience, using it to explain why interviews are
sometimes inconsistent and inaccurate and why having two
people interview someone on a topic is better than having
just one person do the interview. Explain the implications

6.35

6.36

6.37

6.38

6.39

6.40

of what you have learned for the requirements determina-
tion subphase of the systems development life cycle.

Choose a work team at your work or university and inter-
view them in a group setting. Ask them about their current
system (whether computer-based or not) for performing
their work. Ask each of them what information they use
and/or need and from where/whom they get it. Was this
a useful method for you to learn about their work? Why or
why not? What comparative advantages does this method
provide as compared to one-on-one interviews with each
team member? What comparative disadvantages?

For the same work team you used in Field Exercise 6-35,
examine copies of any relevant written documentation
(e.g., written procedures, forms, reports, system documen-
tation). Are any of these forms of written documentation
missing? Why? With what consequences? To what extent
does this written documentation fit with the information
you received in the group interview?

Interview systems analysts, users, and managers who have
been involved in JAD sessions. Determine the location,
structure, and outcomes of each of their JAD sessions.
Elicit their evaluations of their sessions. Were they produc-
tive? Why or why not?

Survey the literature on JAD in the academic and popular
press and determine the “state of the art.” How is JAD be-
ing used to help determine system requirements? Is using
JAD for this process beneficial>? Why or why not? Present
your analysis to the IS manager at your work or at your uni-
versity. Does your analysis of JAD fit with his or her percep-
tion? Why or why not? Is he or she currently using JAD, or
a JAD-like method, for determining system requirements?
Why or why not?

With the help of other students or your instructor, con-
tact someone in an organization who has carried out a
BPR study. What effects did this study have on information
systems? In what ways did information technology, espe-
cially disruptive technologies, facilitate making the radical
changes discovered in the BPR study?

Find an organization that uses Agile techniques for re-
quirements determination. What techniques do they use?
How did they discover them? What did they use before?
What is their evaluation of the Agile techniques they use?

CHAPTER 6

REFERENCES

DETERMINING SYSTEM REQUIREMENTS 179

Beck, K., and C. Andres. 2004. eXtreme Programming eXplained.
Upper Saddle River, NJ: Addison-Wesley.

Bedoll, R. 2003. “A Tale of Two Projects: How ‘Agile’” Methods
Succeeded After “Traditional’ Methods Had Failed in a Crit-
ical System-Development Project.” Proceedings of 2003 XP/
Agile Universe Conference. New Orleans, LA. August. Ber-
lin: Springer-Verlag, 25-34.

Constantine, L. 2002. “Process Agility and Software Usability: To-
ward Lightweight Usage-Centered Design.” Information Age
August/September. Available at www.infoage.idg.com.au/
index.php?id=244792583. Accessed February 12, 2004.

Davenport, T. H. 1993. Process Innovation: Reengineering Work
Through Information Technology. Boston: Harvard Business
School Press.

Dobyns, L., and C. Crawford-Mason. 1991. Quality or Else. Bos-
ton: Houghton-Mifflin.

Hammer, M. 1996. Beyond Reengineering. New York: Harper
Business.

Hammer, M., and J. Champy. 1993. Reengineering the Corporation.
New York: Harper Business.

Lucas, M. A. 1993. “The Way of JAD.” Database Programming &
Design. 6 (July): 42—49.

McConnell, S. 1996. Rapid Development. Redmond, WA: Micro-
soft Press.

Mintzberg, H. 1973. The Nature of Managerial Work. New York:
Harper & Row.

Moad, J. 1994. “After Reengineering: Taking Care of Business.”
Datamation. 40 (20): 40-44.

Naumann, J. D., and A. M. Jenkins. 1982. “Prototyping: The New
Paradigm for Systems Development.” MIS Quarterly 6(3):
29-44.

Patton, J. 2002. “Designing Requirements: Incorporating Usage-
Centered Design into an Agile SW Development Process.”
In D. Wells and L. Williams (eds.), Extreme Programming and
Agile Methods — XP/Agile Universe 2002, LNCS 2418, 1-12.
Berlin: Springer-Verlag.

Sharp, A., and P. McDermott. 2001. Workflow Modeling: Tools for
Process Improvement and Application Development. Norwood,
MA: Artech House Inc.

Teresko, J. 2004. “P&G’s Secret: Innovating Innovation.” Industry
Week 253 (12), 27-34.

Wood, J., and D. Silver. 1995. Joint Application Development, 2nd
ed. New York: John Wiley & Sons.

http://www.infoage.idg.com.au/index.php?id=244792583
http://www.infoage.idg.com.au/index.php?id=244792583

180

PETRI PETRIE ELECTRONICS
ELECTRONI

Chapter 6: Determining System Requirements

PART IIIT ANALYSIS

Jim Watanabe, the project manager, thought that although
the customer loyalty project at Petrie Electronics had
gone slowly at first, the past few weeks had been fast-
paced and busy. He spent much of his time planning and
conducting interviews with key stakeholders inside the
company. He also worked with the marketing group to
put together some focus groups made up of loyal custom-
ers, to get some ideas about what they would value in a
customer loyalty program. Jim had also spent some time
studying customer loyalty programs at other big retail
chains and those in other industries as well, such as the
airlines, which are known for their extensive customer
loyalty programs. As project manager, he also supervised
the efforts of his team members. Together, they collected
a great deal of data. Jim had just finished creating a high-
level summary of the information into a table he could
send to his team members (PE Table 6-1).

PE TABLE 6-1 Requirements and Constraints for Petrie’s

Customer Loyalty Project

Requirements:

e Effective customer incentives — System should be able to
effectively store customer activity and convert to rewards and
other incentives

® Easy for customers to use — Interface should be intuitive for
customer use

e Proven performance — System as proposed should have been
used successfully by other clients

e Easy to implement — Implementation should not require outside
consultants or extraordinary skills on the part of our staff or
require specialized hardware

e Scalable — System should be easily expandable as number of
participating customers grows

® Vendor support — Vendor should have proven track record of
reliable support and infrastructure in place to provide it

Constraints:

e Cost to buy - Licenses for one year should be under $500,000

e Cost to operate — Total operating costs should be no more than
$1 million per year

* Time to implement — Duration of implementation should not
exceed three months

e Staff to implement — Implementation should be successful with
the staff we have and with the skills they already possess

From the list of requirements, it was clear that he and
his team did not favor building a system from scratch in-
house. Jim was glad that the team felt that way. Not only
was building a system like this in-house an antiquated
practice, it was expensive and time consuming. As nice

as it might have been to develop a unique system just for
Petrie, there was little point in reinventing the wheel. The
IT staff would customize the system interface, and there
would be lots of work for Sanjay’s staff in integrating the
new system and its related components with Petrie’s ex-
isting systems, but the core of the system would have al-
ready been developed by someone else.

Just as he was finishing the e-mail he would send to
his team about the new system’s requirements and con-
straints, he received a new message from Sanjay. He had
asked Sanjay to take the lead in scouting out existing cus-
tomer loyalty systems that Petrie could license. Sanjay
conducted a preliminary investigation that was now com-
plete. His e-mail contained the descriptions of three of the
systems he found and studied (PE Table 6-2). Obviously,
Jim and his team would need to have a lot more informa-
tion about these alternatives, but Jim was intrigued by the
possibilities. He sent a reply to Sanjay, asking him to pass
the alternatives on to the team and to prepare a briefing
for the team that would include more detailed informa-
tion about each alternative.

PE TABLE 6-2 Alternatives for Petrie’s Customer Loyalty Project

Alternative A:

Data warehousing-centered system designed and licensed by
Standard Basic Systems Inc. (SBSI). The data warehousing tools
at the heart of the system were designed and developed by
SBSI and work with standard relational DBMS and relational /
OO hybrid DBMS. The SBSI tools and approach have been
used for many years and are well known in the industry, but SBSI-
certified staff are essential for implementation, operation, and
maintenance. The license is relatively expensive. The customer
loyalty application using the SBSI data warehousing tools is

an established application, used by many retail businesses in
other industries.

Alternative B:

Customer Relationship Management-centered system designed
and licensed by XRA Corporation. XRA is a pioneer in CRM
systems, so its CRM is widely recognized as an industry leader.
The system includes tools that support customer loyalty programs.
The CRM system itself is large and complex, but pricing in this
proposal is based only on modules used for the customer loyalty
application.

Alternative C:

Proprietary system designed and licensed by Nova Innovation
Group, Inc. The system is relatively new and leading edge, so

it has only been implemented in a few sites. The vendor is truly
innovative but small and inexperienced. The customer interface,
designed for a standard web browser, is stunning in its design
and is extremely easy for customers to use to check on their loyalty
program status. The software runs remotely, in the “cloud,” and
data related to the customer loyalty program would be stored in
the cloud foo.

CHAPTER 6

Case Questions

6.41 What do you think are the sources of the informa-
tion Jim and his team collected? How do you think
they collected all of that information?

6.42 Examine PE Table 6-1. Are there any requirements
or constraints that you can think of that were over-
looked? List them.

6.43 If you were looking for alternative approaches for
Petrie’s customer loyalty program, where would you

6.44

6.45

DETERMINING SYSTEM REQUIREMENTS 181

look for information? Where would you start? How
would you know when you were done?

Using the web, find three customizable customer
loyalty program systems being sold by vendors. Cre-
ate a table like PE Table 6-2 that compares them.
Why shouldn’t Petrie’s staff build their own unique
system in-house?

Chapter

Learning Objectives

After studying this chapter, you should be able to

7.1 understand the logical modeling of processes by
studying examples of data flow diagrams,

balance higher-level and lower-level data flow
diagrams,

22 4 N follow foy 7.5 use data flow diagrams as a tool to support the
; raw data flow diagrams following specific rules analysis of information systems,
and guidelines that lead to accurate and well- . . .
structured process models 7.6 discuss process modeling for electronic commerce
) : applications, and

7.3 decompose data flow diagrams into lower-level -])

diagrams 7.7 use decision tables to represent the logic of choice
in conditional statements.
Introduction

In the last chapter, you learned of various methods that
systems analysts use to collect the information neces-
sary to determine information systems requirements. In
this chapter, our focus will be on one tool that is used
to coherently represent the information gathered as part
of requirements determination—data flow diagrams.
Data flow diagrams enable you to model how data flow
through an information system, the relationships among
the data flows, and how data come to be stored at spe-
cific locations. Data flow diagrams also show the pro-
cesses that change or transform data. Because data flow
diagrams concentrate on the movement of data between
processes, these diagrams are called process models.

As its name indicates, a data flow diagram is a graph-
ical tool that allows analysts (and users, for that matter)
to depict the flow of data in an information system. The
system can be physical or logical, manual or computer-
based. In this chapter, you will learn how to draw and re-
vise data flow diagrams. We present the basic symbols used
in such diagrams and a set of rules that govern how these
diagrams are drawn. You will also learn about what to do
and what not to do when drawing data flow diagrams. Two

182

important concepts related to data flow diagrams are also
presented: balancing and decomposition. Toward the end
of the chapter, we present the use of data flow diagrams
as part of the analysis of an information system and as a
tool for supporting business process reengineering. You
will also learn how process modeling is important for the
analysis of electronic commerce applications. Also in this
chapter, you will learn about decision tables. Decision
tables allow you to represent the conditional logic that is
part of some data flow diagram processes. Finally, at the
end of the chapter, we have included special sections on
an object-oriented development approach to process and
logic modeling. These sections cover use cases, activity di-
agrams, and sequence diagrams. We have also included an
appendix on business process modeling.

PROCESS MODELING

Process modeling involves graphically representing the
functions, or processes, that capture, manipulate, store,
and distribute data between a system and its environment
and between components within a system. A common

¥ 2 E—
! b

CHAPTER 7 STRUCTURING SYSTEM PROCESS REQUIREMENTS 183

form of a process model is a data flow diagram (DFD). Over the years, several dif-
ferent tools have been developed for process modeling. In this chapter, we focus on
DFDs, the traditional process modeling technique of structured analysis and design
and one of the techniques most frequently used today for process modeling. We also
introduce you to decision tables, a well-known way to model the conditional logic
contained in many DFD processes.

Modeling a System’s Process for Structured Analysis

As Figure 7-1 shows, the analysis phase of the systems development life cycle has two
subphases: requirements determination and requirements structuring. The analy-
sis team enters the requirements structuring phase with an abundance of informa-
tion gathered during the requirements determination phase. During requirements
structuring, you and the other team members must organize the information into a
meaningful representation of the information system that currently exists and of the
requirements desired in a replacement system. In addition to modeling the process-
ing elements of an information system and how data are transformed in the system,
you must also model the processing logic (decision tables) and the structure of data
within the system (Chapter 8). For traditional structured analysis, a process model is
only one of three major complementary views of an information system. Together,
process, logic, and data models provide a thorough specification of an information
system and, with the proper supporting tools, also provide the basis for the automatic
generation of many working information system components.

Deliverables and Outcomes

In structured analysis, the primary deliverables from process modeling are a set of co-
herent, interrelated DFDs. Table 7-1 provides a more detailed list of the deliverables
that result when DFDs are used to study and document a system’s processes. First, a
context diagram shows the scope of the system, indicating which elements are inside
and which are outside the system. Second, DFDs of the system specify which pro-
cesses move and transform data, accepting inputs and producing outputs. These dia-
grams are developed with sufficient detail to understand the current system and to

Data flow diagram (DFD)

A picture of the movement of data between
external entities and the processes and
data sfores within a system.

Planning
Maintenance Analysis Requirements Determination
\/ Requirements Structuring
Implementation | g Design FIGURE 7-1
Systems development life cycle with the

analysis phase highlighted

184

PART III

ANALYSIS

TABLE 7-1 Deliverables for Process Modeling

1. Context DFD
2. DFDs of the system (adequately decomposed)
3. Thorough descriptions of each DFD component

eventually determine how to convert the current system into its replacement. Finally,
entries for all of the objects included in all of the diagrams are included in the proj-
ect dictionary or CASE repository. This logical progression of deliverables allows you
to understand the existing system. You can then abstract this system into its essential
elements to show how the new system should meet the information-processing re-
quirements identified during requirements determination. Remember, the deliver-
ables of process modeling are simply stating what you learned during requirements
determination; in later steps in the systems development life cycle, you and other
project team members will make decisions on exactly how the new system will deliver
these new requirements in specific manual and automated functions. Because re-
quirements determination and structuring are often parallel steps, DFDs evolve from
the more general to the more detailed as current and replacement systems are better
understood.

DFDs provide notation as well as illustrate important concepts about the move-
ment of data between manual and automated steps, and they offer a way to depict
work flow in an organization. DFDs continue to be beneficial to information systems
professionals as tools for both analysis and communication. For that reason, we de-
vote almost an entire chapter to DFDs, but we complement our coverage of DFDs
with an introduction to use cases and use case diagrams in the chapter appendix on
use case.

DATA FLOW DIAGRAMMING MECHANICS

DFDs are versatile diagramming tools. With only four symbols, you can use DFDs to
represent both physical and logical information systems. DFDs are not as good as
flowcharts for depicting the details of physical systems; on the other hand, flowcharts
are not very useful for depicting purely logical information flows. In fact, flowchart-
ing has been criticized by proponents of structured analysis and design because it
is too physically oriented. Flowcharting symbols primarily represent physical com-
puting equipment, such as terminals and permanent storage. One continual criti-
cism of system flowcharts has been that overreliance on such charts tends to result
in premature physical system design. Consistent with the incremental commitment
philosophy of the systems development life cycle (SDLC), you should wait to make
technology choices and to decide on physical characteristics of an information sys-
tem until you are sure all functional requirements are correct and accepted by users
and other stakeholders.

DFDs do not share this problem of premature physical design because they do
not rely on any symbols to represent specific physical computing equipment. They
are also easier to use than flowcharts because they involve only four different symbols.

Definitions and Symbols

There are two different standard sets of DFD symbols (see Figure 7-2); each set con-
sists of four symbols that represent the same things: data flows, data stores, processes,
and sources/sinks (or external entities). The set of symbols we will use in this book
was devised by Gane and Sarson (1979). The other standard set was developed by
DeMarco (1979) and Yourdon (Yourdon and Constantine, 1979).

CHAPTER 7 STRUCTURING SYSTEM PROCESS REQUIREMENTS 185

process

data store

source/sink

- data flow -
DeMarco and Yourdon Gane and Sarson
symbols symbols

A data flow can be best understood as data in motion, moving from one place
in a system to another. A data flow could represent data on a customer order form or
a payroll check; it could also represent the results of a query to a database, the con-
tents of a printed report, or data on a data entry computer display form. A data flow
is data that move together, so it can be composed of many individual pieces of data
that are generated at the same time and that flow together to common destinations.
A data store is data at rest. A data store may represent one of many different physical
locations for data; for example, a file folder, one or more computer-based file(s), or
anotebook. To understand data movement and handling in a system, it is not impor-
tant to understand the system’s physical configuration. A data store might contain
data about customers, students, customer orders, or supplier invoices. A process is
the work or actions performed on data so that they are transformed, stored, or dis-
tributed. When modeling the data processing of a system, it does not matter whether
a process is performed manually or by a computer. Finally, a source/sink is the origin
and/or destination of the data. Sources/sinks are sometimes referred to as external
entities because they are outside the system. Once processed, data or information
leave the system and go to some other place. Because sources and sinks are outside
the system we are studying, many of the characteristics of sources and sinks are of no
interest to us. In particular, we do not consider the following:

¢ Interactions that occur between sources and sinks

¢ What a source or sink does with information or how it operates (i.e., a source or
sink is a “black box”)

¢ How to control or redesign a source or sink because, from the perspective of
the system we are studying, the data a sink receives and often what data a source
provides are fixed

* How to provide sources and sinks direct access to stored data because, as exter-
nal agents, they cannot directly access or manipulate data stored within the sys-
tem; that is, processes within the system must receive or distribute data between
the system and its environment

The symbols for each set of DFD conventions are presented in Figure 7-2. In
both conventions, a data flow is depicted as an arrow. The arrow is labeled with a
meaningful name for the data in motion; for example, Customer Order, Sales
Receipt, or Paycheck. The name represents the aggregation of all the individual el-
ements of data moving as part of one packet, that is, all the data moving together

FIGURE 7-2
Comparison of DeMarco and Yourdon
and Gane and Sarson DFD symbol sets

Data store
Data af rest, which may take the form of
many different physical representations.

Process
The work or actions performed on data
so that they are transformed, stored, or

distributed.

Source/sink
The origin and/or destination of dato;
sometimes referred fo as external entities.

186 PARTIII ANALYSIS

sliein 2

Context diagram

An overview of an organizational system
that shows the system boundaries, external
entities that inferact with the system, and
the major information flows between the
enfifies and the system.

at the same time. A square is used in both conventions for sources/sinks and has a
name that states what the external agent is, such as Customer, Teller, EPA Office, or
Inventory Control System. The Gane and Sarson symbol for a process is a rectangle
with rounded corners; it is a circle for DeMarco and Yourdon. The Gane and Sarson
rounded rectangle has a line drawn through the top. The upper portion is used to
indicate the number of the process. Inside the lower portion is a name for the pro-
cess, such as Generate Paycheck, Calculate Overtime Pay, or Compute Grade Point
Average. The Gane and Sarson symbol for a data store is a rectangle that is missing its
right vertical side. At the left end is a small box used to number the data store, and
inside the main part of the rectangle is a meaningful label for the data store, such as
Student File, Transcripts, or Roster of Classes. The DeMarco and Yourdon data store
symbol consists of two parallel lines, which may be depicted horizontally or vertically.

As stated earlier, sources/sinks are always outside the information system and
define the boundaries of the system. Data must originate outside a system from one
or more sources, and the system must produce information to one or more sinks
(these are principles of open systems, and almost every information system is an
open system). If any data processing takes place inside the source/sink, it is of no
interest because this processing takes place outside the system we are diagramming.
A source/sink might consist of the following:

® Another organization or organization unit that sends data to or receives in-
formation from the system you are analyzing (e.g., a supplier or an academic
department—in either case, the organization is external to the system you are
studying)

® A person inside or outside the business unit supported by the system you are
analyzing who interacts with the system (e.g., a customer or loan officer)

* Another information system with which the system you are analyzing exchanges
information

Many times students who are just learning how to use DFDs will become con-
fused as to whether something is a source/sink or a process within a system. This
dilemma occurs most often when the data flows in a system cross office or depart-
mental boundaries so that some processing occurs in one office and the processed
data are moved to another office where additional processing occurs. Students are
tempted to identify the second office as a source/sink to emphasize the fact that
the data have been moved from one physical location to another (Figure 7-3a).
However, we are not concerned with where the data are physically located. We are
more interested in how they are moving through the system and how they are being
processed. If the processing of data in the other office may be automated by your
system or the handling of data there may be subject to redesign, then you should
represent the second office as one or more processes rather than as a source/sink
(Figure 7.3b).

Developing DFDs: An Example

To illustrate how DFDs are used to model the logic of data flows in information sys-
tems, we will present and work through an example. Consider Hoosier Burger, a fic-
tional restaurant in Bloomington, Indiana, owned by Bob and Thelma Mellankamp.
Some are convinced that its hamburgers are the best in Bloomington, maybe even in
southern Indiana. Many people, especially Indiana University students and faculty,
frequently eat at Hoosier Burger. The restaurant uses an information system that
takes customer orders, sends the orders to the kitchen, monitors goods sold and in-
ventory, and generates reports for management.

The information system is depicted as a DFD in Figure 7-4. The highest-level
view of this system, shown in the figure, is called a context diagram. You will notice
that this context diagram contains only one process, no data stores, four data flows,
and three sources/sinks. The single process, labeled 0, represents the entire system;

CHAPTER 7 STRUCTURING SYSTEM PROCESS REQUIREMENTS 187

CUSTOMER
A
Payment Record
Payment
Receipt
Payment Data) Make
\ 2 —» Bank
Ac ing Payment Data Deposit
~—
De ent
7/ N .
Deposit Data BANK
Credit Data D1 CUSTOMER
S ——
MASTER
CUSTOMER

Payment Record
Payment

Receipt

Make

Bank
Payment Data Deposit
< ————]

Update
Customer
Master

Deposit Data BANK

Credit Data CUSTOMER
» D1 \ASTER

all context diagrams have only one process, labeled 0. The sources/sinks repre-
sent the environmental boundaries of the system. Because the data stores of the
system are conceptually inside one process, data stores do not appear on a context
diagram.

The analyst must determine which processes are represented by the single pro-
cess in the context diagram. As you can see in Figure 7-5, we have identified four

CUSTOMER KITCHEN
[0 \
Customer Order
Food- Food Order
Receipt Ordering

System/
Management
Reports

RESTAURANT
MANAGER

FIGURE 7-3

Differences between sources/sinks and
processes

(a) An improperly drawn DFD showing a
process as a source/sink

(b) A DFD showing proper use of a
process

FIGURE 7-4
Context diagram of Hoosier Burger’s
food-ordering system

188 PARTIII ANALYSIS

FIGURE 7-5
Level-O DFD of Hoosier Burger's food-
ordering system

Level-0 diagram

A DFD that represents a system’s major
processes, data flows, and data stores af a
high level of detail.

CUSTOMER KITCHEN
Customer Order m
Receive and Food Order
Receipt Transform
Customer

kFood Ordty

Goods Inventory

Update Sold Data Update
Goods Sold <€ P> |nventory
File File

Formatted
Inventory Data

Formatted
Goods Sold Data

Goods Sold Inventory
D2 File Ol File
Daily Goods Sold Daily Inventory
Amounts Depletion Amounts
<€
Produce
Management| Management
Reports Reports > RESTAURANT
MANAGER

separate processes. The main processes represent the major functions of the system,
and these major functions correspond to actions such as the following:

1. Capturing data from different sources (e.g., Process 1.0)

2. Maintaining data stores (e.g., Processes 2.0 and 3.0)

3. Producing and distributing data to different sinks (e.g., Process 4.0)

4. High-level descriptions of data transformation operations (e.g., Process 1.0)

These major functions often correspond to the activities on the main system
menu.

We see that the system begins with an order from a customer, as was the case
with the context diagram. In the first process, labeled 1.0, we see that the customer
order is processed. The result is four streams, or flows, of data: (1) the food order is
transmitted to the kitchen, (2) the customer order is transformed into a list of goods
sold, (3) the customer order is transformed into inventory data, and (4) the process
generates a receipt for the customer.

Notice that the sources/sinks are the same in the context diagram and in this
diagram: the customer, the kitchen, and the restaurant’s manager. This diagram is
called a level-0 diagram because it represents the primary individual processes in the
system at the highest possible level. Each process has a number that ends in .0 (cor-
responding to the level number of the DFD).

Two of the data flows generated by the first process, Receive and Transform
Customer Food Order, go to external entities, so we no longer have to worry about
them. We are not concerned about what happens outside our system. Let’s trace
the flow of the data represented in the other two data flows. First, the data labeled
Goods Sold go to Process 2.0, Update Goods Sold File. The output for this process
is labeled Formatted Goods Sold Data. This output updates a data store labeled

CHAPTER 7 STRUCTURING SYSTEM PROCESS REQUIREMENTS 189

Goods Sold File. If the customer order was for two cheeseburgers, one order of
fries, and a large soft drink, each of these categories of goods sold in the data store
would be incremented appropriately. The Daily Goods Sold Amounts are then used
as input to Process 4.0, Produce Management Reports. Similarly, the remaining
data flow generated by Process 1.0, Inventory Data, serves as input for Process 3.0,
Update Inventory File. This process updates the Inventory File data store, based on
the inventory that would have been used to create the customer order. For example,
an order of two cheeseburgers would mean that Hoosier Burger now has two fewer
hamburger patties, two fewer burger buns, and four fewer slices of American cheese.
The Daily Inventory Depletion Amounts are then used as input to Process 4.0. The
data flow leaving Process 4.0, Management Reports, goes to the sink Restaurant
Manager.

Figure 7-5 illustrates several important concepts about information movement.
Consider the data flow Inventory Data moving from Process 1.0 to Process 3.0. We
know from this diagram that Process 1.0 produces this data flow and that Process 3.0
receives it. However, we do not know the timing of when this data flow is produced,
how frequently it is produced, or what volume of data is sent. Thus, this DFD hides
many physical characteristics of the system it describes. We do know, however, that
this data flow is needed by Process 3.0 and that Process 1.0 provides these needed
data.

Also implied by the Inventory Data data flow is that whenever Process 1.0 pro-
duces this flow, Process 3.0 must be ready to accept it. Thus, Processes 1.0 and 3.0
are coupled with each other. In contrast, consider the link between Process 2.0 and
Process 4.0. The output from Process 2.0, Formatted Goods Sold Data, is placed in
a data store and, later, when Process 4.0 needs such data, it reads Daily Goods Sold
Amounts from this data store. In this case, Processes 2.0 and 4.0 are decoupled by
placing a buffer, a data store, between them. Now, each of these processes can work
at their own pace, and Process 4.0 does not have to be ready to accept input at any
time. Further, the Goods Sold File becomes a data resource that other processes
could potentially draw upon for data.

Data Flow Diagramming Rules

You must follow a set of rules when drawing DFDs. Unlike system flowcharts, these
rules allow you (or a CASE tool) to evaluate DFDs for correctness. The rules for
DFDs are listed in Table 7-2. Figure 7-6 illustrates incorrect ways to draw DFDs and
the corresponding correct application of the rules. The rules that prescribe naming
conventions (rules G, G, I, and P) and those that explain how to interpret data flows
in and out of data stores (rules N and O) are not illustrated in Figure 7-6.

In addition to the rules in Table 7-2, there are two DFD guidelines that often

apply:

1. The inputs to a process are different from the outpuls of that process. The reason is that
processes, because they have a purpose, typically transform inputs into outputs,
rather than simply pass the data through without some manipulation. What may
happen is that the same input goes in and out of a process, but the process also
produces other new data flows that are the result of manipulating the inputs.

2. Objects on a DFD have unique names. Every process has a unique name. There is
no reason for two processes to have the same name. To keep a DFD uncluttered,
however, you may repeat data stores and sources/sinks. When two arrows have
the same data flow name, you must be careful that these flows are exactly the
same. It is easy to reuse the same data flow name when two packets of data are
almost the same but not identical. A data flow name represents a specific set of
data, and another data flow that has even one more or one less piece of data
must be given a different, unique name.

190

PART IIIT ANALYSIS

TABLE 7-2 Rules Governing Data Flow Diagramming

Process:

A. No process can have only outputs. It would be making data from nothing (a miracle). If an
object has only outputs, then it must be a source.

B. No process can have only inputs (a black hole). If an object has only inputs, then it must be
a sink.

C. A process has a verb phrase label.
Data Store:

D. Data cannot move directly from one data store to another data store. Data must be moved
by a process.

E. Data cannot move directly from an outside source to a data store. Data must be moved by a
process that receives data from the source and places the data into the data store.

F. Data cannot move directly to an outside sink from a data store. Data must be moved by a
process.

G. A data store has a noun phrase label.

Source/Sink:

H. Data cannot move directly from a source to a sink. It must be moved by a process if the data
are of any concern fo our system. Otherwise, the data flow is not shown on the DFD.

I. A source/sink has a noun phrase label.

Data Flow:

J. A data flow has only one direction of flow between symbols. It may flow in both directions
between a process and a data store to show a read before an update. The latter is usually
indicated, however, by two separate arrows because these happen at different times.

K. A fork in a data flow means that exactly the same data goes from a common location to
two or more different processes, data stores, or sources/sinks (this usually indicates different
copies of the same data going to different locations).

L. Ajoin in a data flow means that exactly the same data come from any of two or more
different processes, data stores, or sources/sinks to a common location.

M. A data flow cannot go directly back to the same process it leaves. There must be at least one
other process that handles the data flow, produces some other data flow, and returns the
original data flow to the beginning process.

N. A data flow to a data store means update (delete or change).
O. A dafa flow from a data store means retrieve or use.

P. A data flow has a noun phrase label. More than one data flow noun phrase can appear on
a single arrow as long as all of the flows on the same arrow move fogether as one package.

Functional decomposition

An iterative process of breaking the
description of a system down into finer and
finer detail, which creates a set of charts

in which one process on a given chart

is explained in greater detail on another

chart.

HOOSIER

e
-

(Source: Based on Celko, 1987.)

Decomposition of DFDs

In the earlier example of Hoosier Burger’s food-ordering system, we started with a
high-level context diagram. Upon thinking more about the system, we saw that the
larger system consisted of four processes. The act of going from a single system to
four component processes is called (functional) decomposition. Functional decompo-
sition is an iterative process of breaking the description or perspective of a system
down into finer and finer detail. This process creates a set of hierarchically related
charts in which one process on a given chart is explained in greater detail on another
chart. For the Hoosier Burger system, we broke down, or decomposed, the larger
system into four processes. Each resulting process (or subsystem) is also a candidate
for decomposition. Each process may consist of several subprocesses. Each subpro-
cess may also be broken down into smaller units. Decomposition continues until you
have reached the point at which no subprocess can logically be broken down any
further. The lowest level of a DFD is called a primitive DFD, which we define later in
this chapter.

Let’s continue with Hoosier Burger’s food-ordering system to see how a level-0
DFD can be further decomposed. The first process in Figure 7-5, called Receive and
Transform Customer Food Order, transforms a customer’s verbal food order (e.g., “Give
me two cheeseburgers, one small order of fries, and one regular orange soda”) into

CHAPTER 7 STRUCTURING SYSTEM PROCESS REQUIREMENTS 191

Rule Incorrect Correct FIGURE 7-6

Incorrect and correct ways to draw DFDs
. X -

u
.
i

i
i

A B
M.
A A A

four different outputs. Process 1.0 is a good candidate process for decomposition.
Think about all of the different tasks that Process 1.0 has to perform: (1) receive a cus-
tomer order, (2) transform the entered order into a form meaningful for the kitchen’s
system, (3) transform the order into a printed receipt for the customer, (4) transform
the order into goods sold data, and (5) transform the order into inventory data. At
least five logically separate functions can occur in Process 1.0. We can represent the
decomposition of Process 1.0 as another DFD, as shown in Figure 7-7.

192

FIGURE 7-7

Level-1 diagram showing the
decomposition of Process 1.0 from the
level-0 diagram for Hoosier Burger’s
food-ordering system

PART IIIT ANALYSIS

Level-n diagram

A DFD that is the result of n nested
decompositions from a process on a level-O
diagram.

FIGURE 7-8

Level-1 diagram showing the
decomposition of Process 4.0 from the
level-0 diagram for Hoosier Burger's
food-ordering system

Customer Customer
Order Receive Order Transform Food Order
Customer Order to
Kitchen

Order
Format

Inventory
Data

Customer Order Generate
Inventory

Decrements

Customer Order

Customer Order

Y

Generate
Goods Sold
Increments

Generate
Customer

Goods Sold Data

Receipt

Note that each of the five processes in Figure 7-7 is labeled as a subprocess of
Process 1.0: Process 1.1, Process 1.2, and so on. Also note that, just as with the other
DFDs we have looked at, each of the processes and data flows is named. You will also
notice that no sources or sinks are represented. Although you may include sources
and sinks, the context and level-0 diagrams show the sources and sinks. The DFD in
Figure 7-7 is called a level-1 diagram. If we should decide to decompose Processes
2.0, 3.0, or 4.0 in a similar manner, the DFDs we would create would also be level-1
diagrams. In general, a level-n diagram is a DFD that is generated from n nested de-
compositions from a level-0 diagram.

Processes 2.0 and 3.0 perform similar functions in that they both use data input
to update data stores. Because updating a data store is a singular logical function,
neither of these processes needs to be decomposed further. We can, however, de-
compose Process 4.0, Produce Management Reports, into at least three subprocesses:
Access Goods Sold and Inventory Data, Aggregate Goods Sold and Inventory Data,
and Prepare Management Reports. The decomposition of Process 4.0 is shown in the
level-1 diagram of Figure 7-8.

Each level-1, -2, or -n DFD represents one process on a level-n-1 DFD; each
DFD should be on a separate page. As a rule of thumb, no DFD should have more

Daily Inventory
Depletion Amounts

Daily Goods
Sold Amounts

Access
Goods Sold
and Inventory
Data

Goods Sold Data
——

Inventory Data

Aggregate
Goods Sold
and Inventory
Data

Prepare
Management
Reports

Aggregated Data

Management
Reports

CHAPTER 7 STRUCTURING SYSTEM PROCESS REQUIREMENTS 193

Aggregated Data Management Reports

Format
>

Management
Reports

than about seven processes because too many processes will make the diagram too
crowded and difficult to understand. To continue with the decomposition of Hoosier
Burger’s food-ordering system, we examine each of the subprocesses identified in
the two level-1 diagrams we have produced, one for Process 1.0 and one for Process
4.0. Should we decide that any of these subprocesses should be further decomposed,
we would create a level-2 diagram showing that decomposition. For example, if we
decided that Process 4.3 in Figure 7-8 should be further decomposed, we would cre-
ate a diagram that looks something like Figure 7-9. Again, notice how the subpro-
cesses are labeled.

Just as the labels for processes must follow numbering rules for clear commu-
nication, process names should also be clear yet concise. Typically, process names
begin with an action verb, such as Receive, Calculate, Transform, Generate, or
Produce. Process names often are the same as the verbs used in many computer pro-
gramming languages. Example process names include Merge, Sort, Read, Write, and
Print. Process names should capture the essential action of the process in just a few
words, yet be descriptive enough of the process’s action so that anyone reading the
name gets a good idea of what the process does. Many times, students just learning
DFDs will use the names of people who perform the process or the department in
which the process is performed as the process name. This practice is not very useful
because we are more interested in the action the process represents than the person
performing it or the place where it occurs.

Balancing DFDs

When you decompose a DFD from one level to the next, there is a conservation prin-
ciple at work. You must conserve inputs and outputs to a process at the next level of
decomposition. In other words, Process 1.0, which appears in a level-0 diagram, must
have the same inputs and outputs when decomposed into a level-1 diagram. This
conservation of inputs and outputs is called balancing.

Let’s look at an example of balancing a set of DFDs. Look back at Figure 7-4.
This is the context diagram for Hoosier Burger’s food-ordering system. Notice that
there is one input to the system, the customer order, which originates with the cus-
tomer. Notice also that there are three outputs: the customer receipt, the food order
intended for the kitchen, and management reports. Now look at Figure 7-5. This is
the level-0 diagram for the food-ordering system. Remember that all data stores and
flows to or from them are internal to the system. Notice that the same single input
to the system and the same three outputs represented in the context diagram also
appear at level 0. Further, no new inputs to or outputs from the system have been
introduced. Therefore, we can say that the context diagram and level-0 DFDs are
balanced.

