

Modern Systems
Analysis and Design

8th Edition

Joseph S. Valacich
University of Arizona

Joey F. George
Iowa State University

Boston Columbus Indianapolis New York San Francisco
Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montréal Toronto

Delhi Mexico City São Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo

Vice President, Business Publishing: Donna Battista
Editor-in-Chief: Stephanie Wall
Senior Sponsoring Editor: Neera Bhalla
Acquisitions Editor: Samantha Lewis
Program Manager: Emily Biberger
Editorial Assistants: Olivia Vignone, Michael Campbell
Vice President, Product Marketing: Maggie Moylan
Director of Marketing, Digital Services
 and Products: Jeanette Koskinas
Executive Field Marketing Manager: Adam Goldstein
Field Marketing Manager: Lenny Ann Raper
Product Marketing Assistant: Jessica Quazza
Team Lead, Program Management: Ashley Santora
Team Lead, Project Management: Jeff Holcomb

Project Manager: Ilene Kahn
Operations Specialist: Diane Peirano
Creative Director: Blair Brown
Art Director: Janet Slowik
Vice President, Director of Digital Strategy
 and Assessment: Paul Gentile
Manager of Learning Applications: Paul DeLuca
Full-Service Project Management and
 Composition: George Jacob/Integra
Interior Designer: Integra Software Services, Inc.
Cover Designer: Integra Software Services, Inc.
Cover Art: hunthomas/123rf
Printer/Binder: RR Donnelley/Roanoke
Cover Printer: Phoenix Color/Hagerstown

Microsoft and/or its respective suppliers make no representations about the suitability of the information contained
in the documents and related graphics published as part of the services for any purpose. All such documents and
related graphics are provided “as is” without warranty of any kind. Microsoft and/or its respective suppliers hereby
disclaim all warranties and conditions with regard to this information, including all warranties and conditions of
merchantability, whether express, implied or statutory, fitness for a particular purpose, title and non-infringement.
In no event shall Microsoft and/or its respective suppliers be liable for any special, indirect or consequential
 damages or any damages whatsoever resulting from loss of use, data or profits, whether in an action of contract,
negligence or other tortious action, arising out of or in connection with the use or performance of information
available from the services.

The documents and related graphics contained herein could include technical inaccuracies or typographical
 errors. Changes are periodically added to the information herein. Microsoft and/or its respective suppliers may
make improvements and/or changes in the product(s) and/or the program(s) described herein at any time.
Partial screen shots may be viewed in full within the software version specified.

Microsoft® and Windows® are registered trademarks of the Microsoft Corporation in the U.S.A. and other countries.
This book is not sponsored or endorsed by or affiliated with the Microsoft Corporation.

Copyright © 2017, 2014, 2011 by Pearson Education, Inc. or its affiliates. All Rights Reserved. Manufactured
in the United States of America. This publication is protected by copyright, and permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any
form or by any means, electronic, mechanical, photocopying, recording, or otherwise. For information regarding
permissions, request forms, and the appropriate contacts within the Pearson Education Global Rights and
 Permissions department, please visit www.pearsoned.com/permissions/.

Acknowledgments of third-party content appear on the appropriate page within the text.

PEARSON and ALWAYS LEARNING are exclusive trademarks owned by Pearson Education, Inc. or its affiliates in
the U.S. and/or other countries.

Unless otherwise indicated herein, any third-party trademarks, logos, or icons that may appear in this work are the
property of their respective owners, and any references to third-party trademarks, logos, icons, or other trade dress
are for demonstrative or descriptive purposes only. Such references are not intended to imply any sponsorship,
endorsement, authorization, or promotion of Pearson’s products by the owners of such marks, or any relationship
between the owner and Pearson Education, Inc., or its affiliates, authors, licensees, or distributors.

Library of Congress Cataloging-in-Publication Data
Hoffer, Jeffrey A.
 Modern systems analysis and design/Jeffrey A. Hoffer, University of Dayton, Joey F. George, Iowa State University,
Joseph S. Valacich, University of Arizona.-—Eighth edition.
 pages cm
 Includes bibliographical references and index.
 ISBN-13: 978-0-13-420492-5
 ISBN-10: 0-13-420492-1
 1. System design. 2. System analysis. I. George, Joey F. II. Valacich, Joseph S., 1959– III. Title.
 QA76.9.S88H6197 2015
 003—dc23

 2015013648

10 9 8 7 6 5 4 3 2 1

ISBN 10: 0-13-420492-1
ISBN 13: 978-0-13-420492-5

http://www.pearsoned.com/permissions/

To my mother, Mary Valacich. You are the best!
—Joe

To my mother, Loree George
—Joey

This page intentionally left blank

v

Preface xix

Part One Foundations For systems development 1
 1 the Systems Development environment 3

 2 the Origins of Software 26

 3 Managing the Information Systems Project 44

appendix: object-oriented analysis and design: project management 78

Part twO planning 85
 4 Identifying and Selecting Systems Development Projects 87