Now look at Figure 7-7, where Process 1.0 from the level-0 DFD has been de-
composed. As we have seen before, Process 1.0 has one input and four outputs. The
single input and multiple outputs all appear on the level-1 diagram in Figure 7-7. No
new inputs or outputs have been added. Compare Process 4.0 in Figure 7-5 with its
decomposition in Figure 7-8. You see the same conservation of inputs and outputs.

Figure 7-10 shows one example of what an unbalanced DFD could look like.
The context diagram shows one input to the system, A, and one output, B. Yet in
the level-0 diagram, there is an additional input, C, and flows A and C come from

FIGURE 7-9

Level-2 diagram showing the
decomposition of Process 4.3 from the
level-1 diagram for Process 4.0 for
Hoosier Burger's food-ordering system

Balancing

The conservation of inputs and outputs
to a DFD process when that process is
decomposed fo a lower level.

194 PART III ANALYSIS

FIGURE 7-10
An unbalanced set of DFDs
(a) Context diagram

(b) Level-O0 diagram

FIGURE 7-11
Example of data flow splitting
(a) Composite data flow

(b) Disaggregated data flows

A B

SOURCE —> SINK

0
1.0
SOOUNRECE A
3>
Formatted A Formatted C
2.0 Pra—
S?VVF(‘)CE < —° 5 sk

different sources. These two DFDs are not balanced. If an input appears on a level-0
diagram, it must also appear on the context diagram. What happened with this ex-
ample? Perhaps, when drawing the level-0 DFD, the analyst realized that the system
also needed C in order to compute B. A and C were both drawn in the level-0 DFD,
but the analyst forgot to update the context diagram. When making corrections, the
analyst should also include “SOURCE ONE” and “SOURCE TWO” on the context
diagram. It is very important to keep DFDs balanced from the context diagram all
the way through each level of diagram you create.

A data flow consisting of several subflows on a level-n diagram can be split
apart on a level-n diagram for a process that accepts this composite data flow as
input. For example, consider the partial DFDs from Hoosier Burger, illustrated in
Figure 7-11. In Figure 7-11a, we see that a composite, or package, data flow—Payment
and Coupon—is input to the process. That is, the payment and coupon always flow
together and are input to the process at the same time. In Figure 7-11b, the process
is decomposed (sometimes referred to as exploded or nested) into two subprocesses,

Payment and Coupon

1

B

Payment

2

B

Coupon

CHAPTER 7 STRUCTURING SYSTEM PROCESS REQUIREMENTS 195

TABLE 7-3 Advanced Rules Governing Data Flow Diagramming

Q. A composite data flow on one level can be split into component data flows at the next level,
but no new data can be added and all data in the composite must be accounted for in one
or more subflows.

R. The inputs to a process must be sufficient to produce the outputs (including data placed
in data stores) from the process. Thus, all outputs can be produced, and all data in inputs
move somewhere: fo another process or to a data store outside the process or onto a more
detailed DFD showing a decomposition of that process.

S. At the lowest level of DFDs, new data flows may be added to represent data that are
transmitted under exceptional conditions; these data flows typically represent error messages
(e.g., “Customer not known; do you want to create a new customer?”) or confirmation
notices (e.g., “Do you want to delete this record?”).

T. To avoid having data flow lines cross each other, you may repeat data stores or sources/
sinks on a DFD. Use an additional symbol, like a double line on the middle vertical line of
a data store symbol or a diagonal line in a corner of a sink/source square, to indicate a
repeated symbol.

(Source: Based on Celko, 1987.)

and each subprocess receives one of the components of the composite data flow
from the higherlevel DFD. These diagrams are still balanced because exactly the
same data are included in each diagram.

The principle of balancing and the goal of keeping a DFD as simple as possible
led to four additional, advanced rules for drawing DFDs. These advanced rules are
summarized in Table 7-3. Rule Q covers the situation illustrated in Figure 7-11. Rule
R covers a conservation principle about process inputs and outputs. Rule S addresses
one exception to balancing. Rule T tells you how you can minimize clutter on a DFD.

AN EXAMPLE DFD

To illustrate the creation and refinement of DFDs, we will look at another example
from Hoosier Burger. We saw that the food-ordering system generates two types of
usage data—goods sold and inventory. At the end of each day, the manager, Bob
Mellankamp, generates the inventory report that tells him how much inventory should
have been used for each item associated with a sale. The amounts shown on the inven-
tory report are just one input to a largely manual inventory control system Bob uses
every day. Figure 7-12 lists the steps involved in Bob’s inventory control system.

In the Hoosier Burger inventory system, three sources of data come from
outside: suppliers, the food-ordering system inventory report, and stock on hand.
Suppliers provide invoices as input, and the system returns payments and orders as
outputs to the suppliers. Both the inventory report and the stock-on-hand amounts

. Meet delivery trucks before opening restaurant.

. Unload and store deliveries.

. Log invoices and file in accordion file.

. Manually add amounts received to stock logs.

. After closing, print inventory report.

. Count physical inventory amounts.

. Compare inventory report totals to physical count totals.

0 N O O B~ WDND =

. Compare physical count totals to minimum order quantities. If the amount is less,
make order; if not, do nothing.

9. Pay bills that are due and record them as paid.

slein 2

FIGURE 7-12

List of activities involved in Bob
Mellankamp’s inventory control system
for Hoosier Burger

196 PARTII ANALYSIS
Stock Log
Date: Jan 1 Jan 2
Reorder Starting Amount Amount Starting
ltem Quantity Amount Delivered Used Amount
Hamburger buns 50 dozen 5 50 43 12
Hot dog buns 25 dozen 0 25 22
English muffins 10 dozen 6 10 12 4
Napkins 2 cases 10 0 2 8
Straws 1 case 1 0 1 0
FIGURE 7-13

Hoosier Burger’s stock log form

provide inventory counts as system inputs. When Bob receives invoices from suppli-
ers, he records their receipt on an invoice log sheet and files the actual invoices in
his accordion file. Using the invoices, Bob records the amount of stock delivered on
the stock logs, which are paper forms posted near the point of storage for each inven-
tory item. Figure 7-13 gives a partial example of Hoosier Burger’s stock log. Notice
that the minimum order quantities—the stock level at which orders must be placed in
order to avoid running out of an item—appear on the log form. The stock log also has
spaces for entering the starting amount, amount delivered, and the amount used for
each item. Amounts delivered are entered on the sheet when Bob logs stock deliveries;
amounts used are entered after Bob has compared the amounts of stock used accord-
ing to a physical count and according to the numbers on the inventory report gener-
ated by the food-ordering system. We should note that Hoosier Burger has standing
daily delivery orders for some perishable items that are used every day, such as burger
buns, meats, and vegetables. Bob uses the minimum order quantities and the amount
of stock on hand to determine which orders need to be placed. He uses the invoices to
determine which bills need to be paid, and he carefully records each payment.

To create the DFD, we need to identify the essence of the inventory system
Bob has established. What are the key data necessary to keep track of inventory and
pay bills? What are the key processes involved? At least four key processes make up
Hoosier Burger’s inventory system: (1) account for anything added to inventory,
(2) account for anything taken from inventory, (3) place orders, and (4) pay bills.
Key data used by the system include inventories and stock-on-hand counts, however
they are determined. Major outputs from the system continue to be orders and pay-
ments. If we focus on the essential elements of the system, we obtain the context
diagram and the level-0 DFD shown in Figure 7-14.

At this point, we can revise the DFD based on any new functionality desired
for the system. For Hoosier Burger’s inventory system, Bob Mellankamp would like
to add three additional functions. First, Bob would like data on new shipments to
be entered into an automated system, thus doing away with paper stock log sheets.
Bob would like shipment data to be as current as possible because it will be entered
into the system as soon as the new stock arrives at the restaurant. Second, Bob would
like the system to determine automatically whether a new order should be placed.
Automatic ordering would relieve Bob of worrying about whether Hoosier Burger
has enough of everything in stock at all times. Finally, Bob would like to be able to
know, at any time, the approximate inventory level for each good in stock. For some
goods, such as hamburger buns, Bob can visually inspect the amount in stock and
determine approximately how much is left and how much more is needed before
closing time. For other items, however, Bob may need a rough estimate of what is in
stock more quickly than he can estimate via a visual inspection.

CHAPTER 7

Orders

STRUCTURING SYSTEM PROCESS REQUIREMENTS

Invoices

SUPPLIER

STOCK
ON HAND

Payments

Invoices

R

Update

SUPPLIER
A A

Inventory
Added

Counts

e

197

FIGURE 7-14
(a) Context diagram for Hoosier Burger's
inventory control system

STOCK
ON HAND

Update

Inventory
Used

Amounts Added
——>» D1

Payments Invoices

INVENTORY

Amounts Used

Orders

Inventory Levels

Generate
Orders

Generate
Payments

Quantities

Minimum Order

The revised DFD for Hoosier Burger’s inventory system is shown in Figure 7-15.
The main difference between the DFD in Figure 7-14b and the revised DFD in
Figure 7-15 is the new Process 5.0, which allows for querying the inventory data to
get an estimate of how much of an item is in stock. Bob’s two other requests for
change can both be handled within the existing logical view of the inventory system.

(b) Level-O DFD for Hoosier Burger’s
inventory control system

Invoices Counts
STOCK
SUPPLIER
; ; ON HAND
A A 1.0 2.0
Update Update
Inventory Inventory
Added Used
Amounts Amounts
Payments Invoices | Orders Added Used
D1 INVENTORY
3.0 5.0
Inventory Inventory
Generate Levels Levels | Quetry Query Result
nventory
Y Orders o
4.0 Minimum Order Query
Quantities Request
Generate
Payments MANAGER
FIGURE 7-15

Revised level-O DFD for Hoosier Burger’s inventory control system

198 PARTIII ANALYSIS

DFD completeness
The extent to which all necessary
components of a DFD have been included

and fully described.

Process 1.0, Update Inventory Added, does not indicate whether the updates are in
real time or batched, or whether the updates occur on paper or as part of an auto-
mated system. Therefore, immediately entering shipment data into an automated
system is encompassed by Process 1.0. Similarly, Process 2.0, Generate Orders, does
not indicate whether Bob or a computer generates orders or whether the orders are
generated on a real-time or batch basis, so Bob’s request that orders be generated
automatically by the system is already represented by Process 3.0.

USING DATA FLOW DIAGRAMMING IN THE
ANALYSIS PROCESS

Learning the mechanics of drawing DFDs is important because DFDs have proven
to be essential tools for the structured analysis process. Beyond the issue of drawing
mechanically correct DFDs, there are other issues related to process modeling with
which you, as an analyst, must be concerned. Such issues, including whether the
DFDs are complete and consistent across all levels, are dealt with in the next section,
which covers guidelines for drawing DFDs. Another issue to consider is how you can
use DFDs as a useful tool for analysis. In these final sections, we also illustrate how
DFDs can be used to support business process reengineering.

Guidelines for Drawing DFDs

In this section, we will consider additional guidelines for drawing DFDs that extend
beyond the simple mechanics of drawing diagrams and making sure that the rules
listed in Tables 7-2 and 7-3 are followed. These guidelines include (1) completeness,
(2) consistency, (3) timing considerations, (4) the iterative nature of drawing DFDs,
and (5) primitive DFDs.

Completeness The concept of DFD completeness refers to whether you have in-
cluded in your DFDs all of the components necessary for the system you are model-
ing. If your DFD contains data flows that do not lead anywhere or data stores, pro-
cesses, or external entities that are not connected to anything else, your DFD is not
complete. Most CASE tools have built-in facilities that you can run to help you de-
termine if your DFD is incomplete. When you draw many DFDs for a system, it is not
uncommon to make errors. CASE tool analysis functions or walk-throughs with other
analysts can help you identify such problems.

Not only must all necessary elements of a DFD be present, each of the compo-
nents must be fully described in the project dictionary. With most CASE tools, the
project dictionary is linked with the diagram. That is, when you define a process, data
flow, source/sink, or data store on a DFD, an entry is automatically created in the
repository for that element. You must then enter the repository and complete the el-
ement’s description. Different descriptive information can be kept about each of the
four types of elements on a DFD, and each CASE tool or project dictionary standard
an organization adopts has different entry information. Data flow repository entries
typically include the following:

e The label or name for the data flow as entered on the DFDs (Note: Case and
punctuation of the label matter, but if exactly the same label is used on multiple
DFDs, whether nested or not, then the same repository entry applies to each
reference.)

A short description defining the data flow

A list of other repository objects grouped into categories by type of object

The composition or list of data elements contained in the data flow

Notes supplementing the limited space for the description that go beyond defin-
ing the data flow to explaining the context and nature of this repository object

CHAPTER 7 STRUCTURING SYSTEM PROCESS REQUIREMENTS 199

* Alist of locations (the names of the DFDs) on which this data flow appears
and the names of the sources and destinations on each of these DFDs for the
data flow

By the way, it is this tight linkage between diagrams and the CASE repository
that creates much of the value of a CASE tool. Although very sophisticated drawing
tools, as well as forms and word-processing systems, exist, these stand-alone tools do
not integrate graphical objects with their textual descriptions as CASE tools do.

Consistency The concept of DFD consistency refers to whether or not the depic-
tion of the system shown at one level of a nested set of DFDs is compatible with
the depictions of the system shown at other levels. A gross violation of consistency
would be a level-1 diagram with no level-0 diagram. Another example of inconsis-
tency would be a data flow that appears on a higher-level DFD but not on lower levels
(also a violation of balancing). Yet another example of inconsistency is a data flow
attached to one object on a lower-level diagram but also attached to another object
at a higher level; for example, a data flow named Payment, which serves as input to
Process 1 on a level-0 DFD, appears as input to Process 2.1 on a level-1 diagram for
Process 2.

CASE tools also have analysis facilities that you can use to detect such inconsis-
tencies across nested DFDs. For example, when you draw a DFD using a CASE tool,
most tools will automatically place the inflows and outflows of a process on the DFD
you create when you inform the tool to decompose that process. In manipulating
the lower-level diagram, you could accidentally delete or change a data flow that
would cause the diagrams to be out of balance; thus, a consistency-check facility with
a CASE tool is quite helpful.

Timing You may have noticed in some of the DFD examples we have presented that
DFDs do not do a very good job of representing time. On a given DFD, there is no
indication of whether a data flow occurs constantly in real time, once per week, or
once per year. There is also no indication of when a system would run. For example,
many large, transaction-based systems may run several large, computing-intensive
jobs in batch mode at night, when demands on the computer system are lighter.
A DFD has no way of indicating such overnight batch processing. When you draw
DFDs, then, draw them as if the system you are modeling has never started and will
never stop.

lterative Development The first DFD you draw will rarely capture perfectly the sys-
tem you are modeling. You should count on drawing the same diagram over and
over again, in an iterative fashion. With each attempt, you will come closer to a good
approximation of the system or aspect of the system you are modeling. Iterative DFD
development recognizes that requirements determination and requirements struc-
turing are interacting, not sequential, subphases of the analysis phase of the SDLC.

One rule of thumb is that it should take you about three revisions for each DFD
you draw. Fortunately, CASE tools make revising drawings a lot easier than it would
be if you had to draw each revision with a pencil and a template.

Primitive DFDs One of the more difficult decisions you need to make when draw-
ing DFDs is when to stop decomposing processes. One rule is to stop drawing when
you have reached the lowest logical level; however, it is not always easy to know what
the lowest logical level is. Other, more concrete rules for when to stop decomposing
include the following:

® When you have reduced each process to a single decision or calculation or to a
single database operation, such as retrieve, update, create, delete, or read

* When each data store represents data about a single entity, such as a customer,
employee, product, or order

DFD consistency

The extent to which information contained
on one level of a set of nested DFDs is also
included on other levels.

200 PART I ANALYSIS

Primitive DFD
The lowest level of decomposition for a

DFD.

Gap analysis

The process of discovering discrepancies
befween two or more sets of DFDs or
discrepancies within a single DFD.

* When the system user does not care to see any more detail or when you and
other analysts have documented sufficient detail to do subsequent systems devel-
opment tasks

* When every data flow does not need to be split further to show that different
data are handled in different ways

® When you believe that you have shown each business form or transaction, com-
puter online display, and report as a single data flow (this often means, for ex-
ample, that each system display and report title corresponds to the name of an
individual data flow)

* When you believe there is a separate process for each choice on all lowest-level
menu options for the system

Obviously, the iteration guideline discussed earlier and the various feedback
loops in the SDLC (see Figure 7-1) suggest that when you think you have met the
rules for stopping, you may later discover nuances to the system that require you to
further decompose a set of DFDs.

By the time you stop decomposing a DFD, it may be quite detailed. Seemingly
simple actions, such as generating an invoice, may pull information from several en-
tities and may also return different results depending on the specific situation. For
example, the final form of an invoice may be based on the type of customer (which
would determine such things as discount rate), where the customer lives (which would
determine such things as sales tax), and how the goods are shipped (which would de-
termine such things as the shipping and handling charges). At the lowest-level DFD,
called a primitive DFD, all of these conditions would have to be met. Given the amount
of detail called for in a primitive DFD, perhaps you can see why many experts believe
analysts should not spend their time completely diagramming the current physical
information system because much of the detail will be discarded when the current
logical DFD is created.

Using the guidelines presented in this section will help you to create DFDs that
are more than just mechanically correct. Your DFDs will also be robust and accurate
representations of the information system you are modeling. Primitive DFDs facili-
tate consistency checks with the documentation produced from other requirements
structuring techniques and make it easy for you to transition to system design steps.
Having mastered the skills of drawing good DFDs, you can now use them to support
the analysis process, the subject of the next section.

Using DFDs as Analysis Tools

We have seen that DFDs are versatile tools for process modeling and that they can be
used to model systems that are either physical or logical, current or new. DFDs can
also be used in a process called gap analysis. Analysts can use gap analysis to discover
discrepancies between two or more sets of DFDs, representing two or more states of
an information system, or discrepancies within a single DFD.

Once the DFDs are complete, you can examine the details of individual DFDs
for such problems as redundant data flows, data that are captured but are not used
by the system, and data that are updated identically in more than one location. These
problems may not have been evident to members of the analysis team or to other
participants in the analysis process when the DFDs were created. For example, re-
dundant data flows may have been labeled with different names when the DFDs were
created. Now that the analysis team knows more about the system it is modeling,
such redundancies can be detected. Such redundancies can be detected most easily
from CASE tool repository reports. For example, many CASE tools can generate a
report that lists all of the processes that accept a given data element as input (re-
member, a list of data elements is likely part of the description of each data flow).
From the labels of these processes, you can determine whether the data are captured

CHAPTER 7 STRUCTURING SYSTEM PROCESS REQUIREMENTS

redundantly or if more than one process is maintaining the same data stores. In such
cases, the DFDs may well accurately mirror the activities occurring in the organi-
zation. Because the business processes being modeled took many years to develop,
sometimes with participants in one part of the organization adapting procedures
in isolation from other participants, redundancies and overlapping responsibilities
may well have resulted. The careful study of the DFDs created as part of analysis
can reveal these procedural redundancies and allow them to be corrected as part of
system design.

Inefficiencies can also be identified by studying DFDs, and there are a wide va-
riety of inefficiencies that might exist. Some inefficiencies relate to violations of DFD
drawing rules. For example, a violation of rule R from Table 7-3 could occur because
obsolete data are captured but never used within a system. Other inefficiencies are
due to excessive processing steps. For example, consider the correct DFD in item M
of Figure 7-1. Although this flow is mechanically correct, such a loop may indicate
potential delays in processing data or unnecessary approval operations.

Similarly, a set of DFDs that models the current logical system can be compared
with DFDs that model the new logical system to better determine which processes
systems developers need to add or revise when building the new system. Processes for
which inputs, outputs, and internal steps have not changed can possibly be reused
in the construction of the new system. You can compare alternative logical DFDs to
identify those few elements that must be discussed in evaluating competing opinions
on system requirements. The logical DFDs for the new system can also serve as the
basis for developing alternative design strategies for the new physical system. As we
saw with the Hoosier Burger example, a process on a DFD can be physically imple-
mented in several different ways.

Using DFDs in Business Process Reengineering

DFDs are also useful for modeling processes in business process reengineering
(BPR), which you read about in Chapter 6. To illustrate the usefulness of DFDs for
BPR, let’s look at an example from Hammer and Champy (1993). Hammer and
Champy use IBM Credit Corporation as an example of a firm that successfully reengi-
neered its primary business process. IBM Credit Corporation provides financing for
customers making large purchases of IBM computer equipment. Its job is to analyze
deals proposed by salespeople and write the final contracts governing those deals.

According to Hammer and Champy, IBM Credit Corporation typically took six
business days to process each financing deal. The process worked like this: First, the
salesperson called in with a proposed deal. The call was taken by one of a half dozen
people sitting around a conference table. Whoever received the call logged it and
wrote the details on a piece of paper. A clerk then carried the paper to a second per-
son, who initiated the next step in the process by entering the data into a computer
system and checking the client’s creditworthiness. This person then wrote the details
on a piece of paper and carried the paper, along with the original documentation, to
aloan officer. Then, in a third step, the loan officer modified the standard IBM loan
agreement for the customer. This step involved a separate computer system from the
one used in step two.

In the fourth step, details of the modified loan agreement, along with the other
documentation, were sent on to the next station in the process, where a different
clerk determined the appropriate interest rate for the loan. This step also involved its
own information system. In step five, the resulting interest rate and all of the paper
generated up to this point were then carried to the next stop, where the quote letter
was created. Once complete, the quote letter was sent via overnight mail back to the
salesperson.

Only reading about this process makes it seem complicated. We can use DFDs
to illustrate the overall process (see Figure 7-16). DFDs help us see that the process

201

202 PARTIII ANALYSIS

FIGURE 7-16

IBM Credit Corporation’s primary work
process before BPR

(Source: Based on Hammer and Champy,
1993.)

FIGURE 7-17

IBM Credit Corporation’s primary work
process after BPR

(Source: Based on Hammer and Champy,
1993.)

Salesperson D1 | Interest Files

Request

Log
Request

Determine
Interest
Rate

Documentation Documentation

Check
Credit-
worthiness

Documentation

Documentation Create

Quote
Letter

Status Modify
Loan
D2 Credit Files Agreement Contract Salesperson

is not as complicated as it is tedious and wasteful, especially when you consider that
so many different people and computer systems were used to support the work at
each step.

According to Hammer and Champy, two IBM managers decided to see if they
could improve the overall process at IBM Credit Corporation. They took a call from a
salesperson and walked it through the system. These managers found that the actual
work being done on a contract only took 90 minutes. For much of the rest of the
six days it took to process the deal, the various bits of documentation were sitting in
someone’s in-basket waiting to be processed.

IBM Credit Corporation management decided to reengineer its entire process.
The five sets of task specialists were replaced with generalists. Now each call from
the field goes to a single clerk, who does all the work necessary to process the con-
tract. Instead of having different people check for creditworthiness, modify the basic
loan agreement, and determine the appropriate interest rate, one person does it all.
IBM Credit Corporation still has specialists for the few cases that are significantly
different from what the firm routinely encounters. In addition, the process is now
supported by a single computer system. The new process is modeled by the DFD
in Figure 7-17. The most striking difference between the DFD in Figure 7-16 and
the DFD in Figure 7-17, other than the number of process boxes in each one, is

—

D1 | Interest Files

Request

Process

Contract | Specialists
Supporting
Data

Salesperson

Contract

Status

D2 | Credit Files

CHAPTER 7

the lack of documentation flow in Figure 7-17. The resulting process is much sim-
pler and cuts down dramatically on any chance of documentation getting lost be-
tween steps. Redesigning the process from beginning to end allowed IBM Credit
Corporation to increase the number of contracts it can handle by 100-fold—not 100
percent, which would only be doubling the amount of work. BPR allowed IBM Credit
Corporation to handle 100 times more work in the same amount of time and with
fewer people!

MODELING LOGIC WITH DECISION TABLES

A decision table is a diagram of process logic where the logic is reasonably compli-
cated. All of the possible choices and the conditions the choices depend on are rep-
resented in tabular form, as illustrated in the decision table in Figure 7-18.

The decision table in Figure 7-18 models the logic of a generic payroll system.
The table has three parts: the condition stubs, the action stubs, and the rules. The
condition stubs contain the various conditions that apply to the situation the table
is modeling. In Figure 7-18, there are two condition stubs for employee type and
hours worked. Employee type has two values: “S,” which stands for salaried, and “H,”
which stands for hourly. Hours worked has three values: less than 40, exactly 40,
and more than 40. The action stubs contain all the possible courses of action that
result from combining values of the condition stubs. There are four possible courses
of action in this table: Pay Base Salary, Calculate Hourly Wage, Calculate Overtime,
and Produce Absence Report. You can see that not all actions are triggered by all
combinations of conditions. Instead, specific combinations trigger specific actions.
The part of the table that links conditions to actions is the section that contains
the rules.

To read the rules, start by reading the values of the conditions as specified in
the first column: Employee type is “S,” or salaried, and hours worked is less than
40. When both of these conditions occur, the payroll system is to pay the base sal-
ary. In the next column, the values are “H” and “<40,” meaning an hourly worker
who worked less than 40 hours. In such a situation, the payroll system calculates
the hourly wage and makes an entry in the Absence Report. Rule 3 addresses the
situation when a salaried employee works exactly 40 hours. The system pays the
base salary, as was the case for rule 1. For an hourly worker who has worked exactly
40 hours, rule 4 calculates the hourly wage. Rule 5 pays the base salary for sala-
ried employees who work more than 40 hours. Rule 5 has the same action as rules
1 and 3 and governs behavior with regard to salaried employees. The number of
hours worked does not affect the outcome for rules 1, 3, or 5. For these rules, hours
worked is an indifferent condition in that its value does not affect the action taken.

Conditions/ Rules
Courses of Action] 5 3 5 6

Condition | Employee type S H S H S H
Stubs Hours worked <40 | <40 | 40 | 40 [>40 | >40
Action Pay base salary X X X
Sl Calculate hourly wage X X X

Calculate overtime X

Produce absence report X

STRUCTURING SYSTEM PROCESS REQUIREMENTS

203

Decision table

A mairix representation of the logic of a
decision; it specifies the possible conditions
for the decision and the resulting actions.

Condition stubs
The part of a decision table that lists the
conditions relevant fo the decision.

Action stubs

The part of a decision table that lists
the actions that result for a given sef of
conditions.

Rules

The part of a decision fable that specifies
which acfions are 1o be followed for a
given sef of conditions.

Indifferent condition

In a decision table, a condition whose
value does not affect which actions are
taken for two or more rules.

FIGURE 7-18
Complete decision table for payroll
system example

204 PARTIII ANALYSIS

FIGURE 7-19
Reduced decision table for payroll system
example

Conditions/

Courses of Action 4
Employee type H
Hours worked >40
Pay base salary
Calculate hourly wage X
Calculate overtime X
Produce absence report

Rule 6 calculates hourly pay and overtime for an hourly worker who has worked
more than 40 hours.

Because of the indifferent condition for rules 1, 3, and 5, we can reduce the
number of rules by condensing rules 1, 3, and 5 into one rule, as shown in Figure 7-19.
The indifferent condition is represented with a dash. Whereas we started with a deci-
sion table with six rules, we now have a simpler table that conveys the same informa-
tion with only four rules.

In constructing these decision tables, we have actually followed a set of basic
procedures:

1. Name the conditions and the values that each condition can assume. Determine all
of the conditions that are relevant to your problem and then determine all
of the values each condition can take. For some conditions, the values will
be simply “yes” or “no” (called a limited entry). For others, such as the condi-
tions in Figures 7-18 and 7-19, the conditions may have more values (called an
extended entry).

2. Name all possible actions that can occur. The purpose of creating decision tables is to
determine the proper course of action given a particular set of conditions.

3. List all possible rules. When you first create a decision table, you have to create an
exhaustive set of rules. Every possible combination of conditions must be repre-
sented. It may turn out that some of the resulting rules are redundant or make
no sense, but these determinations should be made only after you have listed
every rule so that no possibility is overlooked. To determine the number of rules,
multiply the number of values for each condition by the number of values for ev-
ery other condition. In Figure 7-18, we have two conditions, one with two values
and one with three, so we need 2 x 3, or 6, rules. If we added a third condition
with three values, we would need 2 x 3 x 3, or 18, rules.

When creating the table, alternate the values for the first condition, as we
did in Figure 7-18 for type of employee. For the second condition, alternate the
values but repeat the first value for all values of the first condition, then repeat
the second value for all values of the first condition, and so on. You essentially
follow this procedure for all subsequent conditions. Notice how we alternated
the values of hours worked in Figure 7-18. We repeated “<40” for both values of
type of employee, “S” and “H.” Then we repeated “40,” and then “>40.”

4. Define the actions for each rule. Now that all possible rules have been identified,
provide an action for each rule. In our example, we were able to figure out what
each action should be and whether all of the actions made sense. If an action
doesn’t make sense, you may want to create an “impossible” row in the action
stubs in the table to keep track of impossible actions. If you can’t tell what the sys-
tem ought to do in that situation, place question marks in the action stub spaces
for that particular rule.

CHAPTER 7 STRUCTURING SYSTEM PROCESS REQUIREMENTS

5. Simplify the decision table. Make the decision table as simple as possible by remov-
ing any rules with impossible actions. Consult users on the rules where system
actions aren’t clear and either decide on an action or remove the rule. Look
for patterns in the rules, especially for indifferent conditions. We were able to
reduce the number of rules in the payroll example from six to four, but greater
reductions are often possible.

Let’s look at an example from Hoosier Burger. The Mellankamps are trying
to determine how they reorder food and other items they use in the restaurant. If
they are going to automate the inventory control functions at Hoosier Burger, they
need to articulate their reordering process. In thinking through the problem, the
Mellankamps realize that how they reorder depends on whether the item is perish-
able. If an item is perishable, such as meat, vegetables, or bread, the Mellankamps
have a standing order with a local supplier stating that a prespecified amount of food
is delivered each weekday for that day’s use and each Saturday for weekend use. If
the item is not perishable, such as straws, cups, and napkins, an order is placed when
the stock on hand reaches a certain predetermined minimum reorder quantity. The
Mellankamps also realize the importance of the seasonality of their work. Hoosier
Burger’s business is not as good during the summer months when the students are
oft campus as it is during the academic year. They also note that business falls off
during Christmas and spring break. Their standing orders with all their suppliers are
reduced by specific amounts during the summer and holiday breaks. Given this set of
conditions and actions, the Mellankamps put together an initial decision table (see
Figure 7-20).

Notice three things about Figure 7-20. First, notice how the values for the third
condition have been repeated, providing a distinctive pattern for relating the values
for all three conditions to each other. Every possible rule is clearly provided in this
table. Second, notice that we have 12 rules. Two values for the first condition (type
of item) times 2 values for the second condition (time of week) times 3 values for
the third condition (season of year) equals 12 possible rules. Third, notice how the

Conditions/ Rules

Courses of Action 1 1ol 3lalslel718]9l10l11 12
Type of item PI{N|PIN|[P[N|P|N|P|NJ|P|N
Time of week D/ D W|W|D|D|W|W|D
Season of year A|lA|A|A|S|S|S|S|H|H|H|H
Standing daily order X X X
Standing weekend order X X X
Minimum order quantity X X X X X X
Holiday reduction X X
Summer reduction X X
Type of item: Time of week: Season of year
P = perishable D = weekday A = academic year
N = nonperishable W = weekend S = summer

H = holiday

FIGURE 7-20
Complete decision table for Hoosier Burger’s inventory reordering

205

206 PARTIII ANALYSIS

FIGURE 7-21
Reduced decision table for Hoosier
Burger’s inventory reordering

e PINE
VALLEY
= FURNITURE

o

Conditions/ Rules

Courses of Action] 5 3 4 5 6
Type of item P P P P P ® N
Time of week D W D w D W -
Season of year A A S S H H -
Standing daily order X X X
Standing weekend order X X X
Minimum order quantity X
Holiday reduction X X
Summer reduction X X

action for nonperishable items is the same, regardless of day of week or time of year.
For nonperishable goods, both time-related conditions are indifferent. Collapsing
the decision table accordingly gives us the decision table in Figure 7-21. Now there
are only 7 rules instead of 12.

You have now learned how to draw and simplify decision tables. You can
also use decision tables to specify additional decision-related information. For ex-
ample, if the actions that should be taken for a specific rule are more complicated
than one or two lines of text can convey or if some conditions need to be checked
only when other conditions are met (nested conditions), you may want to use
separate, linked decision tables. In your original decision table, you can specify
an action in the action stub that says “Perform Table B.” Table B could contain
an action stub that returns to the original table, and the return would be the ac-
tion for one or more rules in Table B. Another way to convey more information
in a decision table is to use numbers that indicate sequence rather than Xs where
rules and action stubs intersect. For example, for rules 3 and 4 in Figure 7-21, it
would be important for the Mellankamps to account for the summer reduction
to modify the existing standing order for supplies. “Summer reduction” would
be marked with a “1” for rules 3 and 4, whereas “Standing daily order” would be
marked with a “2” for rule 3, and “Standing weekend order” would be marked
with a “2” for rule 4.

You have seen how decision tables can model the relatively complicated logic
of a process. As such, decision tables are compact; you can pack a lot of information
into a small table. Decision tables also allow you to check for the extent to which your
logic is complete, consistent, and not redundant.

ELECTRONIC COMMERCE APPLICATION: PROCESS
MODELING USING DATA FLOW DIAGRAMS

Process modeling for an Internet-based electronic commerce application is no dif-
ferent than the process followed for other applications. In chapter 6, you read how
Pine Valley Furniture (PVF) determined the system requirements for their WebStore
project, a project to sell furniture products over the Internet. In this section, we ana-
lyze the WebStore’s high-level system structure and develop a level-0 DFD for those
requirements.

CHAPTER 7 STRUCTURING SYSTEM PROCESS REQUIREMENTS

TABLE 7-4 System Structure of the WebStore and Corresponding Level-0 Processes

WebStore System Processes
Q Main Page Information Display (minor/no processes)
¢ Product Line (Catalog) 1.0 Browse Catalog
v Desks 2.0 Select ltem for Purchase
v Chairs
v Tables
v File Cabinets
e Shopping Cart 3.0 Display Shopping Cart
e Checkout 4.0 Check Out Process Order
e Account Profile 5.0 Add/Modify Account Profile
e Order Status/History 6.0 Order Status Request
e Customer Comments Information Display (minor/no processes)

Q Company Information
0 Feedback
0 Contact Information

Process Modeling for Pine Valley Furniture’s WebStore

After completing the Joint Application Design (JAD) session, senior systems analyst
Jim Woo went to work on translating the WebStore system structure into a DFD. His
first step was to identify the level-0—major system—processes. To begin, he care-
fully examined the outcomes of the JAD session that focused on defining the system
structure of the WebStore system. From this analysis, he identified six high-level
processes that would become the foundation of the level-0 DFD. These processes,
listed in Table 7-4, were the “work” or “action” parts of the website. Note that each
of these processes corresponds to the major processing items listed in the system
structure.

Next, Jim determined that it would be most efficient if the WebStore system
exchanged information with existing PVF systems rather than capture and store re-
dundant information. This analysis concluded that the WebStore should exchange
information with the Purchasing Fulfillment System (a system for tracking orders
[see Chapter 3]) and the Customer Tracking System (a system for managing cus-
tomer information). These two existing systems will be “sources” (providers) and
“sinks” (receivers) of information for the WebStore system. When a customer opens
an account, his or her information will be passed from the WebStore system to the
Customer Tracking System. When an order is placed, information will be stored in
the Purchasing Fulfillment System. When a customer requests status information
on a prior order, information will be retrieved from the Purchase Fulfillment System.

Finally, Jim found that the system would need to access two additional data
sources. First, in order to produce an online product catalog, the system would need
to access the inventory database. Second, to store the items a customer wanted to
purchase in the Webstore’s shopping cart, a temporary database would need to be
created. Once a transaction is completed, the shopping cart data can be deleted.
With this information, Jim was able to develop the level-0 DFD for the Webstore sys-
tem, which is shown in Figure 7-22. He then felt that he had a good understanding of
how information would flow through the Webstore, of how a customer would inter-
act with the system, and of how the Webstore would share information with existing
PVF systems. Each of these high-level processes would eventually need to be further
decomposed before system design could proceed. Yet, before doing that, he wanted
to get a clear picture of exactly what data were needed throughout the entire system.
We will discover the outcomes of this analysis activity—conceptual data modeling—
in Chapter 8.

207

208 PARTIII ANALYSIS

Order
Status
Information Order
Status
Order Information
Order Status
Number Request
Customer
Add/Modify Information Order
Account <€ CUSTOMER Number
Profile
Customer
Customer Information/ID
Information
PURCHASING
Customer Qrder P FULFILLMENT =
CUSTOMER D SYSTEM
—3> TRACKING <€
SYSTEM
Customer Order Number/
i Return Code
Information » Check Out <€
Process Cart ID/
Item Order ltem Profile
Profile
Check Out/ |Invoice ltems in
Customer Cart
ID
P:?g:]d Remove Item/
3.0 Product Item
Request Remove
e .
Display
—3 Browse 3
Catalog CUSTOMER Shopping
Cart
ltem
ltem Cart ID/
Profile Product . Purchase :
ltem Profile Request ltem Profile
ltem
V Select Profile v

Iltem fol
Purchase

Inventory

FIGURE 7-22
Level-O DFD for the WebStore

SUMMARY

r)’D2‘ Shopping Cart =—

Processes can be modeled in many different ways, but this
chapter has focused on data flow diagrams, or DFDs. DFDs
are very useful for representing the overall data flows into,
through, and out of an information system. DFDs rely
on four symbols to represent the four conceptual com-
ponents of a process model: data flows, data stores, pro-
cesses, and sources/sinks. DFDs are hierarchical in nature,
and each level of a DFD can be decomposed into smaller,
simpler units on a lower-level diagram. You begin process

modeling by constructing a context diagram, which shows
the entire system as a single process. The next step is to
generate a level-0 diagram, which shows the most impor-
tant high-level processes in the system. You then decom-
pose each process in the level-0 diagram, as warranted,
until it makes no sense to go any further. When decompos-
ing DFDs from one level to the next, it is important that
the diagrams be balanced; that is, inputs and outputs on
one level must be conserved on the next level.

CHAPTER 7

DFDs should be mechanically correct, but they
should also accurately reflect the information system
being modeled. To that end, you need to check DFDs for
completeness and consistency and draw them as if the sys-
tem being modeled were timeless. You should be willing to
revise DFDs several times. Complete sets of DFDs should
extend to the primitive level, where every component re-
flects certain irreducible properties; for example, a pro-
cess represents a single database operation and every data
store represents data about a single entity. Following these
guidelines, you can produce DFDs that can be used to ana-
lyze the gaps between existing and desired procedures and
between current and new systems.

Decision tables are a graphical method of repre-
senting process logic. In decision tables, conditions are

STRUCTURING SYSTEM PROCESS REQUIREMENTS

209

listed in the condition stubs, possible actions are listed
in the action stubs, and rules link combinations of con-
ditions to the actions that should result. Analysts reduce
the complexity of decision tables by eliminating rules that
do not make sense and by combining rules with different
conditions.

Although analysts have been modeling processes for
information systems for over 30 years, dating back at least
to the beginnings of the philosophy of structured analysis
and design, it is just as important for electronic commerce
applications as it is for more traditional systems. Future
chapters will show, as this one did, how traditional tools
and techniques developed for structured analysis and de-
sign provide powerful assistance for electronic commerce
development.

KEY TERMS

7.1 Action stubs 7.7 Decision table 7.13 Level-0 diagram
7.2 Balancing 7.8 DFD completeness 7.14 Level-n diagram
7.3 Condition stubs 7.9 DFD consistency 7.15 Primitive DFD

7.4 Context diagram
7.5 Data flow diagram (DFD)
7.6 Data store

7.11 Gap analysis

Match each of the key terms above with the definition that best fits it.

A picture of the movement of data between external enti-
ties and the processes and data stores within a system.

The part of a decision table that lists the actions that result
for a given set of conditions.

The conservation of inputs and outputs to a DFD process
when that process is decomposed to a lower level.

A DFD that represents a system’s major processes, data
flows, and data stores at a high level of detail.

The origin and/or destination of data; sometimes referred
to as external entities.

In a decision table, a condition whose value does not affect
which actions are taken for two or more rules.

An overview of an organizational system that shows the sys-
tem boundary, external entities that interact with the sys-
tem, and the major information flows between the entities
and the system.

The lowest level of decomposition for a DFD.

The extent to which all necessary components of a DFD
have been included and fully described.

A matrix representation of the logic of a decision; it speci-
fies the possible conditions for the decision and the result-
ing actions.

7.10 Functional decomposition

7.12 Indifferent condition

7.16 Process
7.17 Rules

7.18 Source/sink

The extent to which information contained on one
level of a set of nested DFDs is also included on other
levels.

A DFD that is the result of n nested decompositions
of a series of subprocesses from a process on a level-0
diagram.

The part of a decision table that lists the conditions rel-
evant to the decision.

The work or actions performed on data so that they are
transformed, stored, or distributed.

Data at rest, which may take the form of many different
physical representations.

The process of discovering discrepancies between two or
more sets of DFDs or discrepancies within a single DFD.

The part of a decision table that specifies which actions are
to be followed for a given set of conditions.

An iterative process of breaking the description of a sys-
tem down into finer and finer detail, which creates a set of
charts in which one process on a given chart is explained
in greater detail on another chart.

210

PART IIIT ANALYSIS

REVIEW QUESTIONS

7.19
7.20
7.21

7.22

7.23
7.24
7.25

What is a DFD? Why do systems analysts use DFDs?
Explain the rules for drawing good DFDs.

What is decomposition? What is balancing? How can you
determine if DFDs are not balanced?

Explain the convention for naming different levels of
DFDs.

Why do analysts draw multiple sets of DFDs?
How can DFDs be used as analysis tools?

Explain the guidelines for deciding when to stop decom-
posing DFDs.

PROBLEMS AND EXERCISES

7.26

7.27
7.28

7.29
7.30

How do you decide if a system component should be repre-
sented as a source/sink or as a process?

What unique rules apply to drawing context diagrams?

What are the steps in creating a decision table? How do
you reduce the size and complexity of a decision table?

What does the term limited entry mean in a decision table?

What is the formula that is used to calculate the number of
rules a decision table must cover?

7.31

7.32

7.33

7.34

7.35

7.36

7.37

7.38

7.39

Using the example of a retail clothing store in a mall, list
relevant data flows, data stores, processes, and sources/
sinks. Observe several sales transactions. Draw a context di-
agram and a level-0 diagram that represent the selling sys-
tem at the store. Explain why you chose certain elements as
processes versus sources,/sinks.

Choose a transaction that you are likely to encounter, per-
haps ordering a cap and gown for graduation, and develop
a high-level DFD or a context diagram. Decompose this to
a level-0 diagram.

Evaluate your level-0 DFD from Problem and Exercise 7-32
using the rules for drawing DFDs in this chapter. Edit your
DFD so that it does not break any of these rules.

Choose an example like the one in Problem and Exercise
7-32 and draw a context diagram. Decompose this diagram
until it does not make sense to continue. Be sure that your
diagrams are balanced.

Refer to Figure 7-23, which contains drafts of a context and
level-0 DFD for a university class registration system. Iden-
tify and explain potential violations of rules and guidelines
on these diagrams.

What is the relationship between DFDs and entries in the
project dictionary or CASE repository?

Consider the DFD in Figure 7-24. List three errors (rule
violations) on this DFD.

Consider the three DFDs in Figure 7-25. List three errors
(rule violations) on these DFDs.

Starting with a context diagram, draw as many nested DFDs
as you consider necessary to represent all the details of the
employee hiring system described in the following narra-
tive. You must draw at least a context and a level-0 diagram.
If you discover while drawing these diagrams that the nar-
rative is incomplete, make up reasonable explanations to
complete the story. Supply these extra explanations along
with the diagrams.

Projects, Inc., is an engineering firm with approxi-
mately 500 engineers of different types. The company
keeps records on all employees, their skills, assigned
projects, and the departments they work in. New em-
ployees are hired by the personnel manager based on

7.40

data in an application form and evaluations collected
from other managers who interview the job candi-
dates. Prospective employees may apply at any time.
Engineering managers notify the personnel manager
when a job opens and list the characteristics necessary
to be eligible for the job. The personnel manager com-
pares the qualifications of the available pool of appli-
cants with the characteristics of an open job and then
schedules interviews between the manager in charge
of the open position and the three best candidates
from the pool. After receiving evaluations on each
interview from the manager, the personnel manager
makes the hiring decision based upon the evaluations
and applications of the candidates and the character-
istics of the job and then notifies the interviewees and
the manager about the decision. Applications of re-
jected applicants are retained for one year, after which
time the application is purged. When hired, a new en-
gineer completes a nondisclosure agreement, which is
filed with other information about the employee.

Starting with a context diagram, draw as many nested DFDs
as you consider necessary to represent all of the details of
the system described in the following narrative. In drawing
these diagrams, if you discover that the narrative is incom-
plete, make up reasonable explanations to make the story
complete. Supply these extra explanations along with the
diagrams.

Maximum Software is a developer and supplier of soft-
ware products to individuals and businesses. As part
of their operations, Maximum provides a 1-800 help
desk line for clients who have questions about soft-
ware purchased from Maximum. When a call comes
in, an operator inquires about the nature of the call.
For calls that are not truly help desk functions, the op-
erator redirects the call to another unit of the com-
pany (such as Order Processing or Billing). Because
many customer questions require in-depth knowledge
of a product, help desk consultants are organized by
product. The operator directs the call to a consul-
tant skilled on the software that the caller needs help
with. Because a consultant is not always immediately
available, some calls must be put into a queue for the

CHAPTER 7

Context Diagram

Class Schedule

STRUCTURING SYSTEM PROCESS REQUIREMENTS

Student

Course Request Class

Registration

>

List of Courses

System ;‘

Possible Classes

Scheduled
Department Classes o Roster
of Classes
Level-0 Diagram
Course Class
From Request Receive Schedule
Student Course for
Request Availability
Course Scheduled
Classes
Request Possible
Classes
List of
From Courses Receive Class
Department Course D2 Roster

Lists

next available consultant. Once a consultant answers
the call, the consultant determines if this is the first
call from this customer about a particular problem. If
it is, the consultant creates a new call report to keep
track of all information about the problem. If it is not
the first call about a problem, the consultant asks the

DF2
>
E1
DF5
A
DS1
DF1 DF6
DF4
Y
Eo DF2 >

DF3

P1

211

FIGURE 7-23
Class registration system for Problem and
Exercise 7-35

To
Student

customer for a call report number and retrieves the
open call report to determine the status of the inquiry.
If the caller does not know the call report number,
the consultant collects other identifying information
such as the caller’s name, the software involved, or the
name of the consultant who has handled the previous

FIGURE 7-24
DFD for Problem and Exercise 7-37

212

PART IIIT ANALYSIS

FIGURE 7-25
DFD for Problem and Exercise 7-38

DF1

DF1

E1 —

—> P11
DF9
—>
DF8 P1.4.1
—_—

calls on the problem in order to conduct a search for
the appropriate call report. If a resolution of the cus-
tomer’s problem has been found, the consultant in-
forms the client as to what that resolution is, indicates
on the report that the customer has been notified,
and closes out the report. If resolution has not been
discovered, the consultant finds out if the consultant
who handled the previous call for this problem is on
duty. If so, he or she transfers the call to the other con-
sultant (or puts the call into the queue of calls waiting
to be handled by that consultant). Once the proper
consultant receives the call, that consultant records
any new details the customer may have. For continu-
ing problems and for new call reports, the consultant
tries to discover an answer to the problem by using

Level O
DS2
DF6
DF2 DF4
P1 e o p2 e o E2
DF3

£

DF5

DS1
DF3 P3

DF11

Level 1

DS2

DF6

DF9 DF2

P1.2 P1.4

DF8

Level 2

DF12
P1.4.2

DF10 DF2

» P1.4.3

the relevant software and looking up information in
reference manuals. If the consultant can now resolve
the problem, the consultant tells the customer how
to deal with the problem and closes the call report.
Otherwise, the consultant files the report for contin-
ued research and tells the customer that someone at
Maximum will get back to him or her, and that if the
customer discovers new information about the prob-
lem, he or she should call Maximum with the infor-
mation, identifying the problem with a specified call
report number.

Analyze the DFDs you created in the first part of this ques-
tion. What recommendations for improvements in the
help desk system at Maximum can you make based on

this

analysis? Draw new logical DFDs that represent the

7.41

CHAPTER 7

requirements you would suggest for an improved help desk
system. Remember, these are to be logical DFDs, so con-
sider improvements independent of technology that can
be used to support the help desk.

Develop a context diagram and level-0 diagram for the
hospital pharmacy system described in the following narra-
tive. If you discover that the narrative is incomplete, make
up reasonable explanations to complete the story. Supply
these extra explanations along with the diagrams.

The pharmacy at Mercy Hospital fills medical pre-
scriptions for all hospital patients and distributes these
medications to the nurse stations responsible for the
patients’ care. Prescriptions are written by doctors
and sent to the pharmacy. A pharmacy technician re-
views each prescription and sends it to the appropriate
pharmacy station. Prescriptions for drugs that must be
formulated (made on-site) are sent to the lab station,
prescriptions for off-the-shelf drugs are sent to the
shelving station, and prescriptions for narcotics are
sent to the secure station. At each station, a pharma-
cist reviews the order, checks the patient’s file to deter-
mine the appropriateness of the prescription, and fills
the order if the dosage is at a safe level and it will not
negatively interact with the other medications or aller-
gies indicated in the patient’s file. If the pharmacist
does not fill the order, the prescribing doctor is con-
tacted to discuss the situation. In this case, the order
may ultimately be filled, or the doctor may write an-
other prescription depending on the outcome of the
discussion. Once filled, a prescription label is gener-
ated listing the patient’s name, the drug type and dos-
age, an expiration date, and any special instructions.
The label is placed on the drug container, and the
order is sent to the appropriate nurse station. The pa-
tient’s admission number, the drug type and amount
dispensed, and the cost of the prescription are then
sent to the Billing department.

7.42 Develop a context diagram and a level-0 diagram for the

contracting system described in the following narrative. If
you discover that the narrative is incomplete, make up rea-
sonable explanations to complete the story. Supply these
extra explanations along with the diagrams.

Government Solutions Company (GSC) sells com-
puter equipment to federal government agencies.
Whenever a federal agency needs to purchase equip-
ment from GSC, it issues a purchase order against
a standing contract previously negotiated with the
company. GSC holds several standing contracts with
various federal agencies. When a purchase order is re-
ceived by GSC’s contracting officer, the contract num-
ber referenced on the purchase order is entered into
the contract database. Using information from the da-
tabase, the contracting officer reviews the terms and
conditions of the contract and determines whether
the purchase order is valid. The purchase order is
valid if the contract has not expired, the type of equip-
ment ordered is listed on the original contract, and
the total cost of the equipment does not exceed a pre-
determined limit. If the purchase order is not valid,
the contracting officer sends the purchase order back

STRUCTURING SYSTEM PROCESS REQUIREMENTS 213

to the requesting agency with a letter stating why the
purchase order cannot be filled, and a copy of the let-
ter is filed. If the purchase order is valid, the contract-
ing officer enters the purchase order number into the
contract database and flags the order as outstanding.
The purchase order is then sent to the Order Fulfill-
ment department. Here the inventory is checked for
each item ordered. If any items are not in stock, the
Order Fulfillment department creates a report listing
the items not in stock and attaches it to the purchase
order. All purchase orders are forwarded to the ware-
house, where the items in stock are pulled from the
shelves and shipped to the customer. The warehouse
then attaches to the purchase order a copy of the ship-
ping bill listing the items shipped and sends it to the
contracting officer. If all items were shipped, the con-
tracting officer closes the outstanding purchase order
record in the database. The purchase order, shipping
bill, and exception report (if attached) are then filed
in the contracts office.

7-43. Develop a context diagram and as many nested DFDs as

you consider necessary to represent all the details of the
training logistics system described in the following narra-
tive. If you discover that the narrative is incomplete, make
up reasonable explanations to complete the story. Supply
these extra explanations along with the diagrams.

Training, Inc., conducts training seminars in major
US cities. For each seminar, the Logistics department
must make arrangements for the meeting facilities,
the training consultant’s travel, and the shipment of
any seminar materials. For each scheduled seminar,
the Bookings department notifies the logistics coordi-
nator of the type of seminar, the dates and city loca-
tion, and the name of the consultant who will conduct
the training. To arrange for meeting facilities, the
logistics coordinator gathers information on possible
meeting sites in the scheduled city. The meeting site
location decision is made based on date availability,
cost, type of meeting space available, and convenience
of the location. Once the site decision is made, the co-
ordinator speaks with the sales manager of the meet-
ing facility to reserve the meeting room(s), plan the
seating arrangement(s), and reserve any necessary
audiovisual equipment. The coordinator estimates the
number and size of meeting rooms, the type of seat-
ing arrangements, and the audiovisual equipment
needed for each seminar from the information kept
in a logistics database on each type of seminar offered
and the number of anticipated registrants for a par-
ticular booking. After negotiations are conducted by
the logistics coordinator and the sales manager of the
meeting facility, the sales manager creates a contract
agreement specifying the negotiated arrangements
and sends two copies of it to the logistics coordinator.
The coordinator reviews the agreement and approves
it if no changes are needed. One copy of the agree-
ment is filed and the other copy is sent back to the
sales manager. If changes are needed, the agreement
copies are changed and returned to the sales manager
for approval. This approval process continues until

214

7.44

PART IIIT ANALYSIS

both parties have approved the agreement. The co-
ordinator must also contact the training consultant
to make travel arrangements. First, the coordinator
reviews the consultant’s travel information in the lo-
gistics database and researches flight schedules. Then
the consultant is contacted to discuss possible travel
arrangements; subsequently, the coordinator books
a flight for the consultant with a travel agency. Once
the consultant’s travel arrangements have been com-
pleted, a written confirmation and itinerary are sent to
the consultant. Two weeks before the date of the semi-
nar, the coordinator determines what, if any, seminar
materials (e.g., transparencies, training guides, pam-
phlets, etc.) need to be sent to the meeting facility.
Each type of seminar has a specific set of materials as-
signed to it. For some materials, the coordinator must
know how many participants have registered for the
seminar in order to determine how many to send. A
request for materials is sent to the Materials-handling
department, where the materials are gathered, boxed,
and sent to the meeting address listed on the request.
Once the requested materials have been shipped, a
notification is sent to the logistics coordinator.

Look at the set of DFDs created in this chapter for Hoo-
sier Burger’s food-ordering system. Represent the decision
logic of one or more of the processes as decision tables.

7.45 What types of questions need to be asked during require-

7.46

7.47

ments determination in order to gather the information
needed for logic modeling? Give examples.

In one company, the rules for buying personal comput-
ers specify that if the purchase is over $15,000, it has to go
out for bid, and the Request for Proposals (RFP) must be
approved by the Purchasing department. If the purchase
is under $15,000, the personal computers can simply be
bought from any approved vendor; however, the Purchase
Order must still be approved by the Purchasing depart-
ment. If the purchase goes out for bid, there must be at
least three proposals received for the bid. If not, the RFP
must go out again. If there are still not enough proposals,
then the process can continue with the one or two ven-
dors that have submitted proposals. The winner of the bid
must be on an approved list of vendors for the company
and must not have any violations against them for affirma-
tive action or environmental matters. At this point, if the
proposal is complete, the Purchasing department can issue
a Purchase Order. Draw a decision table to represent the
logic in this process. Notice the similarities between the
text in this question and the format of your answer.

In a relatively small company that sells thin, electronic key-
pads and switches, the rules for selling products specify
that sales representatives are assigned to unique regions of
the country. Sales come either from cold calling, referrals,
or current customers with new orders. A sizable portion of
their business comes from referrals from larger competi-
tors who send their excess and/or “difficult” projects to
this company. The company tracks these referrals and re-
turns the favors to these competitors by sending business
their way. The sales reps receive a 10 percent commission
on actual purchases, not on orders, in their region. They
can collaborate on a sale with reps in other regions and
share the commissions, with 8 percent going to the “home”

7.48

rep and 2 percent going to the “visiting” rep. For any sales
beyond the rep’s previously stated and approved individual
annual sales goals, he or she receives an additional 5 per-
cent commission, an additional end-of-the-year bonus de-
termined by management, and a special vacation for his or
her family. Customers receive a 10 percent discount for any
purchases over $100,000 per year, which are factored into
the rep’s commissions. In addition, the company focuses
on customer satisfaction with the product and service, so
there is an annual survey of customers in which they rate
the sales rep. These ratings are factored into the bonuses
such that a high rating increases the bonus amount, a mod-
erate rating does nothing, and a low rating can lower the
bonus amount. The company also wants to ensure that the
reps close all sales. Any differences between the amount of
orders and actual purchases are also factored into the rep’s
bonus amount. As best you can, present the logic of this
business process using a decision table. Write down any as-
sumptions you have to make.

The following is an example that demonstrates the rules of
the tenure process for faculty at many universities. Present
the logic of this business using a decision table. Write down
any assumptions you have to make.

A faculty member applies for tenure in his or her
sixth year by submitting a portfolio summarizing his
or her work. In rare circumstances, a faculty member
can come up for tenure earlier than the sixth year, but
only if the faculty member has the permission of the
department chair and college dean. New professors
who have worked at other universities before taking
their current jobs rarely, if ever, start their new jobs
with tenure. They are usually asked to undergo one
probationary year during which they are evaluated;
only then can they be granted tenure. Top adminis-
trators coming to a new university job, however, can
often negotiate for retreat rights that enable them
to become a tenured faculty member should their
administrative post end. These retreat arrangements
generally have to be approved by faculty. The tenure
review process begins with an evaluation of the can-
didate’s portfolio by a committee of faculty within the
candidate’s department. The committee then writes a
recommendation on tenure and sends it to the depart-
ment’s chairperson, who then makes a recommenda-
tion and passes the portfolio and recommendation to
the next level, a college-wide faculty committee. This
committee does the same as the department commit-
tee and passes its recommendation, the department’s
recommendation, and the portfolio to the next level,
a university-wide faculty committee. This committee
does the same as the other two committees and passes
everything to the provost (or sometimes the academic
vice president). The provost then writes his or her own
recommendation and passes everything to the presi-
dent, the final decision maker. This process, from the
time the candidate creates his or her portfolio until
the time the president makes a decision, can take an
entire academic year. The focus of the evaluation is on
research, which could be grants, presentations, and
publications, though preference is given for empiri-
cal research that has been published in top-ranked,

7.49

7.50

CHAPTER 7

refereed journals and where the publication makes a
contribution to the field. The candidate must also do
well in teaching and service (i.e., to the university, the
community, or the discipline), but the primary em-
phasis is on research.

An organization is in the process of upgrading microcom-
puter hardware and software for all employees. Hardware
will be allocated to each employee in one of three pack-
ages. The first hardware package includes a standard mi-
crocomputer with a color monitor of moderate resolution
and moderate storage capabilities. The second package
includes a high-end microcomputer with a high-resolution
color monitor and a great deal of RAM and ROM. The
third package is a high-end notebook-sized microcom-
puter. Each computer comes with a network interface card
so that it can be connected to the network for printing and
e-mail. The notebook computers come with a modem for
the same purpose. All new and existing employees will be
evaluated in terms of their computing needs (e.g., the types
of tasks they perform, how much and in what ways they can
use the computer). Light users receive the first hardware
package. Heavy users receive the second package. Some
moderate users will receive the first package and some will
receive the second package, depending on their needs.
Any employee who is deemed to be primarily mobile (e.g.,
most of the sales force) will receive the third package. Each
employee will also be considered for additional hardware.
For example, those who need scanners and/or printers
will receive them. A determination will be made regard-
ing whether the user receives a color or black-and-white
scanner and whether they receive a slow or fast or color
or black-and-white printer. In addition, each employee will
receive a suite of software that includes a word processor,
a spreadsheet, and a presentation maker. All employees
will be evaluated for additional software needs. Depend-
ing on their needs, some will receive a desktop publishing
package, some will receive a database management system
(some will also receive a developer’s kit for the DBMS),
and some will receive a programming language. Every 18
months, those employees with the high-end systems will re-
ceive new hardware, and their old systems will be passed on
to those who previously had the standard systems. All those
employees with the portable systems will receive new note-
book computers. Present the logic of this business process
using a decision table. Write down any assumptions you
have to make.

Read the narratives below and follow the directions for
each. If you discover that the narrative is incomplete, make
up reasonable explanations to complete the story. Supply
these extra explanations along with your answers.

a. Samantha must decide which courses to register for this
semester. She has a part-time job, and she is waiting to
find out how many hours per week she will be working
during the semester. If she works 10 hours or less per
week, she will register for three classes, but if she works
more than 10 hours per week, she will register for only
two classes. If she registers for two classes, she will take
one class in her major area and one elective. If she reg-
isters for three classes, she will take two classes in her
major area and one elective. Use a decision table to rep-
resent this logic.

STRUCTURING SYSTEM PROCESS REQUIREMENTS 215

b. Jerry plans on registering for five classes this semester:
English Composition, Physics, Physics Lab, Java, and
Music Appreciation. However, he is not sure if these
classes are being offered this semester or if there will
be timing conflicts. Also, two of the classes, Physics and
Physics Lab, must be taken together during the same
semester. Therefore, if he can register for only one of
them, he will not take either class. If, for any reason,
he cannot register for a class, he will identify and regis-
ter for a different class to take its place and that fits his
time schedule. Use a decision table that shows all rules
to represent this logic.

7.51 Mary is trying to decide which graduate programs she will

apply to. She wants to stay in the southeastern region of
the United States, but if a program is considered one of
the top 10 in the country, she is willing to move to another
part of the United States. Mary is interested in both the
MBA and Master of MIS programs. An MBA program must
have at least one well-known faculty member and meet her
location requirements before she will consider applying to
it. Additionally, any program she applies to must offer fi-
nancial aid, unless she is awarded a scholarship. Use a deci-
sion table to represent this logic.

7.52 At a local bank, loan officers must evaluate loan applica-

tions before approving or denying them. During this evalu-
ation process, many factors regarding the loan request and
the applicant’s background are considered. If the loan is
for less than $2000, the loan officer checks the applicant’s
credit report. If the credit report is rated good or excel-
lent, the loan officer approves the loan. If the credit report
is rated fair, the officer checks to see if the applicant has
an account at the bank. If the applicant holds an account,
the application is approved; otherwise, the application is
denied. If the credit report is rated poor, the application is
denied. Loan applications for amounts between $2000 and
$200,000 are divided into four categories: car, mortgage,
education, and other. For car, mortgage, and other loan re-
quests, the applicant’s credit report is reviewed and an em-
ployment check is made to verify the applicant’s reported
salary income. If the credit report rating is poor, the loan
is denied. If the credit report rating is fair, good, or excel-
lent and the salary income is verified, the loan is approved.
If the salary income is not verifiable, the applicant is con-
tacted and additional information is requested. In this case,
the loan application, along with the additional informa-
tion, is sent to the vice president for review and a final loan
decision. For educational loans, the educational institution
the applicant will attend is contacted to determine the es-
timated cost of attendance. This amount is then compared
to the amount of the loan requested in the application.
If the requested amount exceeds the cost of attendance,
the loan is denied. Otherwise, education loan requests for
amounts between $2000 and $34,999 are approved if the
applicant’s credit rating is fair, good, or excellent. Educa-
tion loan applications requesting amounts from $35,000 to
$200,000 are approved only if the credit rating is good or
excellent. All loan applications for amounts greater than
$200,000 are sent to the vice president for review and ap-
proval. Use a decision table to represent this logic.

216

PART IIIT ANALYSIS

FIELD EXERCISES

7.53

7.54

7.55

7.56

Talk with a systems analyst who works at an organization.
Ask the analyst to show you a complete set of DFDs from a
current project. Interview the analyst about his or her views
concerning DFDs and their usefulness for analysis.

Interview several people in an organization about a par-
ticular system. What is the system like now and what would
they like to see changed? Create a complete set of DFDs
for the system. Show your DFDs to some of the people you
interviewed and ask for their reactions. What kinds of com-
ments do they make? What kinds of suggestions?

Talk with a systems analyst who uses a CASE tool. Investi-
gate what capabilities the CASE tool has for automatically
checking for rule violations in DFDs. What reports can the
CASE tool produce with error and warning messages to
help analysts correct and improve DFDs?

Find out which, if any, drawing packages, word processors,
forms design, and database management systems your

REFERENCES

university or company supports. Research these packages
to determine how they might be used in the production
of a project dictionary. For example, do the drawing pack-
ages include a set of standard DFD symbols in their graphic
symbol palette?

7.57 At an organization with which you have contact, ask one

or more employees to draw a “picture” of the business
process they interact with at that organization. Ask them
to draw the process using whatever format suits them. Ask
them to depict in their diagram each of the components of
the process and the flow of information among these com-
ponents at the highest level of detail possible. What type of
diagram have they drawn? In what ways does it resemble
(and not resemble) a DFD? Why? When they have finished,
help the employees to convert their diagram to a standard
DFD. In what ways is the DFD stronger and/or weaker than
the original diagram?

Celko, J. 1987. “I. Data Flow Diagrams.” Computer Language 4

(January): 41-43.

DeMarco, T. 1979. Structured Analysis and System Specification. Up-

per Saddle River, NJ: Prentice Hall.

Gane C., and T. Sarson. 1979. Structured Systems Analysis. Upper

Saddle River, NJ: Prentice Hall.

Hammer, M., and J. Champy. 1993. Reengineering the Corporation.

New York: Harper Business.

Vessey, 1., and R. Weber. 1986. “Structured Tools and Condi-

tional Logic.” Communications of the ACM 29(1): 48-57.

Wieringa, R. 1998. “A Survey of Structured and Object-Oriented

Software Specification Methods and Techniques.” ACM
Computing Surveys 30(4): 459-527.

Yourdon, E. 1989. Managing the Structured Techniques, 4th ed. Up-

per Saddle River, NJ: Prentice Hall.

Yourdon, E., and L. L. Constantine. 1979. Structured Design. Up-

per Saddle River, NJ: Prentice Hall.

| W

~ Objec

Appendix

7A Use Cases*

W72l

Learning Objectives

After studying this section, you should be able to

7A.1 explain use cases and use case diagrams and how
they can be used to model system functionality,

7A.2 present the basic aspects of how to create written
use cases, and

t-Oriented Analysi

and Design

1.7

7A.3 discuss process modeling with use cases for
electronic commerce applications.

Introduction

Here we will introduce you to use cases and use case
diagrams. Use cases are a different way to model the
functionality of a business process that facilitates the
development of information systems to support that
process. Although common in object-oriented sys-
tems analysis and design, use case modeling can also
be used with more traditional methods for modeling
business processes. After learning the basics about use
cases, including use case diagrams and written use cases,
you will also learn how process modeling can be done
with use cases for the analysis of electronic commerce
applications.

USE CASES

As Chapter 7 has shown, DFDs are powerful modeling
tools that you can use to show a system’s functionality and
the flow of data necessary for the system to perform its
functions. DFDs are not the only way to show functional-
ity, of course. Another way is use case modeling. Use case
modeling helps analysts analyze the functional require-
ments of a system. Use case modeling helps developers
understand the functional requirements of the system
without worrying about how those requirements will be

* The original version of this appendix was written by Professor Atish P. Sinha.

implemented. The process is inherently iterative—ana-
lysts and users work together throughout the model de-
velopment process to further refine their use case models.
Although use case modeling is most often associated with
object-oriented systems analysis and design, the concept is
flexible enough that it can also be used within more tradi-
tional approaches. In this section of the chapter, you will
learn about use cases, use case diagrams and their constit-
uent parts, and written use cases.

What Is a Use Case?

A use case shows the behavior or functionality of a system
(see Figure 7-26). It consists of a set of possible sequences
of interactions between a system and a user in a particular
environment, possible sequences that are related to a par-
ticular goal. A use case describes the behavior of a system
under various conditions as the system responds to requests
from principal actors. A principal actor initiates a request of
the system, related to a goal, and the system responds. A use
case can be stated as a present-tense verb phrase, containing
the verb (what the system is supposed to do) and the ob-
ject of the verb (what the system is to act on). For example,
use case names would include Enter Sales Data, Compute
Commission, Generate Quarterly Report. As with DFDs, use

217

218 PARTIII ANALYSIS

FIGURE 7-26
A use case diagram for a university
registration system

Use case

A depiction of a system’s behavior or
functionality under various conditions as the
sysfem responds fo requests from users.

Actor
An external entity that inferacts with a
system.

Use case diagram

A picture showing system behavior, along
with the key actors that interact with the
system.

B <D B
7 ®
,@(92/ Register for ~\:%‘7‘s
I\ e Classes ~d%, I\
Student > Registration
Register for Identify Prerequisite
Special Class Courses Not Completed
| .
e Bill Student v\
Bursar’s Instructor
Office

cases do not reflect all of the system requirements; they must be augmented by docu-
ments that detail requirements, such as business rules, data fields and formats, and com-
plex formulas.

A use case model consists of actors and use cases. An actor is an external entity
that interacts with the system. It is someone or something that exchanges information
with the system. For the most part, a use case represents a sequence of related actions
initiated by an actor to accomplish a specific goal; it is a specific way of using the system
(Jacobson et al., 1992). Note that there is a difference between an actor and a user. A
user is anyone who uses the system. An actor, on the other hand, represents a role that
a user can play. The actor’s name should indicate that role. An actor is a type or class of
users; a user is a specific instance of an actor class playing the actor’s role. Note that the
same user can play multiple roles. For example, if William Alvarez plays two roles, one
as an instructor and the other as an adviser, we represent him as an instance of an actor
called Instructor and as an instance of another actor called Adviser. Because actors are
outside the system, you do not need to describe them in detail. The advantage of iden-
tifying actors is that it helps you to identify the use cases they carry out.

For identifying use cases, Jacobson et al. (1992) recommend that you ask the
following questions:

* What are the main tasks performed by each actor?

¢ Will the actor read or update any information in the system?

¢ Will the actor have to inform the system about changes outside the system?
® Does the actor have to be informed of unexpected changes?

Use Case Diagrams

Use cases help you capture the functional requirements of a system. As you saw in
Chapter 6, during the requirements analysis stage, the analyst sits down with the in-
tended users of a system and makes a thorough analysis of what functions they desire
from the system. When it comes time to structure these requirements, the identified
system functions are represented as use cases. For example, a university registration
system has a use case for class registration and another for student billing. These use
cases, then, represent the typical interactions the system has with its users.

A use case diagram is depicted diagrammatically, as in Figure 7-26. It is a picture
that shows system behavior, along with the key actors that interact with the system. The
use case diagram in Figure 7-26 is for a university registration system, which is shown

CHAPTER 7 STRUCTURING SYSTEM PROCESS REQUIREMENTS 219

as a box. Outside the box are four actors—Student, Registration Clerk, Instructor,
and Bursar’s Office—that interact with the system. An actor is shown using a stick-
figure symbol with its name below it. Inside the box are four use cases—Register for
Classes, Register for Special Class, Identify Prereq Courses Not Completed, and Bill
Student—which are shown as ellipses with their names underneath. These use cases
are performed by the actors outside the system.

Typically, a use case is initiated by an actor. For example, Bill Student is initiated
by the Bursar’s Office. A use case can interact with actors other than the one that
initiated it. The Bill Student use case, although initiated by the Bursar’s Office, inter-
acts with the Students by mailing them tuition invoices. Another use case, Register
for Classes, is carried out by two actors, Student and Registration Clerk. This use
case performs a series of related actions aimed at registering a student for a class.
Although use cases are typically initiated by actors, in some circumstances a use case
is initiated by another use case. Such use cases are called abstract use cases. We will
discuss these in more detail later in this appendix.

A use case represents complete functionality. You should not represent an indi-
vidual action that is part of an overall function as a use case. For example, although
submitting a registration form and paying tuition are two actions performed by users
(students) in the university registration system, we do not show them as use cases
because they do not specify a complete course of events; each of these actions is
executed only as part of an overall function or use case. You can think of Submit
Registration Form as one of the actions of the Register for Classes use case and of Pay
Tuition as one of the actions of the Bill Student use case.