 5 Initiating and Planning Systems Development Projects 111

Part three analysis 145
 6 Determining System requirements 147

 7 Structuring System Process requirements 182

appendix 7a: object-oriented analysis and design: use Cases 217

appendix 7B: object-oriented analysis and design: activity diagrams 232

appendix 7C: object-oriented analysis and design: sequence

diagrams 237

appendix 7D: Business process modeling 246

 8 Structuring System Data requirements 255

appendix: object-oriented analysis and design: object modeling–Class

diagrams 290

Part FOur design 309
 9 Designing Databases 311

 10 Designing Forms and reports 353

 11 Designing Interfaces and Dialogues 381

 12 Designing Distributed and Internet Systems 417

Part FIve implementation and maintenanCe 451
 13 System Implementation 453

 14 Maintaining Information Systems 486

glossary oF terms 504

glossary oF aCronyms 511

index 512

Brief Contents

This page intentionally left blank

vii

Preface xix

Part One Foundations For systems development

An Overview Of PArt One 2

 1 the Systems Development environment 3
Learning Objectives 3

Introduction 3

A Modern Approach to Systems Analysis and Design 5

Developing Information Systems and the Systems Development Life Cycle 6

A Specialized Systems Development Life Cycle 12

The Heart of the Systems Development Process 13
The Traditional Waterfall SDLC 15

Different Approaches to Improving Development 16
Case Tools 16

Agile Methodologies 17
eXtreme Programming 19

Object-Oriented Analysis and Design 20

Our Approach to Systems Development 22

Summary 23

Key Terms 23

Review Questions 24

Problems and Exercises 24

Field Exercises 25

References 25

 2 the Origins of Software 26
Learning Objectives 26

Introduction 26

Systems Acquisition 26
Outsourcing 27
Sources of Software 28
Choosing Off-the-Shelf Software 34
Validating Purchased Software Information 37

Reuse 37

Summary 40

Key Terms 40

Contents

viii Contents

Review Questions 41

Problems and Exercises 41

Field Exercises 41

References 41

BeC Case: the origins oF soFtware 43
Case Questions 43

 3 Managing the Information Systems Project 44
Learning Objectives 44

Introduction 44

Pine Valley Furniture Company Background 44

Managing the Information Systems Project 46
Initiating a Project 50
Planning the Project 53
Executing the Project 58
Closing Down the Project 62

Representing and Scheduling Project Plans 63
Representing Project Plans 64
Calculating Expected Time Durations Using PERT 65
Constructing a Gantt Chart and Network Diagram at Pine Valley Furniture 66

Using Project Management Software 69
Establishing a Project Start Date 70
Entering Tasks and Assigning Task Relationships 70
Selecting a Scheduling Method to Review Project Reports 71

Summary 72

Key Terms 73

Review Questions 74

Problems and Exercises 74

Field Exercises 76

References 76

appendix: object-oriented analysis and design 78

Learning Objectives 78
Unique Characteristics of an OOSAD Project 78
Define the System as a Set of Components 78

Complete Hard Problems First 78
Using Iterations to Manage the Project 80
Don’t Plan Too Much Up Front 80
How Many and How Long Are Iterations? 81
Project Activity Focus Changes Over the Life of a Project 83

Summary 83

Review Question 83

Problems and Exercises 83

BeC Case: managing the inFormation systems 84
Case Questions 84

 Contents ix

Part twO planning

An Overview Of PArt twO 86

 4 Identifying and Selecting Systems Development Projects 87
Learning Objectives 87

Introduction 87

Identifying and Selecting Systems Development Projects 88
The Process of Identifying and Selecting IS Development Projects 89
Deliverables and Outcomes 93

Corporate and Information Systems Planning 94
Corporate Strategic Planning 95
Information Systems Planning 97

Electronic Commerce Applications: Identifying and Selecting Systems Development
Projects 104

Internet Basics 104
Pine Valley Furniture WebStore 105

Summary 106

Key Terms 106

Review Questions 107

Problems and Exercises 107

Field Exercises 108

References 108

BeC Case: identiFying and seleCting systems development
projeCts 110
Case Questions 110

 5 Initiating and Planning Systems Development Projects 111
Learning Objectives 111

Introduction 111

Initiating and Planning Systems Development Projects 111

The Process of Initiating and Planning Is Development Projects 112
Deliverables and Outcomes 113

Assessing Project Feasibility 114
Assessing Economic Feasibility 115
Assessing Technical Feasibility 123
Assessing Other Feasibility Concerns 126

Building and Reviewing the Baseline Project Plan 127
Building the Baseline Project Plan 127
Reviewing the Baseline Project Plan 132

Electronic Commerce Applications: Initiating and Planning Systems
Development Projects 137

Initiating and Planning Systems Development Projects for Pine Valley Furniture’s WebStore 137

Summary 139

Key Terms 139

x Contents

Review Questions 140

Problems and Exercises 140

Field Exercises 141

References 141

BeC Case: initiating and planning systems development projeCts 143
Case Questions 143

Part three analysis

An Overview Of PArt three 146

 6 Determining System requirements 147
Learning Objectives 147

Introduction 147

Performing Requirements Determination 147
The Process of Determining Requirements 148
Deliverables and Outcomes 149