Definitions and Symbols

Use case diagramming is relatively simple because it involves only a few symbols.
However, like DFDs and other relatively simple diagramming tools, these few sym-
bols can be used to represent quite complex situations. Mastering use case diagram-
ming takes a lot of practice. The key symbols in a use case diagram are illustrated in
Figure 7-26 and explained below:

® Actor. As explained earlier, an actor is a role, not an individual. Individuals are
instances of actors. One particular individual may play many roles simultane-
ously. An actor is involved with the functioning of a system at some basic level.
Actors are represented by stick figures.

e Use case. Each use case is represented as an ellipse. Each use case represents a
single system function. The name of the use case can be listed inside the ellipse
or just below it.

o System boundary. The system boundary is represented as a box that includes all of
the relevant use cases. Note that actors are outside the system boundary.

e Connections. In Figure 7-26, note that the actors are connected to use cases
with lines, and that use cases are connected to each other with arrows. A
solid line connecting an actor to a use case shows that the actor is involved in
that particular system function. The solid line does not mean that the actor
is sending data to or receiving data from the use case. Note that all of the
actors in a use case diagram are not involved in all the use cases in the system.
The dotted-line arrows that connect use cases also have labels (there is an
<<extend>> label on the arrows in Figure 7-26). These use case connections and
their labels are explained next. Note that use cases do not have to be connected
to other use cases. The arrows between use cases do not illustrate data or
process flows.

o [Extend relationship. An extend relationship extends a use case by adding new
behaviors or actions. It is shown as a dotted-line arrow pointing toward the use
case that has been extended and labeled with the <<extend>> symbol. The

Extend relationship

An association between two use cases
where one adds new behaviors or actions
to the other.

220 PART I ANALYSIS

Include relationship

An association between two use cases
where one use case uses the functionality
confained in the other.

FIGURE 7-27
A use case diagram featuring an include
relationship

dotted-line arrow does not indicate any kind of data or process flow between use
cases. In Figure 7-26, for example, the Register for Special Class use case extends
the Register for Classes use case by capturing the additional actions that need

to be performed in registering a student for a special class. Registering for a
special class requires prior permission of the instructor, in addition to the other
steps carried out for a regular registration. You may think of Register for Classes
as the basic course, which is always performed—independent of whether the
extension is performed or not—and Register for Special Class as an alternative
course, which is performed only under special circumstances.

Note also that the Instructor actor is needed for Register for Special Class. The
Instructor is not needed for Register for Classes, which involves the Student and
Registration Clerk actors only. The reason for not including the Instructor for nor-
mal registration but including him or her for registering for special classes is that
certain additional actions are required from the Instructor for a special class. The
Instructor’s approval is likely needed just to create an instance of a special class, and
there may be other special requirements that need to be met for the class to be cre-
ated. None of these special arrangements are necessary for normal registration, so
the Instructor is not needed under normal circumstances.

Another example of an extend relationship is that between the Identify Prereq
Courses Not Completed and Register for Classes use cases. The former extends the
latter in situations where a student registering for a class has not taken the prerequi-
site courses.

® Include relationship. Another kind of relationship between use cases is an include
relationship, which arises when one use case uses another use case. An include
relationship is shown diagrammatically as a dotted-line arrow pointed toward the
use case that is being used. The line is labeled with the <<include>> symbol.
The dotted-line arrow does not indicate any kind of data or process flow
between use cases. An include relationship implies that the use case where the
arrow originates uses the use case where the arrow ends while it is executing.
Typically, the use case that is “included” represents a generic function that is
common to many business functions. Rather than reproduce that functionality
within every use case that needs it, the functionality is factored out into a sepa-
rate use case that can then be used by other use cases. An example of an include
relationship is shown in Figure 7-27.

Figure 7-27 shows a generic use case diagram for any business that needs to
reorder supplies on a regular basis, such as a retail establishment or a restaurant.
Because this is a generic use case diagram, its use cases are high level. Three differ-
ent use cases are identified in the figure: Reorder Supplies, Produce Management

, u
‘ ‘ — ?77/ Reorder
o\‘)?/ Supplies L,/ \
LL:Q/ Manager
o) ,I
Supplier }' <<\£‘E\u -="
<" Produce
© Management
Reports
Track Sales and
Inventory Data

CHAPTER 7

Reports, and Track Sales and Inventory Data. Two actors have been identified:
Supplier and Manager. Reorder Supplies involves the Manager and Supplier actors.
A manager initiates the use case, which then sends requests to suppliers for various
items. The Produce Management Reports use case involves only the Manager actor.
In Figure 7-27, the include relationship between the Reorder Supplies and Track
Sales and Inventory Data use cases implies that the former uses the latter while ex-
ecuting. Simply put, when a manager reorders supplies, the sales and inventory data
are tracked. The same data are also tracked when management reports are produced,
so there is another include relationship between the Produce Management Reports
and Track Sales and Inventory Data use cases.

The Track Sales and Inventory Data is a generalized use case, representing the
common behavior among the specialized use cases Reorder Supplies and Produce
Management Reports. When Reorder Supplies or Produce Management Reports is
performed, the entire Track Sales and Inventory Data use case is used. Note, however,
that it is used only when one of the specialized use cases is performed. Such a use
case, which is never performed by itself, is called an abstract use case (Eriksson and
Penker, 1998; Jacobson et al., 1992). An abstract case does not interact directly with
an actor.

Figure 7-28 shows a use case diagram for Hoosier Burger. Several actors and
use cases can be identified. The actor that first comes to mind is Customer, which
represents the class of all customers who order food at Hoosier Burger; Order food
is therefore represented as a use case. The other actor that is involved in this use
case is Service Person. A specific scenario would represent a customer (an instance
of Customer) placing an order with a service person (an instance of Service Person).
At the end of each day, the manager of Hoosier Burger reorders supplies by calling
suppliers. We represent this by a use case called Reorder Supplies, which involves
the Manager and Supplier actors. A manager initiates the use case, which then sends
requests to suppliers for various items.

Order Food
Customer Service
Person
Hire Employee
Applicant H
e72-"" Reorder
0 \\)da’ /
08=- Supplies -
H ,f*’ PP Manager
- -
anﬂn_clwe»
Track Sales and Tee-all
L Inventory Data
Supplier Produce Management
Reports

STRUCTURING SYSTEM PROCESS REQUIREMENTS

221

FIGURE 7-28

Use case diagram for Hoosier Burger

222 PARTIII ANALYSIS

FIGURE 7-29

A template for writing use cases

(Source: Cockburn, Alistair, Writing Effec-
tive Use Cases, 1st ed., © 2001. Reprinted
and Electronically reproduced by permis-

sion of Pearson Education, Inc. Upper
Saddle River, New Jersey

Hoosier Burger also hires employees from time to time. Therefore, we have
identified a use case, called Hire employee, in which two actors, Manager and
Applicant, are involved. When a person applies for a job at Hoosier Burger, the man-
ager makes a hiring decision.

Figure 7-28 provides another example of an include relationship, shown dia-
grammatically as a dashed line pointing toward the use case that is being used; the
line is labeled with the <<include>> symbol. In Figure 7-28, for example, the include
relationship between the Reorder Supplies and Track Sales and Inventory Data use
cases implies that the former uses the latter while executing. When a manager re-
orders supplies, the sales and inventory data are tracked. The same data are also
tracked when management reports are produced, so there is another include rela-
tionship between the Produce Management Reports and Track Sales and Inventory
Data use cases.

Track Sales and Inventory Data is a generalized use case, representing the
common behavior among the specialized use cases Reorder Supplies and Produce
Management Reports. When a task like Reorder Supplies or Produce Management
Reports is performed, the entire Track Sales and Inventory Data case is used. Note,
however, that it is used only when one of the specialized use cases is performed. As
you will recall, such a use case, which is never performed by itself, is called an abstract
use case (Eriksson and Penker, 1998; Jacobson et al., 1992).

WRITTEN USE CASES

Use case diagrams can represent the functionality of a system by showing use case
names and the actors who are involved with them. The names of the use cases alone
do not provide much of the information that is necessary to continue with analysis
and to move on to the design phase. We also need to know what goes on inside each
use case. The contents of a use case can be written in simple text, as was explained
before for the Register for Classes use case in Figure 7-26. Others recommend tem-
plates that force consideration of all of the important information one needs to have
about use cases.

Cockburn (2001) recommends a specific template for writing use cases
(Figure 7-29). Templates can be simpler than the one Cockburn recommends or
more complicated. The point is not the format of the template so much as it is
how the template encourages analysts to write complete use cases. Each heading
reminds the analyst of the information that needs to be provided. In the template
in Figure 7-29, it should be clear what information is being sought. The use case
title and the name of the primary actor role, both of which were featured in the

Use Case Title:

Primary Actor:

Level:

Stakeholders:
Precondition:

Minimal Guarantee:
Success Guarantee:
Trigger:

Main Success Scenario

Extensions:

CHAPTER 7 STRUCTURING SYSTEM PROCESS REQUIREMENTS 223

discussion of use case diagrams, can be found on the use case diagram. The other Leyel

information asked for in the template is new and will be discussed in more detail. Perspective from which a use case

The next section will deal exclusively with an important concept, the level of the use ~ description is written, typically ranging from
case. The following section will deal with the rest of the terms in the template. high level to extremely defailed.

Level

Level has to do with the level of detail at which the use case is being described. Level
can range from high to low, where high is general and abstract, and low is detailed.
Cockburn suggests five different levels of detail:

White: As seen from the clouds, as if flying in a plane at 35,000 feet.
Kite: You're still in the air, but more detail than at cloud level.
Blue: Also known as sea level.
Fish: This is below sea level with a lot of detail. The detail increases deeper
down, just like air pressure.
A . o takehol
e Black: This is the bottom of the sea where the maximum amount of detail is PSeoc;‘eeWhg ;i?erc vested inferest in the

provided. system being developed.

Both the white and kite levels provide a summary of the use case goals. These
goals are at a very high level. Goals at the white level are enterprise-wide, whereas at the
kite level, the goals are those of a single business unit. Use cases at the white and kite
levels are sometimes called summary use cases. Summary use cases do not include func-
tional requirements. Use cases written at the blue level, or sea level, focus on user goals:
What is the user trying to achieve in interacting with the system? Use cases written at
the fish and black levels (sometimes called the clam level) are much more detailed and
focus on subfunction goals. To see how the levels relate to each other, think about the
view of the Caribbean Sea you would get if you were flying over it in a big plane like a
757. You can’t see the bottom of the sea, and at this altitude, you can’t even see much
detail about the surface of the water. This would be the white level. Then think about
how the same stretch of the Caribbean would look from about 100 feet up. This is the
kite level. From the kite level, you would be able to see a lot more detail on the surface,
compared to being in the 757 jet, but you still can’t see a lot of detail on the sea bottom,
even with the water as clear as it is in a lot of the Caribbean. Now imagine the view of
the same place from a rowboat. This is the user goal or sea level view. You can see the
bottom much more clearly now, but it’s still not completely clear. Now dive under the
water and go down about 50 feet. You are a lot closer to the bottom—the fish level—
and so now you can see a lot more detail at the bottom of the sea. But you don’t see the
most detail possible until you are sitting on the bottom itself—the black or clam level.

To put all this into a business function perspective, let’s imagine five levels of
use cases written for the Ford Motor Company. The white level use cases would serve
an enterprise-wide goal (“Buy parts to build cars”), whereas a kite level use case
would serve one business unit (“Buy parts to build Escorts”). If a system user has the
role of procurement manager for the Escort model, the user goals at sea level might
be “Order Escort parts from suppliers” and “Pay bills.” A fish level goal for the pro-
curement system might include “Choose supplier for a part.” A black or clam level
goal for the same system might include “Establish a secure connection.” Figure 7-30
shows the relationships among the levels.

The Rest of the Template

Next in the use case template is the list of stakeholders: those people who have some
key interest in the development of the system. They would include the system’s users
as well as the manager, other managers in the company, customers, stockholders, the
vendors that supply the company, and so on. Stakeholders are important to identify

224

FIGURE 7-30
Use case levels and detail when moving
from top to bottom

PART IIIT ANALYSIS

(Source: George, Joey F.; Batra, Dinesh;
Valacich, Joseph S.; Hoffer, Jeffrey A.,
Object-Oriented Systems Analysis and Design,
2nd Ed., ©2007, pp. 174, 168, 175, 172,
176, 177. Reprinted and Electronically
reproduced by permission of Pearson
Education, Inc., New York, NY

Preconditions
Things that must be true before a use case
can start.

Minimal guarantee
The least amount promised fo the
stakeholder by a use case.

Success guarantee
What a use case must do effectively in
order fo safisfy stakeholders.

Trigger

Event that initiates a use case.

Extension

The set of behaviors or funcfions in a use
case that follow exceptions to the main
success scenario.

Buy parts to build cars

Buy parts to build Escorts

Order Escort parts from suppliers

Choose supplier for part

R TS

Encrypt data for secure transmission

because they typically have some impact on what the system does and on how it is
designed. It should be obvious that some stakeholders have more of a stake than oth-
ers, and the most involved stakeholders are the ones that probably should be listened
to first.

The next term in Cockburn’s template (Figure 7-29) is preconditions, which
are those things the system must ensure are true before the use case can start. For
example, in Figure 7-26, for the use case Register for Classes, students would not
be allowed to register if they had any outstanding debts due to the university. No
outstanding debts would be listed under preconditions for Register for Classes in its
written use case template.

Next is minimal guarantee. According to Cockburn, the minimal guarantee is
the least amount promised by the use case to the stakeholder. One way to determine
what this should be is to ask, “What would make the stakeholder unhappy?” For
some use cases, the minimal guarantee might be simply that nothing happens. The
stakeholder would be unhappy because the system does not do what it is supposed
to. However, no detrimental effects result either; no bad data are entered into the
system, no data are lost, and the system does not crash. For many use cases, the best
thing to offer for a minimal guarantee is to roll back the transaction to its original
starting place; nothing is gained but no harm is done either.

A success guarantee lists what it takes to satisfy stakeholders if the use case is
completed successfully. For example, in Figure 7-26, for the use case Bill Student, a
success guarantee would involve the successful compilation of charges due from the
student and the successful creation of an accurate invoice that reflects those charges.
This does not imply that the student is kappy with the result; he or she might think
the charges are too high or too low (although rarely the latter). What is important is
that the use case functioned correctly and achieved its goals.

Next is the slot in the template for trigger, the thing that initiates the use case.
A trigger could be a phone call, a letter, or even a call from another use case. In the
example of Bill Student, the trigger could be a message indicating that the class reg-
istration process was complete.

The last item in Cockburn’s written use case template is extensions. Maybe the
best way to think about an extension is as the “else statement” that follows an “if
statement.” An extension is invoked only if its associated condition is encountered.
In a written use case, the conditions that invoke extensions usually refer to some
type of system failure. For example, if a use case involves access through the Internet
and a network failure occurs so that the Internet connection is lost, what happens?
If the system requires a log-in and the user provides the wrong account name, what
happens? If the user provides the wrong password, what happens? All of the ac-
tions that would follow these conditions would be listed in the use case template as
extensions.

CHAPTER 7

Reservation System

Search
Schedules

Make
Reservations

Q <<include>> O

Purchase Authorize Credit
Reservations Card Use

Customer

Request
Confirmation

Figure 7-31 shows a use case diagram for a reservation system. Figure 7-32 shows
a finished, written use case, based on the reservation use case diagram. This use case
description is written at the kite level, or summary level, which means that it shows
only the user goals rather than the functional requirements. You’ll notice that five
user goals are described, four of which are carried out by the customer, and this
reflects the content of the use case diagram in Figure 7-31. Although Figure 7-31 is
generic to any system that handles reservations, the written use case in Figure 7-32 is
specific to hotel reservations. For hotel reservations made on the web, certain simpli-
fying assumptions particular to hotel reservations have been made, such as custom-
ers being required to provide one night’s deposit in order to hold the reservation.
You’ll also notice that there is a list of extensions at the end of the written use case.
There is at least one extension for each user goal, although the first function, search-
ing for a room for a desired time period at a specific hotel, has two extensions. There
is no set number of extensions required for a user goal. In fact, there is no require-
ment that a user goal has an extension at all.

ELECTRONIC COMMERCE APPLICATION: PROCESS
MODELING USING USE CASES

Jim Woo decided to try to model the functionality of the PVF WebStore application
with a use case diagram. He identified six high-level functions that would be included
in his use case diagram. Jim created a table that listed the main characteristics of
the WebStore website in one column and the corresponding system functions in an-
other column (Table 7-5). Note how these functions correspond to the major website
characteristics listed in the system structure. These functions represent the “work”
or “action” parts of the website. Jim noted that all the functions listed in his table
involved the customer, so Jim realized that Customer would be a key actor in his use
case diagram.

STRUCTURING SYSTEM PROCESS REQUIREMENTS

225

FIGURE 7-31

A use case diagram for a reservation
system

(Source: George, Joey F.; Batra, Dinesh;
Valacich, Joseph S.; Hoffer, Jeffrey A.,
Object-Oriented Systems Analysis and Design,
2nd Ed., ©2007, pp. 174, 168, 175, 172,
176, 177. Reprinted and Electronically
reproduced by permission of Pearson
Education, Inc., New York, NY

s | PINE
VALLEY
= FURNITURE

o

226

PART III

ANALYSIS

Use Case Title: Browse catalog

Primary Actor: Customer

Level: Kite (summary)

Stakeholders: Customer, credit bureau

Precondition: Customer accesses the hotel website

Minimal Guarantee: Rollback of any uncompleted transaction

Success Guarantees: Reservation held with one night’s deposit

Trigger: Customer accesses hotel homepage

Main Success Scenario:

2. Customer makes reservation for desired room for desired time period.

3. Customer holds reservation by authorizing a deposit for one night’s stay.
4. Credit bureau verifies that customer has necessary credit for deposit.

5. Customer requests confirmation of reservations.

1. Customer searches for hotel location and room availability for desired time period.

Extensions:

1a. Hotel property search function is not available.
1a1. Customer quits site
1b. Specific hotel room not available for desired time period.
1b1. Customer quits site.
1b2. Customer searches for different hotel for desired time period.
1b3. Customer searches for same hotel for different time period
2a. Making reservation transaction is interrupted.
2al. Transaction rolled back. Customer starts again.
2a2. Transaction rolled back. Customer quits site.
3a. Holding reservation transaction is interrupted.
3al. Transaction rolled back. Customer starts again.
3a2. Transaction rolled back. Customer quits site.
4a. Credit bureau cannot verify that customer has necessary credit.
4a1. Customer notified of issue. Transaction rolled back. Customer quits site.
4a2. Customer notified of issue. Transaction rolled back. Customer
begins reservation process again with different credit card.
5a. Confirmation of transaction is interrupted.
5a1. Customer seeks other means of confirmation.
5a2. Customer quits site.

FIGURE 7-32
Kite Level Written Use Case for Making a Hotel Room Reservation

(Source: George, Joey F.; Batra, Dinesh; Valacich, Joseph S.; Hoffer, Jeffrey A., Object-Oriented Systems Analysis and Design,
2nd Ed., ©2007, pp. 174, 168, 175, 172, 176, 177. Reprinted and Electronically reproduced by permission of Pearson

Education, Inc., New York, NY

In looking at the table, however, Jim realized that one of the key functions iden-
tified in the JAD, Fill Order, was not represented in his table. He had to include it
in the use case diagram, but it was clear to him that it was a back-office function and
that it required adding another actor to the use case diagram. This actor would be
the Shipping Clerk. Jim added Shipping Clerk to the right-hand side of his use case

diagram. The finished diagram is shown in Figure 7-33.

CHAPTER 7 STRUCTURING SYSTEM PROCESS REQUIREMENTS 227

TABLE 7-5 System Structure of the WebStore and Corresponding Functions

WebStore System Functions
Q Main Page Browse Catalog
e Product Line (catalog)
v/ Desks
v Chairs
v Tables
v File Cabinets
e Shopping Cart Place Order
e Checkout Place Order
e Account Profile Maintain Account
e Order Status/History Check Order

e Customer Comments
Q Company Information
Q Feedback
0 Contact Information

WRITING USE CASES FOR PINE VALLEY
FURNITURE’S WEBSTORE

Jim Woo was pleased with the use case diagram he created for the WebStore
(Figure 7-33). Now that he had identified all of the use cases necessary (he thought),
he was ready to go back and start writing the use cases. The management in Pine
Valley’s Information Systems department mandated that analysts use a standard tem-
plate for writing use cases. Given his use case diagram, Jim decided to create two
types of written use cases. The first would deal with the entire process of buying a
PVF product on the WebStore, as depicted in his use case diagram. This written use

FIGURE 7-33

WebStore use case diagram

Source: George, Joey F.; Batra, Dinesh;
Valacich, Joseph S.; Hoffer, Jeffrey A,
Browse Catalog Object-Oriented Systems Analysis and Design,
2nd Ed., ©2007, pp. 174, 168, 175, 172,
176, 177. Reprinted and Electronically
reproduced by permission of Pearson
Education, Inc., New York, NY

Maintain Account

D -1

Place Order

+

/[1\\

Customer Shipping
Clerk

Fill Order

Check Order

228

PART III

ANALYSIS

Use Case Title: Making a hotel room reservation

Primary Actor: Customer

Level: Kite (summary)

Stakeholders: Customer, credit bureau

Precondition: Customer accesses the hotel website

Minimal Guarantee: Rollback of any uncompleted transaction

Success Guarantees: Reservation held with one night’s deposit

Trigger: Customer accesses hotel homepage

Main Success Scenario:

1. Customer searches for hotel location and room availability for desired time period.
2. Customer makes reservation for desired room for desired time period.

3. Customer holds reservation by authorizing a deposit for one night’s stay.

4. Credit bureau verifies that customer has necessary credit for deposit.

5. Customer requests confirmation of reservations.

Extensions:

1a. Hotel property search function is not available.
1a1. Customer quits site
1b. Specific hotel room not available for desired time period.
1b1. Customer quits site.
1b2. Customer searches for different hotel for desired time period.
1b3. Customer searches for same hotel for different time period
2a. Making reservation transaction is interrupted.
2a1l. Transaction rolled back. Customer starts again.
2a2. Transaction rolled back. Customer quits site.
3a. Holding reservation transaction is interrupted.
3al. Transaction rolled back. Customer starts again.
3a2. Transaction rolled back. Customer quits site.
4a. Credit bureau cannot verify that customer has necessary credit.
4ail. Customer notified of issue. Transaction rolled back. Customer quits site.
4a2. Customer notified of issue. Transaction rolled back. Customer begins reservation

5a. Confirmation of transaction is interrupted.
5a1. Customer seeks other means of confirmation.
5a2. Customer quits site.

process again with different credit card.

FIGURE 7-34

Jim Woo's Kite Level Written Use Case for Buying a Product at PVF's WebStore

(Source: George, Joey F.; Batra, Dinesh; Valacich, Joseph S.; Hoffer, Jeffrey A., Object-Oriented Systems Analysis
and Design, 2nd Ed., ©2007, pp. 174, 168, 175, 172, 176, 177. Reprinted and Electronically reproduced by
permission of Pearson Education, Inc., New York, NY

case would be at the kite level. It would be a summary use case and would not include
functional requirements. The finished product is shown in Figure 7-34.

After finishing the Kkite level use case, Jim went on to create a couple of
written use cases for individual use cases in his diagram. Jim wanted to write these
use cases at the sea level or user goal level. He started with the first use case in his
diagram, Browse catalog. Figure 7-35 shows the template Jim completed for this first
use case.

Jim was amazed at how much detail he could generate for something as seem-
ingly simple as a customer browsing a web catalog. Yet he knew that he had left out

CHAPTER 7 STRUCTURING SYSTEM PROCESS REQUIREMENTS

Use Case Title: Browse catalog

Primary Actor: Customer

Level: Sea level (user goal)

Stakeholders: Customer

Precondition: Customer must be online with Web access

Minimal Guarantee: Rollback of any uncompleted transaction; system logs progress until failure

Success Guarantees: Files customer desires load correctly

Trigger: Customer accesses WebStore homepage

Main Success Scenario:

1. Cookie created on customer hard drive.

2. Customer selects category of item to view from list (e.g., home, office, patio).

3. Customer selects subcategory of item to view from list (e.g., home is subdivided into
kitchen, dining room, bedroom, living room, den, etc.).

4. Customer selects specific item from list in subcategory to view (e.g., TV stand in den).

5. Customer selects specific item from list of products (e.g., Smith & Wesson TV stand).

6. Customer clicks on thumbnail photo of item to get regular-sized photo to view.

7. Customer selects “Product Specifications” to get detailed information on product.

8. Customer uses Web browser “Back” button to go back to see other products or
other rooms or other types of furniture.

9. Customer selects from choices on menu bar to go elsewhere, either “Other Types of Furniture,
“WebStore Home,” or “PVF Home.”

”

Extensions:

1.a. Cookie cannot be created.
1.a.1. Message created indicates to customer that browsing is not possible because his
or her Web browser does not allow for the creation of cookies.

6.a. Full-sized photo does not load.
6.a.1. Customer gets a broken-link symbol.
6.a.2. Customer hits the refresh button and the photo loads successfully.
6.a.3. Customer hits the refresh button and the photo does not load successfully; customer
leaves the site.
2-7.a. The requested Web page does not load or cannot be found.
2-7.a.1. Customer gets a “page not found” error page in browser.
2-7.a.2. Customer hits the refresh button and the requested page loads successfully.
2-7.a.3. Customer hits the refresh button and the requested page does not load successfully;
customer leaves the site.

1.a.2. Customer either adjusts the browser’s cookie settings and tries again or leaves the site.

FIGURE 7-35
Jim Woo's completed template for PVF’s Browse catalog use case

(Source: George, Joey F.; Batra, Dinesh; Valacich, Joseph S.; Hoffer, Jeffrey A., Object-Oriented Systems Analy-
sis and Design, 2nd Ed., ©2007, pp.174, 168, 175, 172, 176, 177. Reprinted and Electronically
reproduced by permission of Pearson Education, Inc., New York, NY.

many details, details that could be specified in a use case at different levels, such as
fish level or below. Still, Jim was happy with the progress he had made on this use
case for catalog browsing. Now he turned his attention to the other four use cases he
had identified for the WebStore (Figure 7-33) and wrote sea level use cases for them.
Once he finished, he called a couple of other analysts at PVF so they could review
his work.

229

230
SUMMARY

PART IIIT ANALYSIS

Use case modeling, featuring use case diagrams and writ-
ten use cases, is another method you can use to model
business processes. Use cases focus on system functional-
ity and business processes, and they provide little, if any,

KEY TERMS

information about how data flow through a system. In
many ways, use case modeling complements DFD model-
ing. The use case approach provides another tool for ana-
lysts to use in structuring system requirements.

7A.1 Actor

7A.2 Extend relationship
7A.3 Extension

7A.4 Include relationship

7A.5 Level

Match each of the key terms above with the definition that best
fits it.

People who have a vested interest in the system being
developed.

The least amount promised to the stakeholder by a
use case.

An association between two use cases where one adds new
behaviors or actions to the other.

An external entity that interacts with a system.
Event that initiates a use case.

A depiction of a system’s behavior or functionality under
various conditions as the system responds to requests from
users.

REVIEW QUESTIONS

7A.6 Minimal guarantee
7A.7 Preconditions
7A.8 Stakeholder

7A.9 Success guarantee
7A.10 Trigger
7A.11 Use case
7A.12 Use case diagram

The set of behaviors or functions in a use case that follow
exceptions to the main success scenario.

A picture showing system behavior, along with the key ac-
tors that interact with the system.

What a use case must do effectively in order to satisfy
stakeholders.

An association between two use cases where one use case
uses the functionality contained in the other.

Things that must be true before a use case can start.

Perspective from which a use case description is written,
typically ranging from high level to extremely detailed.

7A.13 What are use cases?
7A.14 What is use case modeling?
7A.15 What is a use case diagram?

7A.16 What is a written use case and how does it compare to a
use case diagram?

7A.17 Explain an include relationship.
7A.18 Explain an extend relationship.
7A.19 Compare DFDs with use case diagrams.

PROBLEMS AND EXERCISES

7A.20 What can a written description of a use case provide that
a use case diagram cannot?

7A.21 Describe Cockburn’s template for a written use case.

7A.22 List and explain the five levels from which use case de-
scriptions can be written.

7A.23 What is the difference between a minimal guarantee and
a success guarantee?

7A.24 What are extensions?

7A.25 Draw a use case diagram for the situation described in
Problem and Exercise 7-39, page 210.

7A.26 Draw a use case diagram for the situation described in
Problem and Exercise 7-40, page 210.

7A.27 Draw a use case diagram for the situation described in
Problem and Exercise 7-41 page 213.

7A.28 Draw a use case diagram for the situation described in
Problem and Exercise 7-42, page 213.

7A.29 Draw a use case diagram for the situation described in
Problem and Exercise 7-43, page 213.

7A.30 Draw a use case diagram based on the level-0 diagram
in Figure 7-23. How does your use case diagram for
Figure 7-23 differ from the one in Figure 7-26, which is
also about registering for classes? To what do you attri-
bute the differences?

7A.31 Develop a use case diagram for using an ATM machine to
withdraw cash.

7A.32

7A.33

7A.34

7A.35

7A.36

CHAPTER 7

Develop a written use case for using an ATM machine to
withdraw cash.

Choose a transaction that you are likely to encounter,
perhaps ordering a cap and gown for graduation, and de-
velop a use case diagram for it.

Choose a transaction that you are likely to encounter and
develop a written use case for it.

The diagram in Figure 7-33 includes five use cases. In
this chapter, Jim Woo wrote descriptions for one of them,
Browse catalog. Prepare written descriptions for the
other use cases in Figure 7-33.

An auto rental company wants to develop an automated
system that can handle car reservations, customer billing,

FIELD EXERCISE

STRUCTURING SYSTEM PROCESS REQUIREMENTS 231

and car auctions. Usually a customer reserves a car, picks it
up, and then returns it after a certain period of time. At the
time of pickup, the customer has the option to buy or waive
collision insurance on the car. When the car is returned,
the customer receives a bill and pays the specified amount.
In addition to renting cars, every six months or so, the auto
rental company auctions the cars that have accumulated
over 20,000 miles. Draw a use case diagram for capturing
the requirements of the system to be developed. Include
an abstract use case for capturing the common behavior
among any two use cases. Extend the diagram to capture
corporate billing, where corporate customers are not
billed directly; rather, the corporations they work for are
billed and payments are made sometime later.

7A.37

At an organization with which you have contact, find an
analyst who uses use case modeling. Find out how long he

REFERENCES

or she has been writing use cases and how he or she feels
about use cases compared with DFDs.

Cockburn, A. 2001. Writing Effective Use Cases. Reading, MA:
Addison-Wesley.
Eriksson, H., and M. Penker. 1998. UML Toolkit. New York: Wiley.

Jacobson, I., M. Christerson, P. Jonsson, and G. Overgaard.
1992. Object-Oriented Software Engineering: A Use-Case-Driven
Approach. Reading, MA: Addison-Wesley.

< bjéc—

Appendix

7B

Learning Objectives

After studying this section, you should be able to

7B.1 understand how to represent system logic with
activity diagrams.

Y
ht

riented Analysis
and Design

Activity Diagrams*
DL . <

W
b |

Introduction

A.n activity diagram shows the conditional logic for
the sequence of system activities needed to accomplish a
business process. An individual activity may be manual or
automated. Further, each activity is the responsibility of a
particular organizational unit.

The basic activity diagram notation contains only
a few symbols (Figure 7-36). Each activity is represented
with a rounded rectangle, with the action performed by
that activity written inside it. The diagram itself represents
an overall process that is made up of a series of activities.
The beginning of the process is indicated with a filled in
circle. An arrow connects the circle with the first activity.
The end of the process is also indicated with a filled in
circle, but it is surrounded by another circle. An activity
diagram is designed to show conditional logic. The symbol
that illustrates a choice that must be made is a diamond,
and itis called a branch. The diamond follows one activity,
so there is an arrow coming into it. Two activities follow it,
so an arrow leaves the diamond for each possible course of
action. These arrows are labeled with the conditions that
cause each branch to be followed. The different courses
of possible action end at some point, so they join together,
and the overall process continues. The point at which they
join is called a merge, and the symbol for it is also a dia-
mond. For a merge diamond, two arrows come into the
diamond but only one leaves. An activity diagram can also
show parallel activities. We show where the parallel activi-
ties begin with a fork. The fork is shown with a horizontal

* The original version of this appendix was written by Professor Atish P. Sinha.

232

line, which has two arrows coming out of it. When the par-
allel activities are done, they come back together in a join.
The join is shown as a horizontal line with two arrows com-
ing in and one arrow leaving. After the join, the overall
process continues.

Figure 7-37 shows a simple activity diagram that il-
lustrates conditional logic. A user wants to log in to a sys-
tem, which could be a website or some other information
system. If the user has already registered, then the flow
of activities shifts to the left-hand side. If the user has not
registered, the flow shifts to the right-hand side. First, the

Start End

Branch <—é—> <«—J1 [Fork
Merge —»?4— J_l_L Join
FIGURE 7-36

Basic notation for activity diagrams.

CHAPTER 7 STRUCTURING SYSTEM PROCESS REQUIREMENTS 233

[User has registered] [User has not registered]
Login Click on B I
9 ‘Register’ [rowse menu j
Y
[Call to order pizza j
Complete
registration € v
form .
[Take delivery j
[Form not OK]
Submit [Order not OK]
registration Return pizza j
form
[Form OK]
[Order OK]
s [Pay for pizza j
FIGURE 7-38
FIGURE 7.7 A simple activity diagram for ordering

pizza.
Simple activity diagram showing conditional logic.

user has to click on the ‘Register’ button. A registration form will then open, which
the user must complete. The system then checks to see if the form has been com-
pleted correctly. If so, the action proceeds to the merge point. If not, the user must
complete the registration form again. Once the user has successfully logged in, the
flow of the action moves to the end of the activity diagram. In practice, this activity
diagram would illustrate only one small part of a larger process involving a system.
There would typically be activities before the log-in branch, and there would be other
activities following the merge at the bottom of the diagram.

Another simple activity diagram is shown in Figure 7-38. This activity diagram
shows how you might order a pizza. The process starts with the first activity, browsing
the menu of your favorite pizza restaurant or take-out place. The next step is to call
and order the pizza. The third step is to take delivery. But if the pizza is not what you
ordered, you don’t want it. So there is a conditional branch included. If the order
is correct, then you pay for the pizza. If the pizza is not what you wanted, then you
return it. Note how both of the activities that follow the branch lead to the end of the
activity diagram.

Both of the activity diagrams you have seen so far have been relatively simple
and have involved only one participant. But organizational processes are rarely so
simple, and they almost always involve multiple actors, typically located in differ-
ent organizational departments. Figure 7-39 illustrates one such process: A typical
customer ordering process for a stock-to-order business, such as a catalog or an
Internet sales company. Interactions with other business processes, such as replen-
ishing inventory, forecasting sales, or analyzing profitability, are not shown.

In Figure 7-39, each column, called a swimlane, represents the organizational
unit responsible for certain activities. The vertical axis is time, but without a time
scale (i.e., the distance between symbols implies nothing about the absolute amount
of time passing). As usual, the process starts at the filled in circle. This activity dia-
gram includes a fork, which means that several parallel, independent sequences of

Activity diagram

Shows the conditional logic for the
sequence of system activities needed to
accomplish a business process.

PART III

Purchasing

[missing some items]

ANALYSIS

Fulfillment

Customer Service

Act|V|ty
*«d| Receive

4 .==== Fork

Accounting

Pull

Available
Inventory

Q_L___.-Branch

\]

Prepare
Back

Order

Pull
Back Order
Inventory

Send
Order

[request express] [else]
Ty

Send Send
Express Regular
Mall Mall

FIGURE 7-39

Prepare
Invoice

Activity diagram for a customer order process

Join
! \u_:"

Send
Invoice

Receive
Payment

————

CHAPTER 7 STRUCTURING SYSTEM PROCESS REQUIREMENTS 235

activities are initiated (such as after the Receive Order activity), and a join (such as
before the Send Invoice activity) signifies that independent streams of activities now

must all reach completion to move on to the next step.

The branch in the Fulfillment swimlane indicates conditional logic. After avail-
able inventory is pulled from stock, it must be determined if all ordered items were
found. If they were not, Purchasing must prepare a back order. After either the back-
order inventory arrives and is pulled or the original order is filled completely, the

process flow merges to continue to the Send Order activity.

This multi-actor activity diagram clearly shows parallel and alternative behaviors
(Fowler and Scott, 1999). It provides a good way to document work or flows through
an organization. However, objects are obscured and the links between objects are not

shown. An activity diagram can be used to show the logic of a use case.

WHEN TO USE AN ACTIVITY DIAGRAM

An activity diagram is a flexible tool that can be used in a variety of situations. It can
be used at a high level as well as at a low level of abstraction. It should be used only
when it adds value to the project. Our recommendation is to use it sparingly. Ask the
following question: Does it add value or is it redundant? Specifically, an activity dia-

gram can be used to accomplish the following tasks:

1. Depict the flow of control from activity to activity.

. Help in identifying extensions in a use case.
. Model work flow and business processes.

Ot W~ 00 N

. Help in use case analysis to understand what actions need to take place.

. Model the sequential and concurrent steps in a computation process.

The interpretation of the term activity depends on the perspective from which
one is drawing the diagram. At a conceptual level, an activity is a task that needs to be
done, whether by a human or a computer (Fowler and Scott, 1999). At an implemen-

tation level, an activity is a method or a class.

PROBLEMS AND EXERCISES

7B.1 Draw an activity diagram that models the following em-
ployee reimbursement process.

Employees of West Nile Valley University have to fol-
low a specific procedure to get reimbursed for travel
they undertake on behalf of the university. First, they
have to gather and prepare all of the receipts the uni-
versity requires for reimbursement. At the same time,
they complete the official reimbursement form. They
then submit both the receipts and the form to their
departmental secretary. If something on the form is
incorrect, the secretary returns the form to the em-
ployee for correction. If the form is correct, the em-
ployee is asked to review the reimbursement amounts,
which are determined by an analysis of the reimburse-
ment request. If the amount shown is not correct, the
employee must indicate that this is the case. If the
amount shown is correct, then the employee’s respon-
sibilities for reimbursement are complete.
7A.2 Draw an activity diagram that models the reimbursement
process described below. Use one swimlane for each of the
three actors in the process.

The travel reimbursement process for employees of
West Nile Valley University involves three different ac-
tors: the employee, the employee’s departmental sec-
retary, and the treasurer’s office. First, the employee
has to gather and prepare all of the receipts the uni-
versity requires for reimbursement. At the same time,
she completes the official reimbursement form. She
then submits both the receipts and the form to the
departmental secretary. If something on the form is
incorrect, the secretary returns the form to the em-
ployee for correction. If the form is correct, the secre-
tary prepares a form required by the university. That
form is then submitted to the treasurer’s office. The
treasurer’s office then enters the amount to be reim-
bursed into the university’s system. The employee is
then asked to review the reimbursement amounts. If
the amount shown is not correct, the employee must
indicate that this is the case. If the amount shown is
correct, then the treasurer’s office sends the reim-
bursement to the employee’s bank, completing the
process.

236 PARTIII ANALYSIS

7B.3 Draw an activity diagram for the following employee hiring skilled on the software that the caller needs help with.
process. Because a consultant is not always immediately avail-

Projects, Inc., is an engineering firm with approximately
500 engineers in different specialties. New employees
are hired by the personnel manager, based on data in an
application form and evaluations collected from other
managers who interview the job candidates. Prospective
employees may apply at any time. Engineering manag-
ers notify the personnel manager when a job opens and
list the characteristics necessary to be eligible for the job.
The personnel manager compares the qualifications of
the available pool of applicants with the characteristics
of an open job and then schedules interviews between
the manager in charge of the open position and the
three best candidates from the pool. After receiving eval-
uations on each interview from the manager, the person-
nel manager makes the hiring decision based upon the
evaluations and applications of the candidates and the
characteristics of the job, and then notifies the interview-
ees and the manager about the decision. Applications of
rejected applicants are retained for one year, after which
time the application is purged. When hired, a new en-
gineer completes a nondisclosure agreement, which is
filed with other information about the employee.

7B.4 Draw an activity diagram for the following case.

Maximum Software develops and supplies software
products to individuals and businesses. As part of its
operations, Maximum provides a 1-800 telephone
number help desk for clients with questions about soft-
ware purchased from Maximum. When a call comes
in, an operator inquires about the nature of the call.
For calls that are not truly help desk functions, the op-
erator redirects the call to another unit of the com-
pany (such as order processing or billing). Because
many customer questions require in-depth knowledge
of a product, help desk consultants are organized by
product. The operator directs the call to a consultant

able, some calls must be put into a queue for the next
available consultant.

Once a consultant answers the call, he or she
determines whether this is the first call from this cus-
tomer about this problem. If so, a new call report is
created to keep track of all information about the
problem. If not, the customer is asked for a call report
number so the consultant can retrieve the open call re-
port to determine the status of the inquiry. If the caller
does not know the call report number, the consultant
collects other identifying information such as the call-
er’s name, the software involved, or the name of the
consultant who has handled the previous calls on the
problem in order to conduct a search for the appropri-
ate call report. If a resolution of the customer’s prob-
lem has been found, the consultant informs the client
what that resolution is, indicates on the report that the
customer has been notified, and closes out the report.
If a resolution has not been discovered, the consultant
finds out whether the consultant previously handling
this problem is on duty. If so, the call is transferred to
the other consultant (or the call is put into the queue
of calls waiting to be handled by that consultant).

Once the proper consultant receives the call, any
new details the customer may have are recorded. For
continuing problems and for new call reports, the
consultant tries to discover an answer to the problem
by using the relevant software and looking up infor-
mation in reference manuals. If the problem can be
resolved, the customer is told how to deal with the
problem, and the call report is closed. Otherwise, the
consultant files the report for continued research and
tells the customer that someone at Maximum will be
in touch, or if the customer discovers new information
about the problem, he or she can call back, identifying
the problem with a specified call report number.

REFERENCE

Fowler, M., and K. Scott. 1999. UML Distilled, 2nd ed. Reading,
MA: Addison-Wesley.

Appendix

7C

N L -

Learning Objectives

After studying this section, you should be able to

7C.2 understand how to represent system logic with
sequence diagrams.

ObJect—Orlented Ana1y51s
and Design

Sequence Diagrams*
-

Introduction

In this section on object-oriented analysis and design,
we will introduce you to sequence diagrams. We will first
show how to design some of the use cases we identified
earlier in the analysis phase (Chapter 7) using sequence
diagrams. A use case design describes how each use case is
performed by a set of communicating objects (Jacobson
et al., 1992). In UML, an interaction diagram is used to
show the pattern of interactions among objects for a par-
ticular use case. There are two types of interaction dia-
grams: sequence diagrams and collaboration diagrams
(Object Management Group, 2008). Both express similar
information, but they do so in different ways. Whereas
sequence diagrams show the explicit sequencing of mes-
sages, collaboration diagrams show the relationships
among objects. In the next section, we will show you how
to design use cases using sequence diagrams.

DYNAMIC MODELING: SEQUENCE
DIAGRAMS

A sequence diagram depicts the interactions among objects
during a certain period of time. Because the pattern of inter-
actions varies from one use case to another, each sequence
diagram shows only the interactions pertinent to a specific
use case. It shows the participating objects by their lifelines
and the interactions among those objects—arranged in time
sequence—by the messages they exchange with one another.

* The original version of this appendix was written by Professor Atish P. Sinha.

A sequence diagram may be presented either in a
generic form or in an instance form. The generic form
shows all possible sequences of interactions, that is, the se-
quences corresponding to all the scenarios of a use case.
For example, a generic sequence diagram for the Class
registration use case (see Figure 7-26) would capture the
sequence of interactions for every valid scenario of that
use case. The instance form, on the other hand, shows
the sequence for only one scenario. A scenario in UML
refers to a single path, among many possible different
paths, through a use case (Fowler, 2003). A path repre-
sents a specific combination of conditions within the use
case. In Figure 7-40, a sequence diagram is shown, in in-
stance form, for a scenario in which a student registers for
a course that specifies one or more prerequisite courses as
requirements.

The vertical axis of the diagram represents time, and
the horizontal axis represents the various participating ob-
jects. Time increases as we go down the vertical axis. The
diagram has six objects, from an instance of Registration
Window on the left to an instance of Registration called
“a New Registration” on the right. The ordering of the
objects has no significance. However, you should try to ar-
range the objects so that the diagram is easy to read and
understand. Each object is shown as a vertical dashed line
called the lifeline; the lifeline represents the object’s exis-
tence over a certain period of time. An object symbol—a
box with the object’s name underlined—is placed at the
head of each lifeline.

237

238 PART I ANALYSIS

:Registration :Course . .

Window Offering :Course :Student

enterClass : : :

open() . (stud, I I I

—_— class) :Registration | | |

: Entry I I I

| |

—_— 1 1

checklfOpen () : :

| |

[checklfOpen="“true”] 1 1

existsPreregs () !

L) 1

|

|

|

FIGURE 7-40
Sequence diagram for a class registration
scenario with prerequisites

Sequence diagram
Depicts the inferactions among objects
during a cerfain period of time.

Activation
The time period during which an object
performs an operation.

Synchronous message

A type of message in which the caller has
fo wait for the receiving object fo finish
executing the called operation before it can
resume execution itself.

Prer'eqs
‘ 1

|

[existsPrereqs="true”] checkPreregs (prereqgs
| |
| |

[checlfPrereqs=“true’l’] new () : > 2 New Registration

:Registration

e incrementClassSize ()
‘ 1 n

| |

isClassFull () 1
| |
|

1
] [isClassFull="false”]
Confirmed ' ' >
Registration <t

A thin rectangle superimposed on the lifeline of an object represents an activa-
tion of the object. An activation shows the time period during which an object per-
forms an operation, either directly or through a call to some subordinate operation.
The top of the rectangle, which is at the tip of an incoming message, indicates the
initiation of the activation; the bottom indicates its completion.

Objects communicate with one another by sending messages. A message is
shown as a solid arrow from the sending object to the receiving object. For example,
the checkIfOpen message is represented by an arrow from the Registration Entry ob-
ject to the Course Offering object. When the arrow points directly into an object box,
anew instance of that object is created. Normally the arrow is drawn horizontally, but
in some situations (discussed later), you may have to draw a sloping message line.

Messages can be of different types (Object Management Group, 2008). Each
type is indicated in a diagram by a particular type of arrowhead. A synchronous mes-
sage, shown as a full, solid arrowhead, is one where the caller has to wait for the
receiving object to complete execution of the called operation before it itself can
resume execution. An example of a synchronous message is checkIfOpen. When a
Registration Entry object sends this message to a Course Offering object, the latter re-
sponds by executing an operation called checkIfOpen (same name as the message).
After the execution of this operation is complete, control is transferred back to the
calling operation within Registration Entry with a return value of “true” or “false.”

CHAPTER 7 STRUCTURING SYSTEM PROCESS REQUIREMENTS 239

A synchronous message always has an associated return message. The message
may provide the caller with some return value(s) or simply acknowledge to the caller
that the operation called has been successfully completed. We have not shown the
return for the checkIfOpen message; it is implicit. We have explicitly shown the re-
turn for the existsPrereqs message from Registration Entry to Course. The tail of the
return message is aligned with the base of the activation rectangle for the existsPre-
reqgs operation. The message returns the list of prerequisites, if any, for the course in
question. Return messages, if shown, unnecessarily clutter the diagram; you can show
only the ones that help in understanding the sequence of interactions.

A simple message simply transfers control from the sender to the recipi-
ent without describing the details of the communication. In a diagram, the ar-
rowhead for a simple message is drawn as a transverse tick mark. As we have seen,
the return of a synchronous message is a simple message. The “open” message in
Figure 7-40 is also a simple message; it simply transfers control to the Registration
Window object.

An asynchronous message, shown as a half arrowhead in a sequence diagram,
is one where the sender does not have to wait for the recipient to handle the mes-
sage. The sender can continue executing immediately after sending the message.
Asynchronous messages are common in concurrent, real-time systems, in which sev-
eral objects operate in parallel. We do not discuss asynchronous messages further in
Appendix 7C.

DESIGNING A USE CASE WITH A SEQUENCE
DIAGRAM

Let us now see how we can design use cases. We will draw a sequence diagram for an
instance of the Class registration use case, one in which the course has prerequisites.
A description of this scenario is provided below.

1. Registration Clerk opens the registration window and enters the registration in-
formation (student and class).

2. Check if the class is open.

. If the class is open, check if the course has any prerequisites.

4. If the course has prerequisites, then check if the student has taken all of those
prerequisites.

5. If the student has taken those prerequisites, then register the student for the

class and increment the class size by one.
. Check if the class is full; if not, do nothing.
7. Display the confirmed registration in the registration window.

o

[=2]

The diagram of Figure 7-40 shows the sequence of interactions for this sce-
nario. In response to the “open” message from Registration Clerk (external actor),
the registration window pops up on the screen and the registration information is en-
tered. This creates a new Registration Entry object, which then sends a checkIfOpen
message to the Course Offering object (representing the class the student wants to
register for). There are two possible return values: “true” or “false.” In this scenario,
the assumption is that the class is open. We have therefore placed a guard condition,
checkIfOpen =“true,” on the message existsPrereqs. The guard condition ensures
that the message will be sent only if the class is open. The return value is a list of pre-
requisites; the return is shown explicitly in the diagram.

For this scenario, the fact that the course has prerequisites is captured by the
guard condition existsPrereqs = “true.” If this condition is satisfied, the Registration
Entry object sends a checkPrereqs message, with “prereqs” as an argument, to the
Student object to determine if the student has taken those prerequisites. If the stu-
dent has taken all the prerequisites, the Registration Entry object creates an object
called “a New Registration,” which denotes a new registration.

Simple message

A message that transfers control from the
sender fo the recipient without describing
the details of the communication.

Asynchronous message

A message in which the sender does not
have to wait for the recipient to handle the
message.

240

PART III

ANALYSIS

Next, “a New Registration” sends a message called incrementClassSize to
Course Offering in order to increase the class size by one. The incrementClassSize
operation within Course Offering then calls upon isClassFull, another operation
within the same object; this is known as self-delegation (Fowler, 2003). Assuming that
the class is not full, the isClassFull operation returns control to the calling operation
with a value of “false.” Next, the incrementClassSize operation completes and relin-
quishes control to the calling operation within “a New Registration.”

Finally, on receipt of the return message from “a New Registration,” the
Registration Entry object destroys itself (the destruction is shown with a large X)
and sends a confirmation of the registration to the registration window. Note that
Registration Entry is not a persistent object; it is created on the fly to control the
sequence of interactions and is deleted as soon as the registration is completed. In
between, it calls several other operations within other objects by sequencing the
following messages: checkIfOpen, existsPrereqs, checkPrereqs, and new. Hence,
Registration Entry may be viewed as a control object (Jacobson et al., 1992).

Apart from the Registration Entry object, “a New Registration” is also created dur-
ing the time period captured in the diagram. The messages that created these objects
are represented by arrows pointing directly toward the object symbols. For example,
the arrow representing the message called “new” is connected to the object symbol for
“a New Registration.” The lifeline of such an object begins when the message that cre-
ates it is received (the dashed vertical line is hidden behind the activation rectangle).

As we discussed before, the Registration Entry object is destroyed at the point
marked by X. The lifeline of this object, therefore, extends from the point of creation
to the point of destruction. For objects that are neither created nor destroyed during
the time period captured in the diagram—for example, Course Offering, Course,
and Student—the lifelines extend from the top to the bottom of the diagram.

Figure 7-41 shows the sequence diagram for a slightly different scenario—when
a student registers for a course without any prerequisites. Notice that the guard con-
dition to be satisfied for creating “a New Registration,” existsPrereqs =“false,” is dif-
ferent from that in the previous scenario. Also, because there is no need to check if
the student has taken the prerequisites, there is no need to send the checkPrereqs
message to Student. Thus, the Student object does not participate in this scenario.

There is another difference between this scenario and the previous one. In this
scenario, when the incrementClassSize operation within Course Offering calls isClass-
Full, the value returned is “true.” Before returning control to “a New Registration,”
the incrementClassSize operation self-delegates again, this time calling setStatus to
set the status of the class to “closed.”

Both of the sequence diagrams we have seen so far are in instance form. In
Figure 7-42, we present a sequence diagram in generic form. This diagram encom-
passes all possible combinations of conditions for the Prereq courses not completed
use case (see Figure 7-26). Because this use case is an extension of the Class registra-
tion use case, we have not shown the Registration Window object. It is assumed that
the Registration Entry object has already been created by the original use case. To
improve coherency, we have provided a textual description in the left margin. You
may provide such descriptions in either the left or the right margins, but try to align
the text horizontally with the corresponding element in the diagram. The contents
of the use case are described as follows:

1. If the student has not taken one or more of the prerequisites for the course he or
she wants to register for, check if the student has been granted a waiver for each
of those prerequisites.

2. If a waiver was not granted for one or more of the prerequisites not taken, then
check if the student tested out of each of those prerequisites by taking an exam.

3. If the student did not test out of any of those prerequisites, then deny registra-
tion. Otherwise, register the student for the class and provide a confirmation.

CHAPTER 7 STRUCTURING SYSTEM PROCESS REQUIREMENTS 241

:Registration :Course -Course
Window Offering ‘
I ! !
| ! !
open () - enterClass I I
(stud, class) | :Registration I !
Entry ! :
I
—_—
checklfOpen () :
I
[checklfOpen="true”] !
existsPrereqs ()
Prereqgs
<)
I
[existsPrereqs="false”] new () | | 5 New Registration
: :) :Registration
i tClassSi
| neremen alss ize ()
isClassFull ()
I
|
I
1
[isClassFull="true”]
setStatus(“closed”)
1
Confirmed IJ | >
Registration <] 1
< L |
1 | I
L 1 | |
1 ! !

Because this use case extension pertains only to those registration situations
where a student has not taken the prerequisite courses, we have placed a guard con-
dition, checkPrereqs = “false,” on the checkWaiver message from Registration Entry
to Student. This message invokes the checkWaiver operation within Student to find
out if the student has been granted waivers on all the prerequisites he or she has
not taken. Note that the operation has to be applied to each of the prerequisites not
taken. The iteration is described in the text in the left margin.

The diagram also exhibits branching, with multiple arrows leaving a single
point. Each branch is labeled by a guard condition. The first instance of branch-
ing is based on the value returned by the checkWaiver operation. If checkWaiver
=“true,” the system creates “a New Registration” object, bypassing other opera-
tions. If checkWaiver =“false”—meaning that some of the prerequisites in ques-
tion were not waived—Registration Entry sends another message, checkExam, to
Student to check if he or she tested out of each of the prerequisite courses not
waived.

There is another instance of branching at this point. If checkExam =“false,”
Registration Entry sends a message (to Registration Window), denying the registra-
tion and exiting the system. We have deliberately bent the message line downward
to show that none of the other remaining interactions take place. If checkExam =
“true,” then “a New Registration” is created.

FIGURE 7-41
Sequence diagram for a class registration
scenario without prerequisites

242

PART IIIT ANALYSIS

If student has not taken some of the
preregs, check if he/she was granted
waiver for each of those preregs.

If he/she was granted waiver for each Preregs not waived
of them, then register student for class.
Otherwise, check if he/she tested out)
of each prereq not waived. [checkWaiver="false”]

If student tested out of each of those \
preregs, then register student for class. < Preregs not tested out
Otherwise, deny registration.

FIGURE 7-42
A generic sequence diagram for the Prereq courses not completed use case

sliein 2

:Registration
Entry

I

|

[checkPreregs="“false”] |
checkWaiver(prereqNotTaken) -
>

checkExam(prereqNotWaived) [~
>

|

[checkWaiver="true”]
[checkExam="false”]

Deny registration and exit

new () a New Registration

:Registration

\4

[checkExam
=iitrue”]

Confirmed
Registration | |

%

A SEQUENCE DIAGRAM FOR HOOSIER BURGER

In Figure 7-43, we show another sequence diagram, in generic form, for Hoosier Burger’s
Hire employee use case (see Figure 7-28). The description of the use case follows:

1.

o)

On receipt of an application for a job at Hoosier Burger, the data relating to the
applicant are entered through the application entry window.

. The manager opens the Application Review Window and reviews the application.
. If the initial review is negative, the manager discards the application and conveys

the rejection decision to the applicant. No further processing of the application
is involved.

. If the initial review is positive, then the manager sets up a date and time to in-

terview the applicant. The manager also requests that the references specified in
the application provide recommendation letters.

. The manager interviews the candidate and enters the additional information

gathered during the interview into the application file.

. When the recommendation letters come in, the manager is ready to make a deci-

sion. First, he or she prepares a summary of the application. Based on the sum-
mary, he or she then makes a decision. If the decision is to reject the candidate,
the application is discarded and the decision is conveyed to the applicant. The
processing of the application comes to an end.

. If the decision is to hire the candidate, a potential employee file is created and

all relevant information about the candidate (e.g., name, Social Security num-
ber, birth date, address, phone number, etc.) is entered into this file. The hiring
decision is conveyed to the applicant.

243

CHAPTER 7 STRUCTURING SYSTEM PROCESS REQUIREMENTS
:Application :Application
Entry Window Review Window
T]
|
open () enter |
—» | (data) |an Application I
:Application :
1
| u |
| 1
1 1
I I , ~L open ()
! review ()
! -€
1
| D [review="+ve”]
! I an Interview | setup(date, time) request
| ! references
1 1 H A O
I | [review="-ve’] I interview () __[__
: 1 enterinfo 1 gojiectinfo () T‘
| I (data) -
| T
| N
1 | 1 Manager
| <€ e 9
I prepareSummary () makeDecision
: (references)
I I]
| < decision ()
1
1
I |:j
I . TR L}
|| Potential || new(applicantData) /[decision="hire’]
| | Employee = |
| 1
! u 1 discard () .)
| [decision="reject”]
: : decision
1 1
] 1

In the sequence diagram for this use case, we have explicitly shown Manager
as an external actor. The branching after the return value from the review message
is received represents the two options the Manager has. If review equals “+ve,” then
an object called “an Interview” is created through the setup message shown in the
upper branch. We have shown the arguments to the message—date and time—be-
cause their values are required to set up an interview. Notice that if review equals
“—ve” (lower branch), the discard message is sent to destroy the Application. The
operations in between, for example, enterInfo, prepareSummary, and so forth, are
completely bypassed.

Note that within the “an Interview” object created by the setup operation,
there is another operation called collectlnfo, which is invoked when the object re-
ceives the collectInfo message from the Application Review Window. The operation
collects all of the relevant information during the interview and enters this informa-
tion into an Application. After “an Interview” receives a successful return message
(not shown) from “an Application,” it self-destructs because there is no longer a
need for it.

Next, Manager sends a makeDecision message, which invokes a corresponding
operation within Application Review Window. This operation first sends a prepare-
Summary message to “an Application,” followed by another called “decision” to the

FIGURE 7-43
Sequence diagram for Hoosier Burger’s
Hire employee use case

244 PART III ANALYSIS

same object. There is branching again at this point, depending on the return value.
If decision equals “hire,” then a message called “new” is sent to create an instance
of Potential Employee, which stores the relevant applicant data. If decision equals
“reject,” the discard operation destroys “an Application.” In either case, the decision

is conveyed to the applicant.

SUMMARY

In this appendix, we showed you how to design use cases help you to effectively and easily capture the dynamic as-
by drawing sequence diagrams. A sequence diagram is an pects of the system by implementing the operations, mes-
invaluable tool for specifying and understanding the flow sages, and the sequencing of those messages in the target
of control. When coding the system, sequence diagrams programming language.

KEY TERMS
7C.1 Activation 7C.3 Sequence diagram 7C.5 Synchronous message
7C.2 Asynchronous message 7C.4 Simple message

Match each of the key terms above with the definition that best
fits it.

Depicts the interactions among objects during a certain
period of time.

The time period during which an object performs an
operation.

A type of message in which the caller has to wait for the
receiving object to finish executing the called operation
before it can resume execution.

REVIEW QUESTIONS

A message that transfers control from the sender to

the recipient without describing the details of the
communication.

A message in which the sender does not have to wait for

the recipient to handle the message.

7C.6 Contrast the following terms (you will have to use what
you learned in the object-oriented sections of Chapters 7
and 8 to contrast all of these terms):

Actor; use case
Extends relationship; uses relationship

Attribute; operation

Operation; method

Query operation; update operation
Abstract class; concrete class

Class diagram; object diagram
Association; aggregation

= P w0 a0 T

PROBLEMS AND EXERCISES

Generalization; aggregation

Aggregation; composition

Generic sequence diagram; instance sequence diagram
Synchronous message; asynchronous message
Sequence diagram; activity diagram

5 B —re.

Object class; object 7C.7 State the activities involved in each of the following

phases of the object-oriented development life cycle: ob-
ject-oriented analysis, object-oriented design, and object-
oriented implementation.

7C.8 Compare and contrast the object-oriented analysis and

design models with the structured analysis and design
models.

7C.9 Draw a use case diagram for the following situation (state
any assumptions you believe you have to make in order to
develop a complete diagram). Then convert the use case
diagram into a sequence diagram.

Stillwater Antiques buys and sells one-of-a-kind an-
tiques of all kinds (e.g., furniture, jewelry, china, and

clothing). Each item is uniquely identified by an item
number and is also characterized by a description, an
asking price, and a condition as well as open-ended
comments. Stillwater works with many different in-
dividuals, called clients, who sell items to and buy
items from the store. Some clients only sell items to

CHAPTER 7

Stillwater, some only buy items, and others both sell
and buy. A client is identified by a client number and
is also described by a client name and client address.
When Stillwater sells an item in stock to a client, the
owners want to record the commission paid, the actual
selling price, the sales tax (tax of zero indicates a tax-
exempt sale), and the date the item sold. When Still-
water buys an item from a client, the owners want to
record the purchase cost, the purchase date, and the
condition of the item at the time of purchase.

7C.10 Draw a use case diagram for the following situation (state
any assumptions you believe you have to make in order to
develop a complete diagram). Then convert the use case
diagram into a sequence diagram.

The H. I. Topi School of Business operates interna-
tional business programs in ten locations throughout
Europe. The school had its first class of 9000 graduates
in 1965. The school keeps track of each graduate’s stu-
dent number, name, country of birth, current country
of citizenship, current name, current address, and the
name of each major the student completed (each stu-
dent has one or two majors). To maintain strong ties
to its alumni, the school holds various events around

FIELD EXERCISE

STRUCTURING SYSTEM PROCESS REQUIREMENTS

245

the world. Events have a title, date, location, and type
(e.g., reception, dinner, or seminar). The school
needs to keep track of which graduates have attended
which events. When a graduate attends an event, a
comment is recorded about the information school of-
ficials learned from that graduate at that event. The
school also keeps in contact with graduates by mail,
e-mail, telephone, and fax interactions. As with events,
the school records information learned from the grad-
uate from each of these contacts. When a school of-
ficial knows that he or she will be meeting or talking
to a graduate, a report is produced showing the latest
information about that graduate and the information
learned during the past two years from that graduate
from all contacts and events the graduate attended.

7C.11 See Problem and Exercise 7-93 in Appendix 7A. One of
the use cases for the auto rental system in this exercise is
“Car reservation.” Draw a sequence diagram, in instance
form, to describe the sequence of interactions for each of
the following scenarios of this use case:

a. Car is available during the specified time period.
b. No car in the desired category (e.g., compact, midsize,
etc.) is available during the specified time period.

7C.12 Interview a systems analyst at a local company that uses
object-oriented programming and system development
tools. Ask to see any analysis and design diagrams he
or she has drawn of their databases and applications.

REFERENCES

Compare these diagrams to the ones in this chapter.
What differences do you see? What additional features
and notations are used, and what are their purposes?

Booch, G., R. A. Maksimchuk, M. W. Engel, B. J. Young, J. Col-
lallen, and K. A. Houston. 2007. Object-Oriented Analysis and
Design with Applications, 3rd ed. Redwood City, CA: Addison-
Wesley Professional.

Coad, P., and E. Yourdon. 1991a. Object-Oriented Analysis, 2nd ed.
Upper Saddle River, NJ: Prentice Hall.

Coad, P., and E. Yourdon. 1991b. Object-Oriented Design. Upper
Saddle River, NJ: Prentice Hall.

Erikson, H., M. Penker, B. Lyons, and D. Fado. 2003. UML 2 Tool-
kit. New York: John Wiley.

Fowler, M. 2003. UML Distilled: A Brief Guide to the Standard Object
Modeling Language, 3rd ed. Reading, MA: Addison-Wesley.

Jacobson, I., M. Christerson, P. Jonsson, and G. Overgaard. 1992.
Object-Oriented Software Engineering: A Use-Case Driven Ap-
proach. Reading, MA: Addison-Wesley.

Object Management Group. 2008. Unified Modeling Language
Notation Guide. Version 2.0. Available at www.omg.org. Ac-
cessed on February 17, 2009.

Object Management Group. 2009. Unified Modeling Language
Document Set. Version 2.2. Available at www.omg.org/
spec/UML/2.2/. Accessed on February 17, 2009.

Rumbaugh, J., M. Blaha, W. Premerlani, F. Eddy, and W. Lo-
rensen. 1991. Object-Oriented Modeling and Design. Upper
Saddle River, NJ: Prentice Hall.

http://www.omg.org
http://www.omg.org/spec/UML/2.2/
http://www.omg.org/spec/UML/2.2/

Appendix

Learning Objective

After studying this section, you should be able to

7D.1 understand how to represent business processes
with business process diagrams.

B A —

Business Process
Modeling

Introduction

At the heart of just about any information system de-
veloped for organizations, there is a business process. A
business process is a standard method for accomplish-
ing a particular task necessary for an organization to
function. A business process can come from any busi-
ness function, from accounting to supply chain man-
agement to after-sales service. It can cross business
functions as well. A business process can be simple or
complex, but the more complex it is, the harder it is to
automate. Complexity also makes a process more diffi-
cult to understand for those who are not familiar with
it. Communication tools are needed to describe business
processes to those who need to know about them, such as
systems analysts, but who have no firsthand knowledge of
the processes. There are many ways to represent business
processes, from data flow diagrams to activity diagrams.
The Object Management Group (OMG), the same group
that is responsible for standards for object-oriented pro-
gramming, has established a specific modeling approach
for business processes. It is called Business Process
Modeling Notation (BPMN). This appendix provides a
very brief introduction to BPMN. First, we will introduce
you to the basic notation in BPMN, and second, we will
provide a couple of examples. If you are interested in
mastering BPMN, there are many materials available (see
the reference list).

246

BASIC NOTATION

Business Process Modeling Notation is much more com-
plicated than data flow diagrams notation; it is made up of
many more symbols, and each symbol has numerous varia-
tions. (The interested reader is referred to the BPMN stan-
dards and numerous other documents to learn about all of
the various aspects of the complete BPMN standard. See
the reference list at the end of the appendix.) However,
there are four basic concepts in BPMN, each of which has
its own basic symbol. These basic concepts are events, ac-
tivities, gateways, and flows. Their symbols are as follows:

Event

Activity

Gateway

Flow

=~ -l

CHAPTER 7 STRUCTURING SYSTEM PROCESS REQUIREMENTS 247

All business processes begin and end with an event. The symbol for an event
is a circle. For a starting event, the walls of the circle are thin. For the ending event,
the walls are thicker. A starting event can be colored green, and an ending event can
be colored red. An activity is some action that must take place for the process to be
completed. An activity can be completed by people or by a computerized system. The
symbol for an activity is a rectangle with rounded edges. A gateway, symbolized by a
diamond, is a decision point. The final primary concept is flow, represented by an
arrow. Flow shows sequence, the order in which activities occur. A simple example,
without content, of a process represented by BPMN, is as follows:

=
S

In this simple example, you see that the business process starts with some event,
shown with an event symbol on the left. BPMN diagrams are always read from left to
right. The event is followed by the first activity. An arrow symbolizing flow connects
the event to the activity. The first activity is followed by a gateway. This is a deci-
sion point, indicated by two choices: “Yes” and “No.” Some condition is associated
with the gateway, and that condition can either be met (Yes) or not (No). Whether
the condition is met or not determines where the flow goes next in the diagram.
Both conditions lead to an additional activity. If the flow goes through the top of
the diagram, there is one more activity that takes place before the process ends at its
ending event. If the flow goes through the bottom part of the diagram, the process
concludes after just one activity is completed. Note how the walls of the circle that
represents the final event are much thicker than those of the circle representing the
beginning event.

Typically gateways are exclusive, which is to say that flow must follow only one
path out of the gateway and only one downstream activity can take place. However, a
gateway may be inclusive, which means that more than one downstream activity can
occur. If a gateway is inclusive, the downstream activities that follow it must also be
followed by a merge gateway, where all the flows come back together. Such a situation
would look like this:

Q—»E—»&E _é—»g—»o
L

In this example, both or either of the activities that follow the gateway could
occur. The merge gateway follows the activities, reuniting the two possible flows into
a single flow. Note that the symbol for an inclusive gateway adds a circle inside the
diamond. If it is necessary to indicate an exclusive gateway, you can add an “X” to the
inside of the diamond.

In fact, there are three different types of gateways in BPMN. The gateway with
an X inside is called an exclusive OR gateway (XOR), meaning that only one of the
paths that exit the gateway can be followed. The gateway with a ‘plus’ sign inside
is an AND gateway. This means that all of the paths that follow the gateway can be
followed in parallel. The third type of gateway is the OR gateway, symbolized by

Event
In business process modeling, a frigger that
inifiates the start of a process.

Activity
In business process modeling, an action
that must take place for a process to be
complefed.

Gateway
In business process modeling, a decision
point.

Flow
In business process modeling, it shows the
sequence of action in a process.

248 PARTIII ANALYSIS

FIGURE 7-44
An XOR gateway.

FIGURE 7-45

Action?

Done

an O inside the diamond. An OR gateway means that at least one path out of the
gateway must be followed, but many or even all of the paths that leave the gateway
can be engaged.

Figure 7-44 shows a process that includes an XOR gateway. After activity N is
finished, there is an exclusive choice of which action to undertake. Based on the
notation, if the value found at the gateway is ‘a,’ then activity A is performed. If the
value at the gateway is ‘b,” then activity B is performed. If the value is ‘c,’ then activity
C is performed. But only one of these paths can be followed. Once activity A or B or
Cis performed, all of the paths merge together at the second gateway, and activity D
can be performed.

Figure 7-45 illustrates a process that includes an AND gateway and an XOR
gateway. We again read the BPMN diagram from left to right. After activity N is com-
plete, we come to an AND gateway. This means that both of the paths that follow the
gateway must be followed. The top path leads to an XOR gateway. As we have seen,
the XOR gateway means only one path that leads from it can be followed. If the value
found at the XOR gateway is ‘a,” activity A is performed. If the value at the gateway is
‘b, then activity B is performed. Activity C is performed in parallel with either activ-
ity A or B. After either A or B is performed, the paths merge to the closing XOR gate-
way. The path that leaves the XOR gateway and the path that leaves activity C then
both merge at the next AND gateway. Now activity D can be performed, completing
the process.

Although it is beyond the scope of this appendix to introduce all of the special-
ized varieties of the four basic concepts in BPMN, it is useful to present a few variet-
ies of some of the concepts. For example, here are the symbols for a couple of types
of events. They both feature the basic circle as a symbol for an event, but each one
has something inside. The first has an envelope inside, and the envelope stands for
a message. An event shown like this, at the beginning of a process, means that the
process starts with a message. A message is a basic flow of information, such as the re-
ceipt of an order or of a customer inquiry. The other event symbol has a clock inside.

Action?

A process featuring an AND
gateway and an XOR gateway. @O
Start ' Done

CHAPTER 7 STRUCTURING SYSTEM PROCESS REQUIREMENTS 249

[OK]

Browse Call to Take
()—> order .
menu . delivery
pizza
Return
[Order not OK] pizza

If a process starts with this type of event, it means the process starts at a particular
time. In both cases, the starting event is triggered by an action outside the process
itself, either a message or a particular time.

Another example of variations in a basic concept appears below, for flow. You
have seen the basic symbol for flow, the arrow. The next symbol for flow includes a
slashing line near its beginning. This indicates a default flow, and you will usually see
this symbol after a gateway. It shows that flow through a gateway typically follows one
path out of those available. The third flow symbol is a little different. The arrow line is
dotted, and it begins with a circle. This symbol is used to signify the flow of a message
rather than the flow of sequence from one activity to the next.

We have presented just a few of the many variations in BPMN available for the
basic concepts. There are many more, and all of them are designed to address very
specific circumstances. Having all of these variations available makes BPMN very precise
and therefore very powerful. However, all of the variations also make BPMN relatively
complex and harder to learn than diagramming notations that employ less variety.

We present a simple example of a BPMN diagram in Figure 7-46. It is a process
for ordering a pizza. The first activity involves browsing the menu for your favorite pizza
source, whether it is a restaurant or a delivery service. Once you know what you want,
you call to order the pizza. Then the delivery person comes to your apartment, and you
take delivery of the pizza. Next, there is an XOR gateway, so you can do only one of the
two things that follow. You want to know if the pizza that was delivered is the same as the
one that you ordered. If it is, you pay for the pizza. If not, then you return it to the de-
livery person. After one or the other of these activities has been performed, both paths
end at the XOR merge gateway. And then the overall process ends.

Before we leave this section on notation, we need to address one other concept:
swimlanes. A process diagram can be depicted with or without a swimlane, which is a
way to visually encapsulate a process. Swimlanes can be depicted either vertically or
horizontally. Whether a swimlane is used or not, the diagram shows only one process
with one actor. If more than one actor is part of the process, then the process diagram
is shown in a pool. A pool is made up of at least two swimlanes, each of which focuses
on the actions of one participant. The participant need not be a single person; it can
be a team or a department that participates in a part of the process. Pools can also be
depicted vertically or horizontally. When a pool is used in a business process diagram,
itis called a collaboration diagram.

LANE

LANE

FIGURE 7-46
A simple BPMN example.

—_—P- Flow: sequence

Aﬁ’ Flow: default
Q ------- » Flow: massage

Swimlane
In business process modeling, a way fo
visually encapsulate a process.

Pool

In business process modeling, a way fo
encapsulate a process that has two or more
participants.

250

PART III

ANALYSIS

BUSINESS PROCESS EXAMPLE

An example of a business process diagram that features both swimlanes and a pool
is shown in Figure 7-47. The process depicted is recruiting. There are three partici-
pants: the job applicant (shown in a swimlane), a manager, and a Human Resources
(HR) department. The manager and HR department are in the same company and
so are both shown in a pool. All communication between the company (pool) and
the applicant (swimlane) is done through messaging. Note the lines indicating com-
munication between the applicant and the organization are dotted lines and feature
envelopes at midline. The envelopes symbolize messages, or information.

To read the diagram, start at the top left, with the event symbol in the manager’s
lane in the company pool. Then continue to read from left to right. Follow the arrows,
which indicate flow up, down, and across. The manager needs to recruit someone for
ajob, so she creates an advertisement for the job. Flow control then passes to the HR
department, where the ad is reviewed and then posted. At this point, a job applicant
sees the ad and completes and returns an application. The application is received by
HR, where it is evaluated and passed on to the manager. The manager evaluates the
application and then must decide whether or not to interview the applicant. This
decision is indicated by the gateway symbol. There are two possible outcomes: yes,
interview the applicant, or no, don’t interview the applicant. If the decision is “no,”
then the manager notifies HR. HR notifies the applicant, and the applicant must
decide what to do next. The process ends for both the company and the applicant.
If the decision is “yes,” then the applicant takes part in an interview. The results are
evaluated by the manager. At this point, whether the manager decides to hire the ap-
plicant or not, she notifies HR of her decision, and HR then notifies the applicant.
The applicant must decide on his next step, and the process ends for all involved.

Obviously, the recruiting process has been simplified for this example. Many
more activities are typically involved in recruiting, such as conducting credit and
background checks of the applicant. Much of the detail was removed to make the
example easier to understand and depict.

Company

Manager

Interview? V
No

Evaluate Evaluate Notify
Applicant Applicant HR

Create ad

Yes A

Y A4

Review ad Post ad

Review Notify
Response Manager

Notify
Applicant

Applicant

Complete Take Part in Decide on 3, 9

Application Interview Next Step

FIGURE 7-47
Depicting a recruiting process with BPMN

CHAPTER 7
SUMMARY

STRUCTURING SYSTEM PROCESS REQUIREMENTS

251

In this appendix, we introduced you to Business Process
Modeling Notation (BPMN). BPMN is a standardized
way of depicting business processes. It is overseen by the
Object Management Group (OMG), the same group that
oversees notation for object-orientation. We introduced
you to the four basic concepts of BPMN—event, activity,

KEY TERMS

gateway, and flow—and the symbols for each of them. We
also introduced you to swimlanes and pools. BPMN is a
very precise and complex modeling notation, but that
makes it very powerful. Because BPMN is not technical in
nature, it can be used effectively for communications be-
tween systems analysts and systems users.

7D.3 Flow
7D.4 Gateway

7D.1 Activity
7D.2 Event

Match each of the key terms above with the definition that best
fits it.

A way to visually encapsulate a process.
A trigger that initiates the start of a process.

A way to encapsulate a process that has two or more
participants.

REVIEW QUESTIONS

7D.5 Pool
7D.6 Swimlane

A decision point.
Shows the sequence of action in a process.

An action that must take place for a process to be

completed.

7D.7 What is a business process? Why is business process dia-
gramming important?

7D.8 What is BPMN? Who is responsible for it?

7D.9 List and define the four main concepts that are part of
BPMN.

PROBLEMS AND EXERCISES

7D.10 What is the difference between a swimlane and a pool?
When do you use each one?

7D.11 BPMN includes many different variations on its key con-
cepts. You were introduced to three different variations
of the symbol for flow. Explain each one of them.

7D.12 BPMN includes many different varieties of its key con-
cepts. Go to www.bpmn.org (and some of the other
BPMN sites listed in the reference list) and look up all
of the many variations that are possible for each concept.
Prepare a report on six possible variations for each of the
four major concepts.

7D.13 The appendix features two BPMN examples that showed
symbols but lacked content. Think of actual processes
that can be described with the “empty” process diagrams
in the chapter. These processes will have to be pretty sim-
ple, given how small and simple the diagrams are.

7D.14 Use BPMN to depict Hoosier Burger’s food-ordering sys-
tem from Figure 7-5 as a business process model.

7D.15 Use BPMN to depict Hoosier Burger’s inventory control
system from Figure 7-15 as a business process model.

7D.16 Draw a BPMN diagram that models the employee’s reim-
bursement process described below.

Employees of West Nile Valley University have to fol-
low a specific procedure to get reimbursed for travel
they undertake on behalf of the university. First, they

have to gather and prepare all of the receipts the uni-
versity requires for reimbursement. At the same time,
they complete the official reimbursement form. They
then submit both the receipts and the form to their
departmental secretary. If something on the form is
incorrect, the secretary returns the form to the em-
ployee for correction. If the form is correct, then
the employee is asked to review the reimbursement
amounts, which are determined by an analysis of the
reimbursement request. If the amount shown is not
correct, the employee must indicate that this is the
case. If the amount shown is correct, then the employ-
ee’s responsibilities for reimbursement are complete.

7D.17 Draw a BPMN diagram that models the reimbursement
process described below. Use one swimlane for each of
the three actors in the process.

The travel reimbursement process for employees of
West Nile Valley University involves three different ac-
tors: the employee, the employee’s departmental secre-
tary, and the treasurer’s office. First, the employee has
to gather and prepare all of the receipts the university

http://www.bpmn.org

252 PARTIII ANALYSIS

requires for reimbursement. At the same time, she
completes the official reimbursement form. She then
submits both the receipts and the form to the depart-
mental secretary. If something on the form is incorrect,
the secretary returns the form to the employee for cor-
rection. If the form is correct, the secretary prepares a
form required by the university. That form is then sub-
mitted to the treasurer’s office. The treasurer’s office

FIELD EXERCISES

then enters the amount to be reimbursed into the uni-
versity’s system. The employee is then asked to review
the reimbursement amounts. If the amount shown is
not correct, the employee must indicate that this is the
case. If the amount shown is correct, then the treasur-
er’s office sends the reimbursement to the employee’s
bank, completing the process.

7D.18 Find a company in your area that uses BPMN. Interview
analysts and users about this business process modeling
approach. What do they think of it? How useful is it? Ask
for some examples of diagrams they have created.

7D.19 Think of several business processes you take part in regu-
larly as a customer. For example, think about withdrawing

REFERENCES

cash from an ATM. Think about ordering a movie and
downloading a movie online. Consider purchasing some-
thing with a credit card from a big-box store. Use BPMN
to depict each of the processes you can think of.

Freund, J., and B. Rucker. 2104. Real-Life BPMN: Using BPMN 2.0
to Analyze, Improve, and Automate Processes in Your Company.
Create Space Independent Publishing Platform.

http://www.bpmn.org/

http://en.wikipedia.org/wiki/Business_Process_Modeling_
Notation

http://www.omg.org/spec/BPMN/1.2/

http://www.omg.org/spec/BPMN/2.0/

http://www.omg.org/spec/ BPMIN/ 2.0/ examples/PDF/

http://www.sparxsystems.com/platforms/business_process_modeling.
html.

http://www.bpmn.org/
http://en.wikipedia.org/wiki/Business_Process_Modeling_Notation
http://www.omg.org/spec/BPMN/1.2/
http://www.omg.org/spec/BPMN/2.0/
http://www.omg.org/spec/BPMN/2.0/examples/PDF/
http://www.sparxsystems.com/platforms/business_process_modeling.html

CHAPTER 6

PETRI PETRIE ELECTRONICS
ELECTRONI

Chapter 7: Structuring System Process
Requirements

Jim and Sanjay chatted in Jim’s office while they waited
for Sally to arrive.

“Good work on researching those alternatives,” Jim
said.

“Thanks,” replied Sanjay. “There are a lot of alternatives
out there. I think we found the best three, considering
what we are able to pay.”

Just then Sally walked in. “Sorry I'm late. Things are
getting really busy in Marketing right now. I've been put-
ting out fires all morning.”

Sally sat down at the table across from Jim.

“I understand,” Jim said. “But to stay on schedule, we
need to start focusing on the specifics of what we want
our system to do. Remember when you wanted more de-
tails on what the system would do? Well, now we start to
spend some serious energy on getting that done.”

“Awesome,” replied Sally, as she pulled a Red Bull out
of her oversized bag and popped it open.

“I've got a list here of four core functions the system
must perform,” said Sanjay, pulling copies of a list from
a folder on the table (PE Table 7-1). “Let’s look at these.”

After reviewing the list Sanjay had given them, Jim said,
“Nice job, Sanjay. But we need to put this in graphical for-
mat, so that everyone can see what the inputs and outputs
are for each function and how they are related to each
other. We also need to see how the new system fits in with
our existing data sources. We need ...”

“Some data flow diagrams,” Sanjay interrupted.

“Exactly,” said Jim.

“They are already done,” replied Sanjay, handing dia-
grams to both Jim and Sally. “I've already created a first
draft of the context diagram (PE Figure 7-1) and a level-1
diagram (PE Figure 7-2). You can see how I've defined the
boundaries of our system, and I've included our existing
product and marketing databases.”

“What can I say?” Jim said. “Again, a nice job on your
part. These diagrams are both good places for us to start.
Let’s get copies of all of this to the team.”

“I'll be right back,” Sally said, standing up. “I need to get
some coffee.”

STRUCTURING SYSTEM PROCESS REQUIREMENTS 253

PE TABLE 7-1 Four Core Functions of Petrie’s Customer Loyalty
System
Function Description

Record customer When a customer makes a purchase, the

activities transaction must be recorded in the customer
loyalty system, as the rewards the system
generates are driven by purchases. Similarly,
when a customer uses a coupon generated by
the system, it must also be recorded, so that
the customer activity records can be updated
to show that the coupon has been used and is
now invalid.

Send Data about customer activities provide

promotions information about what types of products
customers tend to buy and in what quantities.
This information helps determine what sales
promotion materials are best targeted at
what customers. Customers who buy lots of
video games should receive promotions about
games, game platforms, and HD TVs, for
example.

Generate point Data about customer activities is used to
redemption generate coupons for future purchases.
coupons Those coupons must be made available to
customers, either as paper coupons sent in
the mail or online, in the customer’s private
account area. Once created, the customer
activity database needs to be updated to
show the creation of the coupon. The loyalty
points needed fo create the coupon must be
deducted from the customer’s total points.

From time to time, either in the mail or
electronically, customers need to be sent
account reports that show their recent
purchases, the coupons they have been issued
that have not yet been redeemed, and the
total points they have amassed from their
purchases.

Generate
customer
reports

Transactions

Reports

No Customer Tailored Promotions

Customer

Escapes
System

Coupons

Y

Customer Activity Records

A

Customer Activities

254 PARTIII ANALYSIS
PE FIGURE 7-1
Context diagram Purchases
Customer
Coupons
Coupons
Record
Customer Customer
Purchases Activities
Marketing Promotions Send
Database Promotions

Customer Activities

Tailored Promotions

Customer

PE FIGURE 7-2
Level-1 DFD

Case Questions

7.58

7.59

7.60

Are the DFDs in PE Figures 7-1 and 7-2 balanced?
Show that they are or are not. If they are not bal-
anced, how can they be fixed?

Decompose each of the core processes in PE Fig-
ure 7-2 and draw a new DFD for each core process.
Has the team overlooked any core processes in the
system that should be in PE Table 7-1 and PE Fig-
ure 7-2? What would they be? Add them to PE Table
7-1 and PE Figure 7-2.

7.61

7.62

| Coupon Info

Generate Point Customer Activity Info

Redemption
Coupons

Coupons

Generate
Customer Reports

Reports

Product Info

Product
Database

Redesign PE Figures 7-1 and 7-2 so that they are
easier to understand, more efficient, and more
comprehensive.

Why is it important for the team to create DFDs if
they are not going to write the actual system code
themselves?

Chapter

3

Learning Objectives

After studying this chapter, you should be able to

8.1 explain the role of conceptual data modeling in the
overall analysis and design of an information
system;

8.2 describe the information gathering process for
conceptual data modeling;

8.3 describe how to represent an entity-relationship
model and be able to define the terms: entity type,
attribute, identifier, multivalued attribute, and
relationship;

! Structuring System
Data Requirements

% O —

8.4 distinguish among unary, binary, and ternary
relationships as well as associative entities,
providing an example of each;

8.5 define supertypes and subtypes, showing how to
represent these entity types with entity-relationship
diagramming notation;

8.6 define four basic types of business rules in a
conceptual data model; and

8.7 explain the role of prepackaged database models
(patterns) in data modeling.

Introduction

In Chapter 7, you learned how to model and analyze two
important views of an information system: (1) the flow
of data between manual or automated steps and (2) the
decision logic of processing data. None of the techniques
discussed so far, however, has concentrated on the data
that must be retained in order to support the data flows
and processing described. For example, you learned
how to show data stores, or data at rest, in a data flow di-
agram (DFD). The natural structure of data, however, was
not shown. DFDs, use cases, and various processing logic
techniques show how, where, and when data are used or
changed in an information system, but these techniques
do not show the definition, structure, and relationships
within the data. Data modeling develops these missing,
and crucial, descriptive pieces of a system.

In fact, some systems developers believe that a
data model is the most important part of the statement
of information system requirements. This belief is based
on the following reasons. First, the characteristics of data
captured during data modeling are crucial in the design
of databases, programs, computer screens, and printed
reports. For example, facts such as these—a data element
is numeric, a product can be in only one product line at a
time, a line item on a customer order can never be moved

to another customer order, customer region name is
limited to a specified set of values—are all essential pieces
of information in ensuring data integrity in an informa-
tion system.

Second, data, not processes, are the most complex
aspects of many modern information systems and hence
require a central role in structuring system requirements.
Transaction processing systems can have considerable
process complexity in validating data, reconciling errors,
and coordinating the movement of data to various data-
bases. Current systems development focuses more on
management information systems (such as sales tracking),
decision support systems (such as short-term cash invest-
ment), and business intelligence systems (such as market
basket analysis). Such systems are more data intensive.
The exact nature of processing is also more ad hoc than
with transaction processing systems, so the details of pro-
cessing steps cannot be anticipated. Thus, the goal is to
provide a rich data resource that might support any type
of information inquiry, analysis, and summarization.

Third, the characteristics about data (e.g., length,
format, and relationships with other data) are reason-
ably permanent and have significant similarity for differ-
ent organizations in the same business. In contrast, the

255

256 PARTIII ANALYSIS

Conceptual data model

A detailed model that captures the overall
structure of organizational data that is
independent of any database management
system or other implementation
considerations.

paths and design of data flow are quite dynamic. A data model explains the inherent
nature of the organization, not its transient form. Therefore, an information system
design based on a data orientation, rather than a process or logic orientation, should
have a longer useful life and should have common features for the same applications
or domains in different organizations. Finally, structural information about data is
essential for automatic program generation. For example, the fact that a customer
order has many line items on it instead of just one line item affects the automatic
design of a computer screen for entry of customer orders. Although a data model
specifically documents the file and database requirements for an information sys-
tem, the business meaning, or semantics, of data included in the data model has a
broader effect on the design and construction of a system.

The most common format used for data modeling is entity-relationship (E-R) dia-
gramming. A similar format used with object-oriented analysis and design methods
is class diagramming, which is included in a special section at the end of this chapter
on the object-oriented development approach to data modeling. Data models that
use E-R and class diagram notations explain the characteristics and structure of data
independent of how the data may be stored in computer memory. A data model is
usually developed iteratively, either from scratch or from a purchased data model
for the industry or business area to be supported. Information system (IS) planners
use this preliminary data model to develop an enterprise-wide data model with very
broad categories of data and little detail. Next, during the definition of a project, a
specific data model is built to help explain the scope of a particular systems analysis
and design effort. During requirements structuring, a data model represents con-
ceptual data requirements for a particular system. Then, after system inputs and
outputs are fully described during logical design, the data model is refined before
it is translated into a logical format (typically a relational data model) from which
database definition and physical database design are done. A data model represents
certain types of business rules that govern the properties of data. Business rules are
important statements of business policies that ideally will be enforced through the
database and database management system ultimately used for the application you
are designing. Thus, you will use E-R and class diagramming in many systems devel-
opment project steps, and most IS project members need to know how to develop
and read data model diagrams. Therefore, mastery of the requirements structuring
methods and techniques addressed in this chapter is critical to your success on a sys-
tems development project team.

CONCEPTUAL DATA MODELING

A conceptual data model is a representation of organizational data. The purpose of a
conceptual data model is to show as many rules about the meaning and interrelation-
ships among data as are possible.

Conceptual data modeling is typically done in parallel with other requirements
analysis and structuring steps during systems analysis (see Figure 8-1), as outlined in
prior chapters. On larger systems development teams, a subset of the project team
concentrates on data modeling while other team members focus attention on pro-
cess or logic modeling. Analysts develop (or use from prior systems development) a
conceptual data model for the current system and then build or refine a purchased
conceptual data model that supports the scope and requirements for the proposed
or enhanced system.

The work of all team members is coordinated and shared through the project
dictionary or repository. This repository is often maintained by a common Computer-
Aided Software Engineering (CASE) or data modeling software tool, but some orga-
nizations still use spreadsheets and other types of files to store data descriptions and
other important information. No matter how the information is stored, it is essen-
tial that the process, logic, and data model descriptions of a system are consistent

CHAPTER 8 STRUCTURING SYSTEM DATA REQUIREMENTS 257

Planning

Maintenance Analysis

Implementation < Design

and complete because each describes different, but complementary, views of the
same information system. For example, the names of data stores on the primitive-
level DFDs often correspond to the names of data entities in E-R diagrams, and the
data elements associated with data flows on DFDs must be accounted for by attributes
of entities and relationships in E-R diagrams.

The Conceptual Data Modeling Process

The process of conceptual data modeling begins with developing a conceptual data
model for the system being replaced, if a system already exists. This is essential for
planning the conversion of the current files or database into the database of the
new system. Further, this is a good, but not a perfect, starting point for your under-
standing of the data requirements of the new system. Then, a new conceptual data
model is built (or a standard one is purchased) that includes all of the data require-
ments for the new system. You discovered these requirements from the fact-finding
methods employed during requirements determination. Today, given the popularity
of rapid development methodologies, such as the use of predefined patterns, these
requirements often evolve through various iterations from some starting point in a
purchased application or database design. Even when developed from scratch, data
modeling is an iterative process with many checkpoints.

Conceptual data modeling is one kind of data modeling and database design car-
ried out throughout the systems development process. Figure 8-2 shows the different
kinds of data modeling and database design that go on during the whole systems devel-
opment life cycle (SDLC). The conceptual data modeling methods we discuss in this
chapter are suitable for the planning and analysis phases; these methods can be used
with either a data model developed from scratch or based on a purchased data model.
The planning phase of the SDLC addresses issues of system scope, general require-
ments, and content independent of technical implementation. E-R and class diagram-
ming are suited for this phase because these diagrams can be translated into a wide
variety of technical architectures for data, such as relational, network, and hierarchi-
cal architectures. A data model evolves from the early stages of planning through the
analysis phase as it becomes more specific and is validated by more detailed analyses of
system needs.

In the design phase, the final data model developed in analysis is matched with
designs for systems inputs and outputs and is translated into a format from which
physical data storage decisions can be made. After specific data storage architec-
tures are selected, then files and databases are defined as the system is coded during
implementation. Through the use of the project repository, a field in a physical data

Requirements Determination
v Requirements Structuring

FIGURE 8-1
Systems development
life cycle with analysis

phase highlighted

258 PARTIII ANALYSIS

FIGURE 8-2 ¢ Enterprise-wide data model (E-R with only entities)
Relationship between data

modeling and the SDLC e Conceptual data model (E-R with only entities for

specific project)

Planning
« Data model . . e Conceptual data
' Maintenance Analysis models (E-R with
evolution ¢
attributes)
Implementation <« Design
® Database and file definitions e Logical data model (relational)
(DBMS-specific code) and physical file and database

design (file organizations)

record can, for example, be traced back to the conceptual data attribute that repre-
sents it on a data model diagram. Thus, the data modeling and design steps in each
of the SDLC phases are linked through the project repository.

Deliverables and Outcomes

Most organizations today do conceptual data modeling using E-R modeling, which
uses a special notation to represent as much meaning about data as possible. Because
of the rapidly increasing interest in object-oriented methods, class diagrams using
unified modeling language (UML) drawing tools such as IBM’s Rational products
or Microsoft Visio are also popular. We will focus first on E-R diagramming and then
later show how it differs from class diagramming.

The primary deliverable from the conceptual data modeling step within the
analysis phase is an E-R diagram, similar to the one shown in Figure 8-3. This figure
shows the major categories of data (rectangles on the diagram) and the business
relationships between them (lines connecting rectangles). For example, Figure 8-3
shows that, for the business represented by this diagram, a SUPPLIER sometimes
Supplies ITEMs to the company, and an ITEM is always Supplied by one to four
SUPPLIERS. The fact that a supplier only sometimes supplies items implies that the
business wants to keep track of some suppliers without designating what they can
supply. This diagram includes two names on each line so that a relationship can
be read in each direction. For simplicity, we will not typically include two names
on lines in E-R diagrams in this book; however, this is a standard used in many
organizations.

The other deliverable from conceptual data modeling is a full set of entries
about data objects that will be stored in the project dictionary, repository, or data
modeling software. The repository is the mechanism that links the data, processes,
and logic models of an information system. For example, there are explicit links
between a data model and a DFD. Some important links are explained briefly here.

¢ Data elements included in data flows also appear in the data model, and vice versa.
You must include in the data model any raw data captured and retained in a data
store, and a data model can include only data that have been captured or that have

CHAPTER 8 STRUCTURING SYSTEM DATA REQUIREMENTS

Supplies Submits
SUPPLIER > } CUSTOMER -H e ORDER
4 Submitted_by
Sends Requests
Supplied_by
(0]
Sent_by /l\ Requested_on
Includes Used_in
SHIPMENT =6 < MM B> < PRODUCT
Included_on Uses
Key Cardinalities

ENTITY Relationship

—_—t —

TYPE Mandatory One Optional One

— s —e<L

Mandatory Many Optional Many

been computed from captured data. Because a data model is a general business
picture of data, both manual and automated data stores will be included.

® Fach data store in a process model must relate to business objects (what we will
call data entities) represented in the data model. For example, in Figure 7-5, the
Inventory File data store must correspond to one or several data objects on a data
model.

You can use an automated repository to verify these linkages.

GATHERING INFORMATION FOR CONCEPTUAL
DATA MODELING

Requirements determination methods must include questions and investigations that
take a data, not only a process and logic, focus. For example, during interviews with
potential system users—during Joint Application Design (JAD) sessions or through
requirements interviews—you must ask specific questions in order to gain the per-
spective on data that you need to develop or tailor a purchased data model. In later
sections of this chapter, we will introduce some specific terminology and constructs
used in data modeling. Even without this specific data modeling language, you can
begin to understand the kinds of questions that must be answered during require-
ments determination. These questions relate to understanding the rules and policies
by which the area to be supported by the new information system operates. That is,
a data model explains what the organization does and what rules govern how work is
performed in the organization. You do not, however, need to know (and often can’t
fully anticipate) how or when data are processed or used to do data modeling.

You typically do data modeling from a combination of perspectives. The first
perspective is generally called the top-down approach. This perspective derives the
business rules for a data model from an intimate understanding of the nature of
the business, rather than from any specific information requirements in computer
displays, reports, or business forms. It is this perspective that is typically the basis
for a purchased data model. Several very useful sources of typical questions to elicit
the business rules needed for data modeling can be found in Gottesdiener (1999),

FIGURE 8-3

Sample conceptual data model

259

260

PART III

ANALYSIS

TABLE 8-1 Requirements Determination Questions for Data Modeling

1. What are the subjects/objects of the business2 What types of people, places, things,
materials, events, etc. are used or interact in this business, about which data must be
maintained? How many instances of each object might exist?—data entities and their
descriptions

2. What unique characteristic (or characteristics) distinguishes each object from other
objects of the same type@ Might this distinguishing feature change over time or is it
permanent? Might this characteristic of an object be missing even though we know the
object exists? —primary key

3. What characteristics describe each object? On what basis are objects referenced, selected,
qualified, sorted, and categorized? What must we know about each object in order to run
the business2 —attributes and secondary keys

4. How do you use these data? That is, are you the source of the data for the organization, do
you refer to the data, do you modify it, and do you destroy it2 Who is not permitted to use
these data® Who is responsible for establishing legitimate values for these data®—security
controls and understanding who really knows the meaning of data

5. Over what period of time are you interested in these data2 Do you need historical trends,
current “snapshot” values, and/or estimates or projections? If a characteristic of an object
changes over time, must you know the obsolete values2 —cardinality and time dimensions
of data

6. Are all instances of each object the same?2 That is, are there special kinds of each object
that are described or handled differently by the organization? Are some objects summaries
or combinations of more detailed objects2 —supertypes, subtypes, and aggregations

7. What events occur that imply associations among various objects? What natural activities
or transactions of the business involve handling data about several objects of the same
or a different type2 —relationships and their cardinality and degree

8. Is each activity or event always handled the same way or are there special circumstances?
Can an event occur with only some of the associated objects, or must all objects be
involved? Can the associations between objects change over time (for example, employees
change departments)2 Are values for data characteristics limited in any way?2—integrity
rules, minimum and maximum cardinality, time dimensions of data

Herbst (2013), and Witt (2012). Table 8-1 summarizes a few key questions you should
ask system users and business managers so that you can develop an accurate and
complete data model tailored to the particular situation. The questions in this table
are purposely posed in business terms. You can ask these questions whether you start
with a clean sheet of paper or a purchased data model, but typically the questions are
more obvious and thorough when you begin the data modeling project with a pur-
chased data model for the industry or application under development. In this chapter,
you will learn the more technical terms included in bold at the end of each set of ques-
tions. Of course, these technical terms do not mean much to a business manager, so
you must learn how to frame your questions in business terms for your investigation.

You can also gather the information you need for data modeling by review-
ing specific business documents—computer displays, reports, and business forms—
handled within the system. This process of gaining an understanding of data is often
called a bottom-up approach. These items will appear as data flows on DFDs and will
show the data processed by the system and, hence, probably the data that must be
maintained in the system’s database. Consider, for example, Figure 8-4, which shows
a customer order form used at Pine Valley Furniture (PVF). From this form, we deter-
mine that the following data must be kept in the database:

ORDER NO CUSTOMER NO
ORDER DATE NAME
PROMISED DATE ADDRESS
PRODUCT NO CITY-STATE-ZIP
DESCRIPTION

QUANTITY ORDERED

UNIT PRICE

CHAPTER 8 STRUCTURING SYSTEM DATA REQUIREMENTS 261

PVF CUSTOMER ORDER

ORDER NO: 61384 CUSTOMER NO: 1273

NAME: Contemporary Designs

ADDRESS: 123 Oak St.

CITY-STATE-ZIP: Austin, TX 28334
ORDER DATE: 11/04/2014 PROMISED DATE: 11/21/2017
PRODUCT QUANTITY UNIT
NO DESCRIPTION ORDERED PRICE
M128 Bookcase 4 200.00
B381 Cabinet 2 150.00
R210 Table 1 500.00

We also see that each order is from one customer and that an order can have
multiple line items, one for each product. We will use this understanding of an orga-
nization’s operation to develop data models.

INTRODUCTION TO E-R MODELING

The basic E-R modeling notation uses three main constructs: data entities, relation-
ships, and their associated attributes. Several different E-R notations exist, and many
CASE and E-R drawing programs support multiple notations. For simplicity, we have
adopted one common notation for this book; this notation uses the so-called crow’s
foot symbols and places data attribute names within entity rectangles. This notation
is very similar to that used by many E-R drawing tools, including Microsoft Visio®. If
you use another notation in courses or at work, you should be able to easily translate
between notations.

An entity-relationship data model (E-R model) is a detailed, logical representation
of the data for an organization or for a business area. The E-R model is expressed in
terms of entities in the business environment, the relationships or associations among
those entities, and the attributes or properties of both the entities and their relation-
ships. An E-R model is normally expressed as an entity-relationship diagram (E-R
diagram), which is a graphical representation of an E-R model. The notation we will use
for E-R diagrams appears in Figure 8-5, and subsequent sections explain this notation.

Entities

An entity (see the first question in Table 8-1) is a person, place, object, event, or
concept in the user environment about which the organization wishes to maintain
data. An entity has its own identity that distinguishes it from each other entity. Some
examples of entities follow:

Person: EMPLOYEE, STUDENT, PATIENT

Place: STORE, WAREHOUSE, STATE

Object: MACHINE, BUILDING, AUTOMOBILE, PRODUCT
Event: SALE, REGISTRATION, RENEWAL

Concept: ACCOUNT, COURSE, WORK CENTER

There is an important distinction between entity types and entity instances.
An entity type (sometimes called an entity class) is a collection of entities that share
common properties or characteristics. Each entity type in an E-R model is given a
name. Because the name represents a class or set, it is singular. Also, because an
entity is an object, we use a simple noun to name an entity type. We use capital letters

FIGURE 8-4
Sample customer form

Entity-relationship data
model (E-R model)

A defailed, logical representation of the
entities, associations, and data elements for
an organization or business area.

Entity-relationship diagram
(E-R diagram)

A graphical representation of an ER model.

Entity type
A collection of entities that share common
properties or characterisfics.

262 PARTIII ANALYSIS

Entity Types Attributes

Strong

Associative

Relationship Degrees

f 'Unary

Relationship Cardinality

—H-

ENTITY NAME
Weak Identifier

Partial identifier
Optional
[Derived]
{Multivalued}
Composite(, ,)

Binary

Ternary

—+H< @ o+ <L

Mandatory One Mandatory Many Optional One Optional Many

FIGURE 8-5

Basic E-R notation

Entity instance
A single occurrence of an entity type. Also
known as an instance.

FIGURE 8-6

Representing entity types

(a) Three entity types

(b) Questionable entity types

in naming an entity type and, in an E-R diagram, the name is placed inside a rect-
angle representing the entity, as shown in Figure 8-6a.

An entity instance (also known simply as an instance) is a single occurrence of
an entity type. An entity type is described just once in a data model, whereas many
instances of that entity type may be represented by data stored in the database. For
example, there is one EMPLOYEE entity type in most organizations, but there may be
hundreds (or even thousands) of instances of this entity type stored in the database.

A common mistake many people make when they are just learning to draw
E-R diagrams, especially if they already know how to do data flow diagramming, is
to confuse data entities with sources/sinks or system outputs and relationships with
data flows. A simple rule to avoid such confusion is that a true data entity will have
many possible instances, each with a distinguishing characteristic, as well as one or
more other descriptive pieces of data. Consider the entity types that might be associ-
ated with a sorority expense system, as represented in Figure 8-6b. In this situation,
the sorority treasurer manages accounts and records expense transactions against
each account. However, do we need to keep track of data about the treasurer and her
supervision of accounts as part of this accounting system? The treasurer is the per-
son entering data about accounts and expenses and making inquiries about account
balances and expense transactions by category. Because there is only one treasurer,
TREASURER data do not need to be kept. On the other hand, if each account has an
account manager (e.g., a sorority officer) who is responsible for assigned accounts,

EMPLOYEE COURSE ACCOUNT

al

TREASURER ACCOUNT EXPENSE

(b)

CHAPTER 8 STRUCTURING SYSTEM DATA REQUIREMENTS 263

then we may wish to have an ACCOUNT MANAGER entity type with pertinent attri-
butes as well as relationships to other entity types.

In this same situation, is an expense report an entity type? Because an expense
report is computed from expense transactions and account balances, it is a data
flow, not an entity type. Even though there will be multiple instances of expense
reports over time, the report contents are already represented by the ACCOUNT and
EXPENSE entity types.

Often when we refer to entity types in subsequent sections, we will simply say
entity. This is common among data modelers. We will clarify that we mean an entity
by use of the term entity instance.

Naming and Defining Entity Types Clearly naming and defining data, such as
entity types, are important tasks during requirements determination and structuring.
When naming and defining entity types, you should use the following guidelines:

* An entity type name is a singular noun (such as CUSTOMER, STUDENT, or
AUTOMOBILE).

e An entity type name should be descriptive and specific to the organization.
For example, a PURCHASE ORDER for orders placed with suppliers is distinct
from CUSTOMER ORDER for orders placed by customers. Both of these entity
types cannot be named ORDER.

* An entity type name should be concise. For example, in a university database, use
REGISTRATION for the event of a student registering for a class rather than
STUDENT REGISTRATION FOR CLASS.

e FLvent entily types should be named for the result of the event, not the activity or
process of the event. For example, the event of a project manager assigning an
employee to work on a project results in an ASSIGNMENT.

Some specific guidelines for defining entity types follow:

¢ An entity type definition should include a statement of what the unique characteristic(s)
is (are) for each instance of the entity type.

* An entity type definition should make clear what entity instances are included and
not included in the entity type. For example, “A customer is a person or organiza-
tion that has placed an order for a product from us or that we have contacted
to advertise or promote our products. A customer does not include persons or
organizations that buy our products only through our customers, distributors,
or agents.”

¢ An entity type definition often includes a description of when an instance of the
enlity type is created and deleted.

* For some entity types, the definition must specify when an instance might change
inlo an instance of another entity type; for example, a bid for a construction company
becomes a contract once it is accepted.

* For some entity types, the definition must specify what history is to be kept about
enlily instances. Statements about keeping history may have ramifications about
how we represent the entity type on an E-R diagram and eventually how we store
data for the entity instances.

Attributes

Each entity type has a set of attributes (see the third question in Table 8-1) associated
with it. An attribute is a property or characteristic of an entity that is of interest to the
organization (relationships may also have attributes, as we will see in the section on
relationships). Following are some typical entity types and associated attributes:

STUDENT: Student_ID, Student_Name, Home_Address, Phone_Number,
Major

AUTOMOBILE: Vehicle_ID, Color, Weight, Horsepower

EMPLOYEE: Employee_ID, Employee_Name, Payroll_Address, Skill

Attribute
A nomed property or characteristic of an
enfity that is of interest fo the organization.

264 PARTIII ANALYSIS

Candidate key
An attribute (or combination of aftributes)
that uniquely identifies each instance of an

entity type.

We use an initial capital letter, followed by lowercase letters, and nouns in nam-
ing an attribute; underscores may or may not be used to separate words. In E-R dia-
grams, we represent an attribute by placing its name inside the rectangle for the
associated entity (see Figure 8-5). We use different notations for attributes to distin-
guish between different types of attributes, which we describe below. Our notation is
similar to that used by many CASE and E-R drawing tools, such as Microsoft Visio or
Oracle’s Designer. Precisely how different types of attributes are shown varies by tool.

Naming and Defining Atiributes Often several attributes have approximately the
same name and meaning. Thus, it is important to carefully name attributes using the
following guidelines:

¢ An attribute name is a noun (such as Customer_ID, Age, or Product_Minimum_
Price).

* An attribute name should be unique. No two attributes of the same entity type
may have the same name, and it is desirable, for clarity, that no two attributes
across all entity types have the same name.

¢ To make an attribute name unique and for clarity, each attribute name should follow
a standard formatl. For example, your university may establish Student_GPA, as
opposed to GPA_of_Student, as an example of the standard format for attribute
naming.

o Similar attributes of different entity types should use similar but distinguishing names; for
example, the city of residence for faculty and students should be, respectively,
Faculty_Residence_City_Name and Student_Residence_City_Name.

Some specific guidelines for defining attributes follow:

* An attribute definition states what the attribute is and possibly why it is important.

* An attribute definition should make it clear what is included and what is not included
in the attribute’s value; for example, “Employee_Monthly_ Salary_ Amount is the
amount of money paid each month in the currency of the country of residence
of the employee exclusive of any benefits, bonuses, reimbursements, or special
payments.”

® Any aliases, or alternative names, for the attribute can be specified in the definition.

®]t may also be desirable to state in the definition the source of values for the attribute.
Stating the source may make the meaning of the data clearer.

® An attribute definition should indicate if a value for the attribute is required or optional.
This business rule about an attribute is important for maintaining data integrity.

® An attribute definition may indicate if @ value for the attribute may change once a
value is provided and before the entity instance is deleted. This business rule also
controls data integrity.

* An attribute definition may also indicate any relationships that attribute has with
other atiributes; for example, “Employee_Vacation_Days_Number is the number
of days of paid vacation for the employee. If the employee has a value of ‘Exempt’
for Employee_Type, then the maximum value for Employee_ Vacation_Days_
Number is determined by a formula involving the number of years of service for
the employee.”

Candidate Keys and Identifiers

Every entity type must have an attribute or set of attributes that distinguishes one in-
stance from other instances of the same type (see the second question in Table 8-1).
A candidate key is an attribute (or combination of attributes) that uniquely identifies
each instance of an entity type. A candidate key for a STUDENT entity type might be
Student_ID.

Sometimes a combination of attributes is required to identify a unique entity.
For example, consider the entity type GAME for a basketball league. The attribute

CHAPTER 8 STRUCTURING SYSTEM DATA REQUIREMENTS 265

Team_Name is clearly not a candidate key because each team plays several games. If
each team plays exactly one home game against each other team, then the combina-
tion of the attributes Home_Team and Visiting_Team is a composite candidate key
for GAME.

Some entities may have more than one possible candidate key. One candidate
key for EMPLOYEE is Employee_ID; a second is the combination of Employee_
Name and Address (assuming that no two employees with the same name live at the
same address). If there is more than one possible candidate key, the designer must
choose one of the candidate keys as the identifier. An identifier is a candidate key
that has been selected to be used as the unique characteristic for an entity type. We
show the identifier attribute(s) by placing a solid underline below the identifier (see
Figure 8-5). Bruce (1992) suggests the following criteria for selecting identifiers:

® Choose a candidate key that will not change its value over the life of each instance
of the entity type. For example, the combination of Employee_Name and Payroll_
Address would probably be a poor choice as an identifier for EMPLOYEE because
the values of Payroll_Address and Employee_Name could easily change during an
employee’s term of employment.

® Choose a candidate key so that, for each instance of the entity, the attribute is
guaranteed to have valid values and not be null. To ensure valid values, you may
have to include special controls in data entry and maintenance routines to elimi-
nate the possibility of errors. If the candidate key is a combination of two or more
attributes, make sure that all parts of the key have valid values.

® Avoid the use of so-called intelligent identifiers, whose structure indicates clas-
sifications, locations, and so on. For example, the first two digits of a key for a
PART entity may indicate the warehouse location. Such codes are often modified
as conditions change, which renders the primary key values invalid.

¢ Consider substituting single-attribute surrogate keys for large composite keys. For
example, an attribute called Game_ID could be used for the entity GAME instead
of the combination of Home_Team and Visiting_Team.

Figure 8-7 shows the representation for a STUDENT entity type using our E-R
notation. STUDENT has a simple identifier, Student_ID, and three other simple
attributes.

Other Attribute Types

A multivalued attribute may take on more than one value for each entity instance.
Suppose that Skill is one of the attributes of EMPLOYEE. If each employee can have
more than one skill, Skill is a multivalued attribute. Two ways of showing multivalued
attributes are common. The first is to list the multivalued attribute along with other at-
tributes, but use a special symbol to indicate that it is multivalued. This is the approach
taken in Figure 8-8a, where the multivalued attribute skill is enclosed in curly brackets.

Sometimes a set of data repeats together. For example, consider Figure 8-8b
for an employee entity with multivalued attributes for data about each employee’s
dependents. In this situation, data such as dependent name, age, and relation to
employee (spouse, child, parent, etc.) are multivalued attributes about an employee,
and these attributes repeat together (we show this by using one set of curly brackets
around the data that repeats together). Several attributes that repeat together are
called a repeating group.

Conceptually, dependents can also be thought of as entities. Thus, many data
analysts prefer a second approach to representing a repeating group. In this approach,
we separate the repeating data into another entity, called a weak (or attributive) entity
(designated by a rectangle with a double line border), and then use a relationship
(relationships are discussed in the next section) to link the weak entity to its associ-
ated regular entity (this particular relationship is also represented by a double line).
We can show this in Figure 8-8c using a weak entity, DEPENDENT, and a relationship,

Identifier
A candidate key that has been selected as
the unique, identifying characteristic for an

entity type.

STUDENT
Student_ID
Student_Name
Student_Campus_Address
Student_Campus_Phone

FIGURE 8-7
STUDENT entity type with attributes

Multivalued attribute
An affribute that may take on more than
one value for each entity insfance.

Repeating group
A set of two or more multivalued aftributes
that are logically related.

266

FIGURE 8-8
Multivalued attributes and repeating

groups

PART IIIT ANALYSIS

Required attribute
An attribute that must have a value
for every entity instance.

Optional attribute
An affribute that may not have a value
for every entity instance.

Composite atiribute
An affribute that has meaningful component
parfs.

Derived attribute
An affribute whose value can be computed
from related affribute values.

EMPLOYEE
Employee_ID
Employee_Name (First_Name, Last_Name)
Date_of_Birth
[Employee_Age]

FIGURE 8-9
Required, optional, composite,
and derived attributes

Relationship

An associafion between the instance of one
or more enfity types that is of interest to the
organization.

EMPLOYEE
Employee_ID
Employee_Name
Payroll_Address
{Skill}

(@) Multivalued attribute skill

EMPLOYEE
Employee_ID
{Dep_Name,

Dep_Age,
Dep_Relation}

(b) Repeating group of dependent data

EMPLOYEE DEPENDENT
Employee_ID Dep_Name
Dep_Age
Dep_Relation

(c) Weak entity for dependent data

between DEPENDENT and EMPLOYEE. The crow’s foot next to DEPENDENT
means that there may be many DEPENDENTs for the same EMPLOYEE. The identi-
fier of DEPENDENT is a combination of the dependent’s name and the ID of the
employee for which this person is a dependent. It is sufficient to show Dep_Name in
the weak entity and use a double underline to designate it as a partial identifier.

It may be important to designate whether an attribute must have a value
(required attribute) or may not have a value (optional attribute) for every entity
instance. It is also common to have an attribute, such as Name or Address, which has
meaningful component parts, which we call a composite attribute. For some applica-
tions, people may want to simply refer to the set of component attributes by a compos-
ite name, whereas in other applications, we may need to display or compute with only
some of the component parts. Also in conceptual modeling, users may refer to some
datum that can be computed from other data in the database, a so-called derived attri-
bute. In order to represent these unique characteristics of attributes, many E-R draw-
ing tools have special notations for each of these types of attributes. In this text, we
use the notation found in Figure 8-5. Figure 8-9 illustrates an EMPLOYEE entity with
each of these types of attributes using our notation. Any identifier is required, and
we have designated the composite attribute Employee_Name (with atomic compo-
nents First Name and Last_Name) as also required by putting these attribute names
in bold. Date_of_Birth is an optional attribute. Employee_Age, also optional, can be
computed from today’s date and Date_of_Birth, so it is a derived attribute.

Relationships

Relationships are the glue that holds together the various components of an E-R
model (see the fifth, seventh, and eighth questions in Table 8-1). A relationship is an
association between the instances of one or more entity types that is of interest to the
organization. An association usually means that an event has occurred or that there
exists some natural linkage between entity instances. For this reason, relationships
are labeled with verb phrases. For example, in Figure 8-10a we represent a training
department in a company that is interested in tracking which training courses each

CHAPTER 8 STRUCTURING SYSTEM DATA REQUIREMENTS

o EMPLOYEE COURSE
Employee_ID Completes Course_ID
Employee_Name(. . .) > < Course_Title
Birth_Date {Topic}

(b) Employee Course
Chen C++

Melton -z Java
Ritchie e COBOL
Celko =~ Visual Basic

Gosling Perl

of its employees has completed. This leads to a relationship called Completes be-
tween the EMPLOYEE and COURSE entity types.

As indicated by the arrows, this is a many-to-many relationship: each employee
may complete more than one course, and each course may be completed by more
than one employee. More significantly, we can use the Completes relationship to
determine the specific courses that a given employee has completed. Conversely, we
can determine the identity of each employee who has completed a particular course.
For example, consider the employees and courses shown in Figure 8-10b. In this illus-
tration, Melton has completed three courses (C++, COBOL, and Perl) and the SQL
course has been completed by Celko and Gosling.

We sometimes use two verb phrases for a relationship name so that there is an
explicit name for the relationship in each direction. The standards you follow will be
determined by your organization.

CONCEPTUAL DATA MODELING
AND THE E-R MODEL

The last section introduced the fundamentals of the E-R data modeling notation—
entities, attributes, and relationships. The goal of conceptual data modeling is to
capture as much of the meaning of data as possible. The more details (business rules)
about data that we can model, the better the system we can design and build. Further,
if we can include all these details in a CASE repository, and if a CASE tool can
generate code for data definitions and programs, then the more we know about data,
the more code we can generate automatically. This will make system building more
accurate and faster. More important, if we can keep a thorough repository of data de-
scriptions, we can regenerate the system as the business rules change. Because main-
tenance is the largest expense with any information system, the efficiencies gained by
maintaining systems at the rule rather than the code level drastically reduce the cost.

In this section, we explore more advanced concepts needed to model data
more thoroughly and learn how the E-R notation represents these concepts.

FIGURE 8-10

Relationship type and instances
(a) Relationship type (Completes)
(b) Relationship instances

267

268 PARTIII ANALYSIS

Degree
The number of entity types that participate
in a relationship.

Unary relationship

A relationship between instances of
one entity type; also called recursive
relationship.

al

Degree of a Relationship

The degree of a relationship (see the seventh question in Table 8-1) is the number
of entity types that participate in that relationship. Thus, the relationship Completes
illustrated in Figure 8-10a is of degree two because there are two entity types:
EMPLOYEE and COURSE. The three most common relationships in E-R models are
unary (degree one), binary (degree two), and ternary (degree three). Higher-degree
relationships are possible, but they are rarely encountered in practice, so we restrict
our discussion to these three cases. Examples of unary, binary, and ternary relation-
ships appear in Figure 8-11.

Unary Relationships Also called a recursive relationship, a unary relationship is a
relationship between the instances of one entity type. Three examples are shown in
Figure 8-11. In the first example, Is_married_to is shown as a one-to-one relationship
between instances of the PERSON entity type. That is, each person may be currently
married to one other person. In the second example, Manages is shown as a one-
to-many relationship between instances of the EMPLOYEE entity type. Using this
relationship, we can identify, for example, the employees who report to a particular
manager; reading the Manages relationship in the opposite direction, we can iden-
tify who the manager is for a given employee. In the third example, Stands_after is

/|: Manages

Is_married_to Stands_after

PERSON EMPLOYEE TEAM
One-to-one One-to-many One-to-one
(b)
Is_assigned | PARKING PRODUCT Contains
EMPLOYEE SPACE LINE _< PRODUCT
One-to-one One-to-many
Registers_for,
STUDENT >———=< COURSE
Many-to-many
(c]
PART
VENDOR > < WAREHOUSE
Supplies

FIGURE 8-11

Examples of relationships of different
degrees

(a) Unary relationships

(b) Binary relationships

(c) Ternary relationship

Shipping_Mode
Unit_Cost

CHAPTER 8 STRUCTURING SYSTEM DATA REQUIREMENTS 269

FIGURE 8-12

Representing a bill-of-materials structure
(a) Many-to-many relationship

(b) Two ITEM bill-of-materials structure

(al I
Has_components

MTEM | pe===—eecccccccccceee—- Quantity instances
(b)
Mountain Bike Tandem Bike
MX300 TR425
| | | |
Handle Bars Transmission Wheels Handle Bars Transmission Wheels
HX100 System TX100 WX240 HT200 System TX101 WX340
Qty: 1 Qty: 1 Qty: 2 Qty: 2 Qty: 1 Qty: 2
| — | | R
Brakes Derailer Brakes Derailer Wheels Wheel Trim
BR450 DX500 BR250 DX500 WX240 WT100
Qty: 2 Qty: 1 Qty: 2 Qty: 1 Qty: 2 Qty: 2

shown as a one-to-one relationship between instances of the TEAM entity type. This
relationship represents the sequential order of teams in a league; this sequential or-
dering could be based on any criteria, such as winning percentage.

Figure 8-12 shows an example of another common unary relationship, called
a bill-of-materials structure. Many manufactured products are made of subassemblies,
which in turn are composed of other subassemblies and parts, and so on. As shown
in Figure 8-12a, we can represent this structure as a many-to-many unary relation-
ship. In this figure, we use Has_components for the relationship name. The attribute
Quantity, which is a property of the relationship, indicates the number of each com-
ponent that is contained in a given assembly.

Two occurrences of this structure are shown in Figure 8-12b. Each of these dia-
grams shows the immediate components of each item as well as the quantities of that
component. For example, item TX100 consists of item BR450 (quantity 2) and item
DX500 (quantity 1). You can easily verify that the associations are in fact many-to-
many. Several of the items have more than one component type (e.g., item MX300
has three immediate component types: HX100, TX100, and WX240). Also, some
of the components are used in several higherlevel assemblies. For example, item
WX240 is used in both item MX300 and item WX340, even at different levels of the
bill of materials. The many-to-many relationship guarantees that, for example, the
same subassembly structure of WX240 (not shown) is used each time item WX240
goes into making some other item.

Binary Relationships A binary relationship is a relationship between instances of
two entity types and is the most common type of relationship encountered in data
modeling. Figure 8-11b shows three examples. The first (one-to-one) indicates that
an employee is assigned one parking place, and each parking place is assigned to one
employee. The second (one-to-many) indicates that a product line may contain sev-
eral products, and each product belongs to only one product line. The third (many-
to-many) shows that a student may register for more than one course, and that each
course may have many student registrants.

Binary relationship

A relafionship between instances of two
enfity types. This is the most common
type of relationship encountered in data
modeling.

Ternary relationship
A simultaneous relationship among
instances of three entity types.

Ternary Relationships A ternary relationship is a simultaneous relationship among
instances of three entity types. In the example shown in Figure 8-11c, the relationship

270 PARTIII ANALYSIS

Cardinality

The number of instances of entity B that can
(or must] be associated with each instance
of entity A.

FIGURE 8-13

Introducing cardinality constraints
(a) Basic relationship

(b) Relationship with cardinality
constraints

Supplies tracks the quantity of a given part that is shipped by a particular vendor to
a selected warehouse. Each entity may be a one or a many participant in a ternary
relationship (in Figure 8-11, all three entities are many participants).

Note that a ternary relationship is not the same as three binary relationships. For
example, Shipping_Mode is an attribute of the Supplies relationship in Figure 8-11c.
Shipping_Mode cannot be properly associated with any of the three possible binary
relationships among the three entity types (such as that between PART and VENDOR)
because Shipping Mode is the type of shipping carrier used for a particular PART
shipped from a particular VENDOR to a particular WAREHOUSE. We strongly rec-
ommend that all ternary (and higher) relationships be represented as associative enti-
ties (described later). We examine the cardinality of relationships next.

Cardinalities in Relationships

Suppose there are two entity types, A and B, connected by a relationship. The cardinality
of a relationship (see the fifth, seventh, and eighth questions in Table 8-1) is the
number of instances of entity B that can (or must) be associated with each instance
of entity A. For example, consider the relationship for DVDs at a video store shown
in Figure 8-13a.

Clearly, a video store may stock more than one DVD of a given movie. In the ter-
minology we have used so far, this example is intuitively a “many” relationship. Yet it
is also true that the store may not have a single copy of a particular movie in stock. We
need a more precise notation to indicate the range of cardinalities for a relationship.
This notation was introduced in Figure 8-5, which you may want to review at this point.

Minimum and Maximum Cardinalities The minimum cardinality of a relation-
ship is the minimum number of instances of entity B that may be associated with
each instance of entity A. In the preceding example, the minimum number of DVDs
available for a movie is zero, in which case we say that DVD is an optional participant
in the Is_stocked_as relationship. When the minimum cardinality of a relationship
is one, then we say that entity B is a mandatory participant in the relationship. The
maximum cardinality is the maximum number of instances. For our example, this
maximum is “many” (an unspecified number greater than one). Using the notation
from Figure 8-5, we diagram this relationship in Figure 8-13b. The zero through the
line near the DVD entity means a minimum cardinality of zero, whereas the crow’s
foot notation means a “many” maximum cardinality. The double underline of Copy_
Number indicates that this attribute is part of the identifier of DVD, but the full com-
posite identifier must also include the identifier of MOVIE, Movie_Name.

Examples of three relationships that show all possible combinations of mini-
mum and maximum cardinalities appear in Figure 8-14. A brief description of each
relationship follows:

1. PATIENT Has_recorded PATIENT_HISTORY (Figure 8-14a). Each patient has
recorded one or more patient histories (we assume that the initial patient visit
is always recorded as an instance of PATIENT HISTORY). Each instance of
PATIENT HISTORY is a record for exactly one PATIENT.

(al
Is_stocked_as
MOVIE < DVD
(b)
MOVIE Is_stocked_as DVD
Movie_Name 9'< Copy_Number

CHAPTER 8 STRUCTURING SYSTEM DATA REQUIREMENTS

“ H ded Mark Visit 1
H as recorded PATIENT
PATIENT n : HISTORY Sarah/\/ism
——Visit 2
Elsie Visit 1
(b) | . gt Rose — BPR
s_assigned_to
EMPLOYEE S>H——"C 5 PROJECT | Pete
TQM
Debbie
00
Tom <
Heidi CR
& Is_married_to Shirley
(0]
T Mack
Dawn
PERSON
Kathy
;; Ellis
Fred

2. EMPLOYEE Is_assigned_to PROJECT (Figure 8-14b). Each PROJECT has at least
one assigned EMPLOYEE (some projects have more than one). Each EMPLOYEE
may or (optionally) may not be assigned to any existing PROJECT, or may be as-
signed to several PROJECTs.

3. PERSON Is_married_to PERSON (Figure 8-14c). This is an optional zero or one
cardinality in both directions because a person may or may not be married.

Itis possible for the maximum cardinality to be a fixed number, not an arbitrary
“many” value. For example, suppose corporate policy states that an employee may
work on at most five projects at the same time. We could show this business rule by plac-
ing a “b” above or below the crow’s foot next to the PROJECT entity in Figure 8-14b.

Naming and Defining Relationships

Relationships may be the most difficult component of an E-R diagram to understand.
Thus, you should use a few special guidelines for naming relationships, such as the
following:

® A relationship name is a verb phrase (such as Assigned_to, Supplies, or Teaches).
Relationships represent actions, usually in the present tense. A relationship name
states the action taken, not the result of the action (e.g., use Assigned_to, not
Assignment).

® You should avoid vague names, such as Has or Is_related_to. Use descriptive verb
phrases taken from the action verbs found in the definition of the relationship.

Specific guidelines for defining relationships follow:

* A relationship definition explains what action is being taken and possibly why it is
important. It may be important to state who or what does the action, but it is not
important to explain how the action is taken.

® It may be important to give examples to clarify the action. For example, for a
relationship Registered_for between student and course, it may be useful to
explain that this covers both on-site and online registration and registrations made
during the drop/add period.

FIGURE 8-14
Examples of cardinality constraints
(a) Mandatory cardinalities

(b) One optional, one mandatory

cardinality

(c) Optional cardinalities

271

272

FIGURE 8-15

PART III

An associative entity

(a) Attribute on a relationship
(b) An associative entity (CERTIFICATE)
(c) An associative entity using Microsoft

Visio®

(al

(b)

(c)

ANALYSIS

¢ The definition should explain any optional participation. You should explain what

conditions lead to zero associated instances, whether this can happen only when
an entity instance is first created or whether this can happen at any time.

® A relationship definition should also explain the reason for any explicit maximum

cardinality other than many.

* Arelationship definition should explain any restrictions on participation in the relation-

ship. For example, “Supervised_by links an employee with the other employees he
or she supervises and links an employee with the other employee who supervises
him or her. An employee cannot supervise him- or herself, and an employee can-
not supervise other employees if his or her job classification level is below 4.”

® Arelationship definition should explain the extent of history that is kept in the relationship.
e A relationship definition should explain whether an entity instance involved in a

relationship instance can transfer participation to another relationship instance. For
example, “Places links a customer with the orders they have placed with our com-
pany. An order is not transferable to another customer.”

Associative Entities

As seen in the examples of the Supplies relationship in Figure 8-11 and the Has_
components relationship of Figure 8-12, attributes may be associated with a many-to-
many relationship as well as with an entity. For example, suppose that the organization
wishes to record the date (month and year) that an employee completes each course.
Some sample data follow:

Employee_ID Course_Name Date_Completed

549-23-1948 Basic Algebra March 2017
629-16-8407 Software Quality June 2017
816-30-0458 Software Quality February 2017
549-23-1948 C Programming May 2017

From these limited data, you can conclude that the attribute Date_Completed

is not a property of the entity EMPLOYEE because a given employee, 549-23-1948,
has completed courses on different dates. Nor is Date_Completed a property of
COURSE because a particular course (Software Quality) may be completed on dif-

ferent dates. Instead, Date_Completed is a property of the relationship between
EMPLOYEE and COURSE. The attribute is associated with the relationship and dia-
grammed in Figure 8-15.

Date_Completed

T

EMPLOYEE i COURSE
Employee_ID B . : . A Course_ID
Employee_Name(. . .) > O Completes O < Course_Title
Birth_Date P {Topic}

EMPLOYEE CERTIFICATE B COURSE
Employee_ID Certificate_Number Course_ID
Employee_Name(. . .) Date_Completed Course_Title
Birth_Date {Topic}

EMPLOYEE CERTIFICATE COURSE
PK| Employee_ID T 9< PK| Certificate_ Number N a0 o e e e oo 4 PK Course_ID
Employee_Name Date_Completed Course_Title

CHAPTER 8 STRUCTURING SYSTEM DATA REQUIREMENTS 273

Business Rules

@ Each vendor can supply many

parts to any number of ware-
houses, but need not supply
PART any parts.

@ Each part can be supplied by

any number of vendors to
more than one warehouse, but

@ each part must be supplied by
at least one vendor to a

warehouse.
@ SUPPLY SCHEDULE @
VENDOR Shipping_Mode WAREHOUSE @ Each warehouse can be
Unit_Cost supplied with any number of
parts from more than one

vendor, but each warehouse

must be supplied with at least

one part.

FIGURE 8-16

Cardinality constraints in a ternary relationship

Because many-to-many and one-to-one relationships may have associated
attributes, the E-R data model poses an interesting dilemma: Is a many-to-many
relationship actually an entity in disguise? Often the distinction between entity and
relationship is simply a matter of how you view the data. An associative entity (some-
times called a gerund) is a relationship that the data modeler chooses to model as an
entity type. Figure 8-15b shows the E-R notation for representing the Completes rela-
tionship as an associative entity and Figure 8-15c¢ shows how this would be modeled
using Microsoft Visio. The lines from CERTIFICATE to the two entities are not two
separate binary relationships, so they do not have labels. Note that EMPLOYEE and
COURSE have mandatory one cardinality because an instance of Completes must
have an associated EMPLOYEE and COURSE. The labels A and B show where the
cardinalities from the Completes relation now appear. We have created an identifier
for CERTIFICATE of Certificate_Number, rather than use the implied combination
of the identifiers of EMPLOYEE and COURSE, Employee_ID and Course_Name,
respectively.

An example of the use of an associative entity for a ternary relationship appears
in Figure 8-16. This figure shows an alternative (and more explicit) representation
of the ternary Supplies relationship shown in Figure 8-11. In Figure 8-16, the entity
type (associative entity) SHIPMENT SCHEDULE replaces the Supplies relation-
ship from Figure 8-11. Each instance of SHIPMENT SCHEDULE represents a real-
world shipment by a given vendor of a particular part to a selected warehouse. The
Shipment_Mode and Unit_Cost are attributes of SHIPMENT SCHEDULE. We have
not designated an identifier for SHIPMENT SCHEDULLE, so implicitly it would be a
composite identifier of the identifiers of the three related entities. Business rules
about participation of vendors, parts, and warehouses in supplies relationships are
shown via the cardinalities next to SUPPLY SCHEDULE. Remember, as with any asso-
ciative identity, these are not three separate relationships.

One situation in which a relationship must be turned into an associative entity is
when the associative entity has other relationships with entities besides the relation-
ship that caused its creation. For example, consider the E-R diagram in Figure 8-17a
that represents price quotes from different vendors for purchased parts stocked
by PVFE. Now, suppose that we also need to know which price quote is in effect for
each part shipment received. This additional data requirement necessitates that the
Quotes_price relationship be transformed into an associative entity, as shown in
Figure 8-17b.

Associative entity

An enfity fype that associates the

instances of one or more entity types and
contains attributes that are peculiar to the
relationship between those enfity Instances;
also called a gerund.

274 PARTIII ANALYSIS

FIGURE 8-17

Situation requiring an associative entity
(a) Many-to-many relationship with
attributes

(b) Associative entity with separate
relationship

Subtype

A subgrouping of the entfifies in an

entity type that is meaningful fo the
organization and that shares common
affributes or relationships disfinct from other
subgroupings.

Supertype
A generic entity type that has a relationship
with one or more subtypes.

Quantity
Price

PART

A

VENDOR D

PRICE QUOTE
Quantity
Price

VENDOR PART

(b)

Priced_at

()
A\

PART RECEIPT
Order_Number
Date

Amount

In this case, PRICE QUOTE is not a ternary relationship. Rather, PRICE QUOTE
is a binary many-to-many relationship (associative entity) between VENDOR and
PART. In addition, each PART RECEIPT, based on Amount, has an applicable, nego-
tiated Price. Each PART RECEIPT is for a given PART from a specific VENDOR, and
the Amount of the receipt dictates the purchase price in effect by matching with the
Quantity attribute. Because the PRICE QUOTE pertains to a given PART and a given
VENDOR, PART RECEIPT does not need direct relationships with these entities.

Summary of Conceptual Data Modeling with E-R Diagrams

The purpose of E-R diagramming is to capture the richest possible understanding
of the meaning of data necessary for an information system or organization. Besides
the aspects shown in this chapter, there are many other semantics about data that E-R
diagramming can represent. Some of these more advanced capabilities are explained
in Hoffer et al. (2016). You can also find some general guidelines for effective con-
ceptual data modeling in Hoberman et al. (2012). The following section presents
one final aspect of conceptual data modeling: capturing the relationship between
similar entity types.

REPRESENTING SUPERTYPES AND SUBTYPES

Often two or more entity types seem very similar (maybe they have almost the same
name), but there are a few differences. That is, these entity types share common
properties but also have one or more distinct attributes or relationships. To address
this situation, the E-R model has been extended to include supertype/subtype rela-
tionships. A subtype is a subgrouping of the entities in an entity type that is mean-
ingful to the organization. For example, STUDENT is an entity type in a university.
Two subtypes of STUDENT are GRADUATE STUDENT and UNDERGRADUATE
STUDENT. A supertype is a generic entity type that has a relationship with one or
more subtypes.

STRUCTURING SYSTEM DATA REQUIREMENTS

CHAPTER 8
PATIENT | 47 RESPONSIBLE
s_cared_for
Patient_ID — — PHYSICIAN
Patient_Name Physician_ID
Admit_Date
OUTPATIENT RESIDENT | aned BED
s_assigne
Checkback_Date PATIENT o H Bed_ID

Date_Discharged

An example illustrating the basic notation used for supertype/subtype relation-
ships appears in Figure 8-18. The supertype PATIENT is connected with a line to a
circle, which in turn is connected by a line to each of the two subtypes, OUTPATIENT
and RESIDENT PATIENT. Attributes that are shared by all patients (including the
identifier) are associated with the supertype; attributes that are unique to a particular
subtype (e.g., Checkback_Date for OUTPATIENT) are associated with that subtype.
Relationships in which all types of patients participate (Is_cared_for) are associated
with the supertype; relationships in which only a subtype participates (Is_assigned for
RESIDENT PATIENTS) are associated only with the relevant subtype.

Several important business rules govern supertype/subtype relationships. The
total specialization rule specifies that each entity instance of the supertype must be a
member of some subtype in the relationship. The partial specialization rule specifies
that an entity instance of the supertype does not have to belong to any subtype. Total
specialization is shown on an E-R diagram by a double line from the supertype to
the circle, and partial specialization is shown by a single line. The disjoint rule speci-
fies that if an entity instance of the supertype is a member of one subtype, it cannot
simultaneously be a member of any other subtype. The overlap rule specifies that an
entity instance can simultaneously be a member of two (or more) subtypes. Disjoint
versus overlap is shown by a “d” or an “o” in the circle.

Figure 8-19 illustrates several combinations of these rules for a hierarchy of
supertypes and subtypes in a university database. In this example

¢ a PERSON must be (total specialization) an EMPLOYEE, an ALUMNUS, or a
STUDENT, or any combination of these subtypes (overlap);

e an EMPLOYEE must be a FACULTY or a STAFF (disjoint), or may be just an
EMPLOYEE (partial specialization); and

¢ a STUDENT can be only a GRADUATE STUDENT or an UNDERGRADUATE
STUDENT and nothing else (total specialization and disjoint).

BUSINESS RULES

Conceptual data modeling is a step-by-step process for documenting information re-
quirements, and it is concerned with both the structure of data and with rules about
the integrity of those data (see the eighth question in Table 8-1). Business rules are
specifications that preserve the integrity of the logical data model. Four basic types of
business rules are as follows:

1. Entity integrity. Each instance of an entity type must have a unique identifier that
is not null.

275

FIGURE 8-18
Supertype/subtype relationships
in a hospital

Total specialization rule
Specifies that each entity instance of the
supertype must be a member of some
subtype of the relationship.

Partial specialization rule
Specifies that an entity instance of the
supertype does not have fo belong to any

subtype.

Disjoint rule

Specifies that if an enfity instance of the
supertype is a member of one subtype, it
cannot simultaneously be a member of any

other subtype.

Overlap rule

Specifies that an entity instance can
simulianeously be a member of two (or
more) subtypes.

Business rules
Specifications that preserve the integrity
of the logical data model.

276
FIGURE 8-19

PART III

Example of supertype/subtype hierarchy

ANALYSIS

PERSON
SSN
Name
Address

Gender
Date_of_Birth

EMPLOYEE

Salary
Date_Hired

ALUMNUS

{Degree(Year,
Designation,
Date)}

STUDENT
Major_Dept

FACULTY
Rank

STAFF

Position

GRADUATE
STUDENT

Test_Score

UNDERGRAD
STUDENT

Class_Standing

Domain

The set of all data types and values that an

attribute can assume.

2. Referential integrity constraints. Rules concerning the relationships between entity
types.
. Domains. Constraints on valid values for attributes.
4. Triggering operations. Other business rules that protect the validity of attribute
values.

Qo

The E-R model that we have described in this chapter is concerned primarily
with the structure of data rather than with expressing business rules (although some
elementary rules are implied in the E-R model). Generally, the business rules are cap-
tured during requirements determination and stored in the CASE repository as they
are documented. Entity integrity was described earlier in this chapter, and referential
integrity is described in Chapter 9 because it applies to database design. In this sec-
tion, we briefly describe two types of rules: domains and triggering operations. These
rules are illustrated with a simple example from a banking environment, shown in
Figure 8-20a. In this example, an ACCOUNT entity has a relationship (Is_for) with a
WITHDRAWAL entity.

Domains

A domain is the set of all data types and ranges of values that attributes may assume
(Hoffer et al., 2016). Domain definitions typically specify some (or all) of the follow-
ing characteristics of attributes: data type, length, format, range, allowable values,
meaning, uniqueness, and null support (whether an attribute value may or may not
be null).

Figure 8-20b shows two domain definitions for the banking example. The first
definition is for Account_Number. Because Account_Number is an identifier attri-
bute, the definition specifies that Account_Number must be unique and must not be

CHAPTER 8 STRUCTURING SYSTEM DATA REQUIREMENTS

ACCOUNT WITHDRAWAL
Account_Number Is_for Date
e Ll o e
Balance T A4 < Time

Amount
Name: Account_Number Name: Amount
Meaning: Customer account number in bank Meaning: Dollar amount of transaction
Data type: Character Data type: Numeric
Format: nnn-nnnn Format: 2 decimal places
Uniqueness: Must be unique Range: 0-10,000
Null support: Non-null Uniqueness: Nonunique

Null support: Non-null

User rule: WITHDRAWAL Amount may not exceed ACCOUNT Balance
Event: Insert

Entity Name: WITHDRAWAL

Condition: WITHDRAWAL Amount > ACCOUNT Balance

Action: Reject the insert transaction

null (these specifications are true of all identifiers). The definition specifies that the
attribute data type is character and that the format is nnn-nnnn. Thus, any attempt to
enter a value for this attribute that does not conform to its character type or format
will be rejected, and an error message will be displayed.

The domain definition for the Amount attribute (dollar amount of the
requested withdrawal) also may not be null, but is not unique. The format allows for
two decimal places to accommodate a currency field. The range of values has a lower
limit of zero (to prevent negative values) and an upper limit of 10,000. The latter is
an arbitrary upper limit for a single withdrawal transaction.

The use of domains offers several advantages:

® Domains verify that the values for an attribute (stored by insert or update opera-
tions) are valid.

® Domains ensure that various data manipulation operations (such as joins or
unions in a relational database system) are logical.

* Domains help conserve effort in describing attribute characteristics.

Domains can conserve effort because we can define domains and then associate
each attribute in the data model with an appropriate domain. To illustrate, suppose
that a bank has three types of accounts, with the following identifiers:

Account Type Identifier

CHECKING Checking_Account_Number
SAVINGS Savings_Account_Number
LOAN Loan_Account_Number

If domains are not used, the characteristics for each of the three identifier
attributes must be described separately. Suppose, however, that the characteristics
for all three of the attributes are identical. Having defined the domain Account_
Number once (as shown in Figure 8-13b), we simply associate each of these three
attributes with Account_Number. Other common domains such as Date, Social_
Security_Number, and Telephone_Number also need to be defined just once in the
model.

FIGURE 8-20
Examples of business rules
(a) Simple banking relationship

(b) Typical domain definitions

(c) Typical triggering operation

277

278 PARTIII ANALYSIS

Triggering operation (trigger)
An assertion or rule that governs the validity
of data manipulation operations such as
insert, update, and delete; also called a

frigger.

Triggering Operations

A triggering operation (also called a trigger) is an assertion or rule that governs
the validity of data manipulation operations such as insert, update, and delete. The
scope of triggering operations may be limited to attributes within one entity or it may
extend to attributes in two or more entities. Complex business rules may often be
stated as triggering operations.

A triggering operation normally includes the following components:

1. User rule. A concise statement of the business rule to be enforced by the trigger-
ing operation.

2. Event. The data manipulation operation (insert, delete, or update) that initiates
the operation.

3. Entity name. The name of the entity being accessed and/or modified.

4. Condition. The condition that causes the operation to be triggered.

5. Action. The action taken when the operation is triggered.

Figure 8-20c shows an example of a triggering operation for the banking situation.
The business rule is a simple (and familiar) one: the amount of an attempted with-
drawal may not exceed the current account balance. The event of interest is an
attempted insert of an instance of the WITHDRAWAL entity type (perhaps from an
automated teller machine). The condition is

Amount (of the withdrawal). ACCOUNT Balance

When this condition is triggered, the action taken is to reject the transaction. You
should note two things about this triggering operation: first, it spans two entity types;
second, the business rule could not be enforced through the use of domains.

The use of triggering operations is an increasingly important component of
database strategy. With triggering operations, the responsibility for data integrity lies
within the scope of the database management system rather than with application
programs or human operators. In the banking example, tellers could conceivably
check the account balance before processing each withdrawal. Human operators
would be subject to human error and, in any event, manual processing would not
work with automated teller machines. Alternatively, the logic of integrity checks
could be built into the appropriate application programs, but integrity checks would
require duplicating the logic in each program. There is no assurance that the logic
would be consistent (because the application programs may have been developed at
different times by different people) or that the application programs will be kept up
to date as conditions change.

As stated earlier, business rules should be documented in the CASE reposi-
tory. Ideally, these rules will then be checked automatically by database software.
Removing business rules from application programs and incorporating them in the
repository (in the form of domains, referential integrity constraints, and triggering
operations) has several important advantages; specifically, incorporating business
rules in the repository

1. provides for faster application development with fewer errors because these
rules can be generated into programs or enforced by the database management
system,

2. reduces maintenance effort and expenditures,

. provides for faster response to business changes,

4. facilitates end-user involvement in developing new systems and manipulating

data,

. provides for consistent application of integrity constraints,

. reduces the time and effort required to train application programmers, and

7. promotes ease of use of a database.

Qo

o Ot

For a more thorough treatment of business rules, see Hoffer et al. (2016).

CHAPTER 8 STRUCTURING SYSTEM DATA REQUIREMENTS

ROLE OF PACKAGED CONCEPTUAL DATA MODELS:
DATABASE PATTERNS

Fortunately, the art and science of data modeling has progressed to the point where it
is seldom necessary for an organization to develop its data models internally in their
entirety. Instead, common database patterns for different business situations are avail-
able in packaged data models (or model components) that can be purchased at com-
paratively low cost and, after suitable customization, assembled into full-scale data
models. These generic data models are developed by industry specialists, consultants,
and database technology vendors based on their expertise and experience in dozens
of organizations across multiple industry types. The models are typically provided as
the contents of a data modeling software package, such as ERWin from Computer
Associates. The software is able to produce E-R diagrams, maintain all metadata about
the data model, and produce a variety of reports that help in the process of tailoring
the data model to the specific situation, such as customizing data names, changing
relationship characteristics, or adding data unique to your environment. The software
can then generate the computer code to define the database to a database manage-
ment system once the design is fully customized to the local situation. Some simple
and limited generic data models can be found in books or on the Internet.

There are two principal types of packaged data models: universal data models
applicable to nearly any business or organization and industry-specific data models.
We discuss each of these types briefly and provide references for each type.

Universal Data Models

Numerous core subject areas are common to many (or even most) organizations,
such as customers, products, accounts, documents, and projects. Although they
differ in detail, the underlying data structures are often quite similar for these sub-
jects. Further, there are core business functions such as purchasing, accounting,
receiving, and project management that follow common patterns. Universal data
models are templates for one or more of these subject areas and/or functions. All of
the expected components of data models are generally included: entities, relation-
ships, attributes, primary and foreign keys, and even sample data. Two examples of
universal data model sets are provided by Hoberman (2009), Marco and Jennings
(2004), and Silverston and Agnew (2008).

Industry-Specific Data Models

Industry-specific data models are generic data models that are designed to be used
by organizations within specific industries. Data models are available for nearly every
major industry group, including health care, telecommunications, discrete manu-
facturing, process manufacturing, banking, insurance, and higher education. These
models are based on the premise that data model patterns for organizations are very
similar within a particular industry (“a bank is a bank”). However, the data models
for one industry (such as banking) are quite different from those for another (such
as hospitals). Prominent examples of industry-specific data models are provided by
Inmon (2005), Kimball and Ross (2013), and Silverston and Agnew (2008).

Benefits of Database Patterns and Packaged Data Models

Most people in the data modeling field refer to a purchased universal or industry-
specific database pattern as a logical data model (LDM). Technically, the term logical
data model means a conceptual data model with some additional properties associ-
ated with the most popular type of database technology—relational databases. The
type of data planning and analysis we have covered in this chapter can, in fact, be

279

280

PART III

ANALYSIS

PINE
VALLEY
FURNITURE

done using either a conceptual or a logical data model. The process is the same; only
the starting point is different.

LDMs are the database version of patterns, components, and prepackaged
applications that have been discussed in prior chapters as ways to more quickly and
reliably build a new application. An advantage of LDMs is that a packaged data model
now exists for almost every industry and application area, for specific operational
systems to enterprise systems, such as Enterprise Resource Planning (ERP) and data
warehouses. They are available from database software vendors, application software
providers, and consulting firms. The use of a prepackaged data model does not elim-
inate the need for the methods and techniques we discuss in this chapter; they only
change the context in which these methods and techniques are used.

It is now important that you consider purchasing a prepackaged data model
even when an application is to be built from scratch. Consider the following benefits
of starting with and then tailoring a purchased data model:

e Validated. Purchased models are proven through extensive experience.

e Cost reduction. Projects with purchased models take less time and cost less be-
cause the initial discovery steps are no longer necessary, leaving only iterative
tailoring and refinement to the local situation.

® Anticipate future requirements, not just initial requirements. Purchased models antici-
pate future needs, not just those recognized during the first version of an appli-
cation. Thus, because the database structure does not require structural change
(which can have costly ramifications for reprogramming the applications using
the database), their benefits are recurring, not one-time.

® Facilitates systems analysis. The purchased model actually facilitates database plan-
ning and analysis by providing a first data model, which you can use to generate
specific analysis questions and concrete, not hypothetical or abstract, examples of
what might be in the appropriate database.

e Consistent and complete. The purchased data models are very general, covering
almost all options employed by the associated functional area or industry. Thus,
they provide a structure that, when tailored, will be consistent and complete.

See Hoffer et al. (2016) for more details on the use of packaged data models in
data modeling and database development. Of course, packaged data models are no
substitute for sound database analysis and design. Skilled analysts and designers are
still necessary to determine database requirements and to select, modify, install, and
integrate any packaged systems that are used.

ELECTRONIC COMMERCE APPLICATION:
CONCEPTUAL DATA MODELING

Conceptual data modeling for an Internet-based electronic commerce application is
no different than the process followed when analyzing the data needs for other types
of applications. In the preceding chapters, you read how Jim Woo analyzed the flow
of information within the WebStore and developed a DFD. In this section, we exam-
ine the process he followed when developing the WebStore’s conceptual data model.

Conceptual Data Modeling for Pine Valley Furniture’s WebStore

To better understand what data would be needed within the WebStore, Jim Woo care-
fully reviewed the information from the JAD session and his previously developed
DFD. Table 8-2 shows a summary of the customer and inventory information identi-
fied during the JAD session. Jim wasn’t sure if this information was complete, but he
knew that it was a good starting place for identifying what information the WebStore
needed to capture, store, and process. To identify additional information, he carefully
studied the DFD shown in Figure 8-21. In this diagram, two data stores—Inventory

CHAPTER 8

STRUCTURING SYSTEM DATA REQUIREMENTS

TABLE 8-2 Customer and Inventory Information for the WebStore

Home Office Customer Student Customer Inventory Information
Name Name SKU
Doing Business as School Name
(company’s name) Address Description
Address Phone Finished Product Size
Phone E-Mail Finished Product Weight
Fax Available Materials
E-Mail Available Colors
Price
Lead Time
Order
Status
Information Order
Status
Order Information
Order Status
Number Request
Customer
Add/Modify Information Order
Account < CUSTOMER Number
Profile
Customer
Information/ID
Customer
linformation Order PURCHASING
Customer P> FULFILLMENT =
CUSTOMER D SYSTEM
= TRACKING =
SYSTEM
Customer Order Number/
Information > Check Out < Return Code
Process
Order Cart ID/
Item Iltem Profile
Profile
Check Out/ |Invoice Iltems in
* Customer Cart
ID
Product
ltem Remove ltem/
3.0 Product ltem
Request Remove
—p Browse) CUSTOMER ”L} Display g—
Catalog Shopping
J Cart
View
Cart
Iltem
Iltem Cart ID/
Profile Product) Purchase :
ltem Profile Request Item Profile
Y ltem v
Profile
—— D1 | Inventory — Itzfrlwe?c:r » D2 Shopping Cart =——
Purchase
FIGURE 8-21

Level-O DFD for the WebStore

281

282

PART III

ANALYSIS

and Shopping Cart—are clearly identified; both were strong candidates to become
entities within the conceptual data model. Finally, Jim examined the data flows from
the DFD as additional possible sources for entities. This analysis resulted in the iden-
tification of five general categories of information that he needed to consider:

¢ Customer

¢ Inventory

¢ Order

® Shopping Cart

¢ Temporary User/System Messages

After identifying these multiple categories of data, Jim’s next step was to care-
fully define each item. To do this, he again examined all data flows within the DFD
and recorded the source and destination of all data flows. By carefully listing these
flows, he could more easily move through the DFD and more thoroughly understand
what information was needed to move from point to point. This activity resulted
in the creation of two tables that documented his growing understanding of the
WebStore’s requirements. The first, Table 8-3, lists each of the data flows within each
data category and its corresponding description. The second, Table 8-4, lists each of
the unique data flows within each data category. He now felt ready to construct an
E-R diagram for the WebStore.

Jim concluded that Customer, Inventory, and Order were each a unique entity
and would be part of his E-R diagram. Recall that an entity is a person, place, or
object; all three of these items meet this criteria. Because the Temporary User/System

TABLE 8-3 Data Category, Data Flow, and Data Flow Descriptions for the WebStore
Data Category/Data Flow Description

Customer-Related

Customer ID Unique identifier for each customer (generated by
Customer Tracking System)

Customer Information Detailed customer information (stored in Customer
Tracking System)

Inventory-Related

Product ltem Unique identifier for each product item (stored in
Inventory Database)

Item Profile Detailed product information (stored in Inventory
Database)
Order-Related
Order Number Unique identifier for an order (generated by Purchasing
Fulfillment System)
Order Detailed order information (stored in Purchasing
Fulfillment System)
Return Code Unique code for processing customer returns (generated
by/stored in Purchasing Fulfillment System)
Invoice Detailed order summary statement (generated from order
information stored in Purchasing Fulfillment System)
Order Status Information Detailed summary information on order status (stored/
generated by)
Shopping Cart
Cart ID Unique identifier for shopping cart
Temporary User/System Messages
Product ltem Request Request to view information on a catalog item
Purchase Request Request to move an item info the shopping cart
View Cart Request to view the contents of the shopping cart
ltems in Cart Summary report of all shopping cart items
Remove ltem Request to remove item from shopping cart

Check Out Request to check out and process order

CHAPTER 8 STRUCTURING SYSTEM DATA REQUIREMENTS 283

TABLE 8-4 Data Category, Data Flow, and the Source /Destination of Data Flows within the
WebStore DFD

Data Flow From/To

Customer-Related
Customer ID From Customer to Process 4.0
From Process 4.0 to Customer Tracking System
From Process 5.0 to Customer
Customer Information From Customer to Process 5.0
From Process 5.0 to Customer
From Process 5.0 to Customer Tracking System
From Customer Tracking System to Process 4.0
Inventory-Related

Product ltem From Process 1.0 to Data Store D1
From Process 3.0 to Data Store D2
ltem Profile From Data Store D1 to Process 1.0

From Process 1.0 to Customer
From Process 1.0 to Process 2.0
From Process 2.0 to Data Store D2
From Data Store D2 to Process 3.0
From Data Store D2 to Process 4.0

Order-Related
Order Number From Purchasing Fulfillment System to Process 4.0
From Customer to Process 6.0
From Process 6.0 to Purchasing Fulfillment System
Order From Process 4.0 to Purchasing Fulfillment System
Return Code From Purchasing Fulfillment System to Process 4.0
Invoice From Process 4.0 to Customer
Order Status From Process 6.0 to Customer
From Purchasing Fulfillment System to Process 6.0
Shopping Cart
Cart ID From Data Store D2 to Process 3.0

From Data Store D2 to Process 4.0
Temporary User/System Messages

Product ltem Request From Customer to Process 1.0
Purchase Request From Customer to Process 2.0
View Cart From Customer to Process 3.0
ltems in Cart From Process 3.0 to Customer
Remove Item From Customer to Process 3.0
From Process 3.0 to Data Store D2
Check Out From Customer to Process 4.0

Messages data were not permanently stored items—nor were they a person, place, or
object—he concluded that this should not be an entity in the conceptual data model.
Alternatively, although the shopping cart was also a temporarily stored item, its con-
tents needed to be stored for at least the duration of a customer’s visit to the WebStore
and should be considered an object. As shown in Figure 8-21, Process 4.0, Check
Out Process Order, moves the Shopping Cart contents to the Purchasing Fulfillment
System, where the order details are stored. Thus, he concluded that Shopping Cart—
along with Customer, Inventory, and Order—would be entities in his E-R diagram.

The final step was to identify the interrelationships among these four enti-
ties. After carefully studying all the related information, Jim came to the following
conclusions:

1. Each Customer owns zero or one Shopping Cart instances; each Shopping Cart
instance is owned by one and only one Customer.

284 PARTII ANALYSIS
FIGURE 8-22 Is_placed_by
E-R diagram for the WebStore system ra ORDER
~N
& Contains
Places £ /N Is_contained_in
Owns
CUSTOMER +H oH SHg:Ff'TNG >6 H- INVENTORY
Is_owned_by Contains

Is_contained_in

2. Each Shopping Cart instance contains one and only one Inventory item; each
Inventory item is contained in zero or many Shopping Cart instances.
3. Each Customer places zero to many Orders; each Order is placed by one and only

one Customer.

4. Each Order contains one to many Shopping Cart instances; each Shopping Cart
instance s contained in one and only one Order.

With these relationships defined, Jim drew the E-R diagram shown in
Figure 8-22. He now had a very good understanding of the requirements, the flow of
information within the WebStore, the flow of information between the WebStore and
existing PVF systems, and now the conceptual data model. Over the next few hours,
Jim planned to further refine his understanding by listing the specific attributes for
each entity and then comparing these lists with the existing inventory, customer, and
order database tables. Making sure that all attributes were accounted for would be
the final conceptual data modeling activity before beginning the process of selecting

a final design strategy.

SUMMARY

We have presented the process and basic notation used to
model the data requirements of an information system. We
outlined the structuring of conceptual data models using
the E-R notation and discussed how the components of a
conceptual data model relate to data flows and data stores.

Conceptual data modeling is based on certain
constructs about the structure, not use, of data. These
constructs include entity, relationship, degree, and car-
dinality. A data model shows the relatively permanent
business rules that define the nature of an organization.
Rules define characteristics of data such as the legitimate
domain of values for data attributes, the unique character-
istics (identifier) of entities, the relationships between dif-
ferent entities, and the triggering operations that protect
the validity of attributes during data maintenance.

A data model shows major categories of data, called
entities for the E-R notation; the associations or relation-
ships between entities; and the attributes of both entities
and relationships. A special type of entity called an associa-
tive entity is often necessary to represent a many-to-many
relationship between entities. Entity types are distinct from

KEY TERMS

entity instances. Each entity instance is distinguished from
other instances of the same type by an identifier attribute.

Relationships are the glue that holds a data model
together. Three common relationship types are unary, bi-
nary, and ternary. The minimum and maximum number of
entity instances that participate in a relationship represent
important rules about the nature of the organization, as
captured during requirements determination. Supertype/
subtype relationships can be used to show a hierarchy of
more-general to more-specific related entity types that
share common attributes and relationships. Rules for total
and partial specialization between the supertype and sub-
types and disjoint and overlap among the subtypes clarify
the meaning of the related entity types.

Modern systems analysis is based on reuse, and one
form of reuse is prepackaged conceptual data models.
These data models can be purchased from various vendors
and are very helpful in learning best practices from other
organizations in the same industry or for the same busi-
ness function. They save considerable time over building
complex data models from scratch.

8.1 Associative entity
8.2 Attribute
8.3 Binary relationship

8.5 Candidate key
8.6 Cardinality

8.4 Business rules

8.7 Composite attribute
8.8 Conceptual data model

8.9 Degree

8.10 Derived attribute
8.11 Disjoint rule
8.12 Domain

CHAPTER 8 STRUCTURING SYSTEM DATA REQUIREMENTS 285

8.13 Entity instance 8.18 Multivalued attribute 8.25 Subtype
8.14 Entity-relationship data model 8.19 Optional attribute 8.26 Supertype
(E-R model) 8.20 Overlap rule 8.27 Ternary relationship
8.15 Entity-relationship diagram 8.21 Partial specialization rule 8.28 Total specialization rule
(E-R diagram) 8.22 Relationship 8.29 Triggering operation
8.16 Entity type 8.23 Repeating group (trigger)
8.17 Identifier 8.24 Required attribute 8.30 Unary relationship

Match each of the key terms above with the definition that best
fits it.

A detailed model that captures the overall structure
of organizational data and that is independent of any
database management system or other implementation
considerations.

A detailed, logical representation of the entities, associa-
tions, and data elements for an organization or business
area.

A graphical representation of an E-R model.

A collection of entities that share common properties or
characteristics.

A single occurrence of an entity type.

A named property or characteristic of an entity that is of
interest to the organization.

An attribute (or combination of attributes) that uniquely
identifies each instance of an entity type.

A candidate key that has been selected as the unique, iden-
tifying characteristic for an entity type.

An attribute that may take on more than one value for
each entity instance.

A set of two or more multivalued attributes that are logi-
cally related.

An association between the instances of one or more entity
types that is of interest to the organization.

The number of entity types that participate in a
relationship.

A relationship between the instances of one entity type.
A relationship between instances of two entity types.

A simultaneous relationship among instances of three
entity types.

REVIEW QUESTIONS

The number of instances of entity B that can (or must) be
associated with each instance of entity A.

An entity type that associates the instances of one or more
entity types and contains attributes that are peculiar to the
relationship between those entity instances.

A subgrouping of the entities in an entity type that is mean-
ingful to the organization.

A generic entity type that has a relationship with one or
more subtypes.

Specifies that each entity instance of the supertype must be
a member of some subtype in the relationship.

Specifies that an entity instance of the supertype does not

have to belong to any subtype.

Specifies that if an entity instance of the supertype is a
member of one subtype, it cannot simultaneously be a
member of any other subtype.

Specifies that an entity instance can simultaneously be a
member of two (or more) subtypes.

Specifications that preserve the integrity of the logical data
model.

The set of all data types and values that an attribute can
assume.

An assertion or rule that governs the validity of data ma-
nipulation operations such as insert, update, and delete.

An attribute that must have a value for every entity
instance.

An attribute that may not have a value for every entity
instance.

An attribute that has meaningful component parts.

An attribute whose value can be computed from related
attribute values.

8.31 Discuss why some systems developers believe that a data
model is one of the most important parts of the statement
of information system requirements.

8.32 Distinguish between the data modeling done during infor-
mation systems planning, project initiation and planning,
and the analysis phases of the SDLC.

8.33 What elements of a DFD should be analyzed as part of data
modeling?

8.34 Explain why a ternary relationship is not the same as three
binary relationships.

8.35

8.36

8.37

8.38

When must a many-to-many relationship be modeled as an
associative entity?

What is the significance of triggering operations and busi-
ness rules in the analysis and design of an information
system?

Which of the following types of relationships—one-to-one,
one-to-many, many-to-many—can have attributes associ-
ated with them?

What are the linkages among DFDs, decision tables, and
E-R diagrams?

286

8.39

8.40

8.41

8.42

PART IIIT ANALYSIS

What is the degree of a relationship? Give an example of
each of the relationship degrees illustrated in this chapter.
Give an example (different from any example in this chap-
ter) of a ternary relationship.

List the deliverables from the conceptual data model-
ing part of the analysis phase of the systems development
process.

Explain the relationship between minimum cardinality
and optional and mandatory participation.

PROBLEMS AND EXERCISES

8.43
8.44

8.45

List the ideal characteristics of an entity identifier attribute.

Explain how conceptual data modeling is different when
you start with a prepackaged data model rather than a
clean sheet of paper.

Contrast the following terms:

a. Subtype; supertype

b. Total specialization rule; partial specialization rule
c. Disjoint rule; overlap rule

d. Attribute; operation

8.46

8.47

8.48

8.49

8.50

FIGURE 8-23

Assume that at PVF each product (described by Product
No., Description, and Cost) is composed of at least three
components (described by Component No., Description,
and Unit of Measure), and components are used to make
one or many products (i.e., must be used in at least one
product). In addition, assume that components are used
to make other components and that raw materials are also
considered to be components. In both cases of compo-
nents being used to make products and components being
used to make other components, we need to keep track
of how many components go into making something else.
Draw an E-R diagram for this situation and place minimum
and maximum cardinalities on the diagram.

Much like PVF’s sale of products, stock brokerages sell
stocks, and the prices are continually changing. Draw an
E-R diagram that takes into account the changing nature
of stock prices.

If you were going to develop a computer-based tool to help
an analyst interview users and quickly and easily create and
edit E-R diagrams, what type of tool would you build? What
features would it have? How would it work?

A software training program is divided into training mod-
ules, and each module is described by module name and
the approximate practice time. Each module sometimes
has prerequisite modules. Model this situation of training
programs and modules with an E-R diagram.

Each semester, each student must be assigned an adviser
who counsels students about degree requirements and

8.51

8.52

8.53

helps students register for classes. Students must register
for classes with the help of an adviser, but if their assigned
adviser is not available, they may register with any adviser.
We must keep track of students, their assigned adviser, and
with whom the student registered for the current term.
Represent this situation of students and advisers with an
E-R diagram.

Assume that entity PART has attributes Part_Number,
Drawing_Number, Weight, Description, Storage_Location,
and Cost. Which attributes are candidate keys? Why? Which
attribute would you select for the identifier of PART? Why?
Or do you think that you should create another attribute
to be the identifier? Why or why not?

Consider the E-R diagram in Figure 8.15b.

a. What would be the identifier for the CERTIFICATE
associative entity if Certificate_Number were not
included?

b. Now assume that the same employee may take the same
course multiple times on different dates. Does this
change your answer to Problem and Exercise 8.52a?
Why or why not?

Study the E-R diagram in Figure 8.23. Based on this E-R

diagram, answer the following questions:

a. How many PROJECTSs can an employee work on?

b. What is the degree of the Includes relationship?

c. Are there any associative entities on this diagram? If so,
name them.

d. How else could the attribute Skill be modeled?

PROJECT Work EMPLOYEE
Project_ID N1 orks_on 1 »~ Employee_ID
71 LAY
Includes
A\
TASK
Used_on Done_at
— Task_ID —
TOOL H oL o >S H CITY
E-R diagram for Problem {Skill)
and Exercise 8-53

CHAPTER 8
CUSTOMER
Places
ORDER Generates BACKORDER
Includes
PRODUCT Comprised_of COMPONENT Supplied_by

STRUCTURING SYSTEM DATA REQUIREMENTS

287

FIGURE 8-24
E-R diagram for Problem
and Exercises 8-54 and 8-55

8.55

e. Is it possible to attach any attributes to the Includes
relationship?

f. Could TASK be modeled as an associative entity?

g. Employees’ earnings are calculated based on a different
hourly pay rate for each project. Where on the E-R dia-
gram would you represent the new attribute Hourly pay
rate?

8.54 For the E-R diagram provided in Figure 8.24, draw in the

relationship cardinalities and describe them. Describe any
assumptions you must make about relevant business rules.
Are there any changes or additions you would make to this
diagram to make it better? Why or why not?

For the E-R diagram provided in Figure 8.24, assume that
this company decided to assign each sales representative to
a small, unique set of customers; some customers can now
become “members” and receive unique benefits; small man-
ufacturing teams will be formed and each will be assigned to
the production of a small, unique set of products; and each
purchasing agent will be assigned to a small, unique set of
vendors. Make the necessary changes to the E-R diagram
and draw and describe the new relationship cardinalities.

VENDOR

8.56

8.57

8.58

8.59

8.60

8.61

Obtain a copy of an invoice, order form, or bill used in
one of your recent business transactions. Create an E-R dia-
gram to describe your sample document.

Using Table 8.1 as a guide, develop the complete script
(questions and possible answers) of an interview between
analysts and users within the order entry function at PVF.

A concert ticket reservation is an association among a
patron, a concert, and a seat. Select a few pertinent attri-
butes for each of these entity types and represent a reserva-
tion in an E-R diagram.

Choose from your own experiences with organizations
and draw an E-R diagram for a situation that has a ternary
relationship.

Consider the E-R diagram in Figure 8.25. Are all three
relationships—Holds, Goes_on, and Transports—necessary
(i.e., can one of these be deduced from the other two)?
Are there reasonable assumptions that make all three rela-
tionships necessary? If so, what are these assumptions?

Draw an E-R diagram to represent the sample customer
order in Figure 8-4.

AGENT : CONSIGNMENT : CONSIGNMENT
| ble_f M t
Agent_ID "s_responS| °- OI; £ Consignment_Number N\ S ay-con a|n" Consignment_Number
" "N $_Value 4 " $_Value
A4 A\ 4
(O] (0]
Holds Transports
() (0]
- N\
VESSEL Goes_on y VOYAGE
Vessel_ID H ©-& Voyage_ID
Country_of_ N Tonnage FIGQRE 8-25
Registry ER diagram for Problem
and Exercise 8-60

288
8.62

8.63

PART IIIT ANALYSIS

In a real estate database, there is an entity called PROP-
ERTY, which is a property for sale by the agency. Each time
a potential property buyer makes a purchase offer on a
property, the agency records the date, offering price, and
name of the person making the offer.

a. Represent the PROPERTY entity and its purchase offer
attributes using the notation for multivalued attributes.

b. Represent the PROPERTY entity and its purchase offer
attributes using two entity types.

c. Assume the agency decides to also keep data about buy-
ers and potential buyers, including their name, phone
number, and address. Buyers often have multiple phone
numbers and addresses, which are not necessarily
related to each other. Augment your answer to Problem
and Exercise 8.62b to accommodate this new entity type.

d. Finally, assume that, for each purchase offer, we need
to know which buyer phone number and address to
associate with that offer. Augment your answer to
Problem and Exercise 8.62c to accommodate this new
requirement.

Consider the Is_married_to unary relationship in Figure 8.14c.

a. Assume that we want to know the date on which a mar-
riage occurred. Augment this E-R diagram to include a
Date_married attribute.

b. Because persons sometimes remarry after the death of
a spouse or a divorce, redraw this E-R diagram to show
the whole history of marriages (not just the current
marriage) for persons. Show the Date_married attribute
on this diagram.

c. Inyour answer to Problem and Exercise 8.63b, is it possi-
ble to represent a situation in which the same two people
marry each other a multiple number of times? Explain.

FIELD EXERCISES

8.64

8.65

8.66

Consider Figure 8.20.

a. Write a domain integrity rule for Balance.
b. Write a triggering operation for the Balance attribute
for the event of inserting a new ACCOUNT.

How are E-R diagrams similar to and different from
decision trees? In what ways are data and logic modeling
techniques complementary? What problems might be
encountered if either data or logic modeling techniques
were not performed well or not performed at all as part of
the systems development process?

In the Purchasing department at one company, a purchase
request may be assigned an expediter within the Pur-
chasing department. This expediter follows the purchase
request through the entire purchasing process and acts as
the sole contact person with the person or unit within the
company buying the goods or services. The Purchasing
department refers to its fellow employees buying goods
and services as customers. The purchasing process is such
that purchase requests from certain special customers
must go out for bid to vendors, and the associated Request
for Bids for these requests must be approved by the Pur-
chasing department. If the purchase is not by a special
customer, the product or service can simply be bought
from any approved vendor, but the purchase request must
still be approved by the Purchasing department, and the
department must issue a Purchase Order. For “special cus-
tomer” purchases, the Purchasing department can issue
a Purchase Order once the winning bid is accepted. List
the relevant entities and attributes, and draw an E-R dia-
gram for this business process. List whatever assumptions
you must make to define identifiers, assess cardinality, and
so on.

8.67

8.68

8.69

Interview a friend or family member about each of the
entities, attributes, relationships, and relevant business
rules he or she comes into contact with at work. Use this
information to construct and present to this person an E-R
diagram. Revise the diagram until it seems appropriate to
you and to your friend or family member.

Visit an organization that provides primarily a service, such
as a dry cleaner, and a company that manufactures a more
tangible product. Interview employees from these orga-
nizations about the entities, attributes, relationships, and
relevant business rules that are commonly encountered by
their company. Use this information to construct E-R dia-
grams. What differences and similarities are there between
the diagrams for the service- and the product-oriented
companies? Does the E-R diagramming technique handle
both situations equally well? Why or why not? What differ-
ences, if any, might there be in the use of this technique
for a public agency?

Discuss with a systems analyst the role of conceptual data
modeling in the overall systems analysis and design of
information systems at his or her company. How, and by
whom, is conceptual data modeling performed? What

8.70

8.71

8.72

8.73

training in this technique is given? At what point(s) is this
done in the development process? Why?

Ask a systems analyst to give you examples of unary, binary,
and ternary relationships that they have heard of or dealt
with personally at their company. Ask them which is the
most common. Why?

Talk to MIS professionals at a variety of organizations and
determine their interest in using prepackaged data models,
rather than doing data modeling from scratch. If they have
adopted any prepackaged data models, document how
they did the customization for their local requirements.

Ask a systems analyst to give you a copy of the standard
notation he or she uses to draw E-R diagrams. In what ways
is this notation different from the notation in this text?
Which notation do you prefer and why? What is the mean-
ing of any additional notation?

Ask a systems analyst in 2 manufacturing company to show
you an E-R diagram for a database in that organization that
contains bill-of-materials data. Compare that E-R diagram
to the one in Figure 8-7. What are the differences between
these diagrams?

CHAPTER 8
REFERENCES

STRUCTURING SYSTEM DATA REQUIREMENTS 289

Bruce, T. A. 1992. Designing Quality Databases with IDEFIX Infor-
mation Models. New York: Dorset House Publications.

Gottesdiener, E. 1999. “Turning Rules into Requirements.”
Application Development Trends 6(7): 37-50.

Herbst, H. 2013. Business Rule-Oriented Conceptual Modeling.
Heidelberg, Germany: Physica-Verlag.

Hoberman, S. 2009. Industry Logical Data Models Serve as Maps
to an Organization’s Information. www.teradatamagazine.com.
From: http://www.teradatamagazine.com/where_to.aspx.
Retrieved on February 24, 2015.

Hoberman, S., D. Burbank, and C. Bradley. 2012. Data Modeling
for the Business. Bradley Beach, NJ: Technics Publications.

Hoffer, J. A., V. Ramesh, and H. Topi. 2016. Modern Database
Management, 12th ed. Upper Saddle River, NJ: Prentice Hall.

Inmon, W. H. 2005. Building the Data Warehouse. Indianapolis,
IN: Wiley.

Keller, S. B, and B. C. Keller. The Definitive Guide to Warehousing.
Upper Saddle River, NJ: Pearson.

Kimball, R., and M. Ross. 2013. The Data Warehouse Toolkit: The
Complete Guide to Dimensional Data Modeling, 3rd ed. New
York: John Wiley & Sons, Inc.

Marco, D., and M. Jennings. 2004. Universal Meta Data Models.
New York: John Wiley & Sons, Inc.

Silverston, L., and P. Agnew. 2008. The Data Model Resource Book,
Vol. 3: Universal Patterns for Data Modeling. New York: John
Wiley & Sons, Inc.

Witt, G. 2012. Writing Effective Business Rules. Burlington, MA:
Morgan Kaufmann.

http://www.teradatamagazine.com
http://www.teradatamagazine.com/where_to.aspx

Appendix

N\ Pl

(/
Analysis and Design
Object Modeling—Class Diagrams '

Learning Objectives 8.3 illustrate how associations are represented in class
diagrams,
After studying this section, you should be able to 9 N)
f 3 8.4 show how associative classes are drawn in class
8.1 demonstrate the differences between object di d
. i iagrams, an

diagrams and class diagrams, Y)

8.2 . ; ' e 8.5 show how generalization and aggregation are
-2 explain the three types of operations possible in represented in class diagrams,
class diagrams,
Introduction

In this section, we show how to develop class diagrams,
the object-oriented data modeling notation. We describe
the main concepts and techniques involved in object
modeling, including objects and classes, encapsulation
of attributes and operations, aggregation relationships,
polymorphism, and inheritance. We show how you can
develop class diagrams, using the UML notation, to pro-
vide a conceptual view of the system being modeled.
For a more thorough coverage of object modeling, see
George et al. (2007).

REPRESENTING OBJECTS AND
CLASSES

With the object-oriented approach, we model the world
in objects. Before applying this approach to a real-world
problem, we need to understand what an object really is.
Similar to an entity instance, an object has a well-defined
role in the application domain, and it has state (data), be-
havior, and identity characteristics. An object is a single
occurrence of a class, which we define below.

An object has a state and exhibits behavior through
operations that can examine or affect its state. The state of
an object encompasses its properties (attributes and rela-
tionships) and the values of those properties. Its behavior
represents how an object acts and reacts (Booch et al,,
2007). An object’s state is determined by its attribute values
and links to other objects. An object’s behavior depends on

290

its state and the operation being performed. An operation
is simply an action that one object performs upon another
in order to get a response. You can think of an operation
as a service provided by an object (supplier) to its clients.
A client sends a message to a supplier, which delivers the
desired service by executing the corresponding operation.

Consider the example of a student, Mary Jones,
represented as an object. The state of this object is charac-
terized by its attributes (name, date of birth, year, address,
and phone number) and the values these attributes
currently have; for example, name is “Mary Jones,” year
is “junior,” and so on. Its behavior is expressed through
operations such as calc-gpa, which is used to calculate a
student’s current grade point average. The Mary Jones
object, therefore, packages both its state and its behavior
together.

All objects have an identity; that is, no two objects are
the same. For example, if there are two Student instances
with the same name and date of birth (or even all attri-
butes), they are essentially two different objects. An ob-
ject maintains its own identity over its life. For example, if
Mary Jones gets married and changes her name, address,
and phone, she will still be represented by the same ob-
ject. This concept of an inherent identity is different from
the identifier concept we saw earlier for E-R modeling.

We use the term object class (or simply class) to refer
to a logical grouping of objects that have the same (or simi-
lar) attributes, relationships, and behaviors (methods) (just
as we used entity type and entity instance earlier in this

CHAPTER 8
Student <z Class » Course

name
name crse-code
dateOfBirth List of ___———3< | crse-title
year <« attributes credit-hrs
address enroliment ()
phone . /

List of
calc-age () /operations
calc-gpa ()
register-for (course)

chapter). In our example, therefore, Mary Jones is an object instance, whereas Student
is an object class (as Student was an entity type in E-R diagramming).

Classes can be depicted graphically in a class diagram, as shown in Figure 8-26.
A class diagram shows the static structure of an object-oriented model: the object
classes, their internal structure, and the relationships in which they participate. In
UML, a class is represented by a rectangle with three compartments separated by
horizontal lines. The class name appears in the top compartment, the list of attri-
butes in the middle compartment, and the list of operations in the bottom compart-
ment of the rectangle. The diagram in Figure 8-26 shows two classes, Student and
Course, along with their attributes and operations.

The Student class is a group of Student objects that share a common structure
and a common behavior. Each object knows to which class it belongs; for example,
the Mary Jones object knows that it belongs to the Student class. Objects belonging
to the same class may also participate in similar relationships with other objects; for
example, all students register for courses and, therefore, the Student class can par-
ticipate in a relationship called “registers-for” with another class called Course (see
the section Representing Associations).

An operation, such as calc-gpa in Student (see Figure 8-26), is a function or a
service that is provided by all the instances of a class to invoke behavior in an object
by passing a message. It is only through such operations that other objects can ac-
cess or manipulate the information stored in an object. The operations, therefore,
provide an external interface to a class; the interface presents the outside view of the
class without showing its internal structure or how its operations are implemented.
This technique of hiding the internal implementation details of an object from its
external view is known as encapsulation, or information hiding (Booch et al., 2007;
Rumbaugh et al., 1991). So while we provide the abstraction of the behavior com-
mon to all instances of a class in its interface, we encapsulate within the class its struc-
ture and the secrets of the desired behavior.

TYPES OF OPERATIONS

Operations can be classified into three types, depending on the kind of service
requested by clients: (1) constructor, (2) query, and (3) update (Bell, 2004). A
constructor operation creates a new instance of a class. For example, you can have an
operation called create-student within Student that creates a new student and initial-
izes its state. Such constructor operations are available to all classes and, therefore,
are not explicitly shown in the class diagram.

A query operation is an operation that does not have any side effects; it ac-
cesses the state of an object but does not alter the state (Fowler, 2003; Rumbaugh
et al., 1991). For example, the Student class can have an operation called get-year
(not shown) that simply retrieves the year (freshman, sophomore, junior, or senior)
of the Student object specified in the query. Note that there is no need to show
explicitly a query such as get-year in the class diagram because it retrieves the value

STRUCTURING SYSTEM DATA REQUIREMENTS

291

FIGURE 8-26
UML class diagram showing two classes

Object

An entity that has a well