Traditional Methods for Determining Requirements 150
Interviewing and Listening 150
Interviewing Groups 154
Directly Observing Users 155
Analyzing Procedures and Other Documents 156

Contemporary Methods for Determining System
Requirements 161

Joint Application Design 162
Using Prototyping During Requirements Determination 165

Radical Methods for Determining System Requirements 167
Identifying Processes to Reengineer 168
Disruptive Technologies 168

Requirements Determination Using Agile Methodologies 169
Continual User Involvement 169
Agile Usage-Centered Design 170
The Planning Game from eXtreme Programming 171

Electronic Commerce Applications: Determining System
Requirements 173

Determining System Requirements for Pine Valley Furniture’s
WebStore 173

Summary 176

Key Terms 176

Review Questions 177

Problems and Exercises 177

Field Exercises 178

References 179

BeC Case: determining system requirements 180
Case Questions 181

 Contents xi

 7 Structuring System Process requirements 182
Learning Objectives 182

Introduction 182

Process Modeling 182
Modeling a System’s Process for Structured Analysis 183
Deliverables and Outcomes 183

Data Flow Diagramming Mechanics 184
Definitions and Symbols 184
Developing DFDs: An Example 186
Data Flow Diagramming Rules 189
Decomposition of DFDs 190
Balancing DFDs 193

An Example DFD 195

Using Data Flow Diagramming in the Analysis Process 198
Guidelines for Drawing DFDs 198
Using DFDs as Analysis Tools 200
Using DFDs in Business Process Reengineering 201

Modeling Logic With Decision Tables 203

Electronic Commerce Application: Process Modeling Using Data Flow Diagrams 206
Process Modeling for Pine Valley Furniture’s WebStore 207

Summary 208

Key Terms 209

Review Questions 210

Problems and Exercises 210

Field Exercises 216

References 216

appendix 7a object-oriented analysis and design: use Cases 217

Learning Objectives 217
Introduction 217
Use Cases 217

What Is a Use Case? 217
Use Case Diagrams 218
Definitions and Symbols 219

Written Use Cases 222
Level 223
The Rest of the Template 223

Electronic Commerce Application: Process Modeling Using Use Cases 225
Writing Use Cases for Pine Valley Furniture’s Webstore 227

Summary 230

Key Terms 230

Review Questions 230

Problems and Exercises 230

Field Exercise 231

References 231

HOOSIER
BURGER

xii Contents

appendix 7B: object-oriented analysis and design: activity diagrams 232

Learning Objectives 232
Introduction 232
When to Use an Activity Diagram 235
Problems and Exercises 235
Reference 236

appendix 7C: object-oriented analysis and design 237

Learning Objectives 237
Introduction 237
Dynamic Modeling: Sequence Diagrams 237
Designing a Use Case with a Sequence
Diagram 239
A Sequence Diagram for Hoosier Burger 242
Summary 244
Key Terms 244
Review Questions 244
Problems and Exercises 244
Field Exercise 245
References 245

appendix 7D: Business process modeling 246

Learning Objective 246
Introduction 246
Basic Notation 246
Business Process Example 250
Summary 251
Key Terms 251
Review Questions 251
Problems and Exercises 251
Field Exercises 252
References 252

BeC Case: struCturing system proCess requirements 253
Case Questions 254

 8 Structuring System Data requirements 255
Learning Objectives 255

Introduction 255

Conceptual Data Modeling 256
The Conceptual Data Modeling Process 257
Deliverables and Outcomes 258

Gathering Information for Conceptual Data Modeling 259

 Contents xiii

Introduction to E-R Modeling 261
Entities 261
Attributes 263
Candidate Keys and Identifiers 264
Other Attribute Types 265
Relationships 266

Conceptual Data Modeling and the E-R Model 267
Degree of a Relationship 268
Cardinalities in Relationships 270
Naming and Defining Relationships 271
Associative Entities 272
Summary of Conceptual Data Modeling with E-R Diagrams 274

Representing Supertypes and Subtypes 274

Business Rules 275
Domains 276
Triggering Operations 278

Role of Packaged Conceptual Data Models: Database Patterns 279
Universal Data Models 279
Industry-Specific Data Models 279
Benefits of Database Patterns and Packaged Data Models 279

Electronic Commerce Application: Conceptual Data
Modeling 280

Conceptual Data Modeling for Pine Valley Furniture’s WebStore 280

Summary 284

Key Terms 284

Review Questions 285

Problems and Exercises 286

Field Exercises 288

References 289

appendix: object-oriented analysis and design: object modelling—Class diagrams 290

Learning Objectives 290
Introduction 290
Representing Objects and Classes 290
Types of Operations 291
Representing Associations 292
Representing Associative Classes 294
Representing Stereotypes for Attributes 295
Representing Generalization 295
Representing Aggregation 298
An Example of Conceptual Data Modeling at Hoosier
Burger 299
Summary 302
Key Terms 302

xiv Contents

Review Questions 303
Problems and Exercises 303
References 304

BeC Case: struCturing system data requirements 305
Case Questions 306

Part FOur design

An Overview Of PArt fOur 310

 9 Designing Databases 311
Learning Objectives 311

Introduction 311

Database Design 311
The Process of Database Design 312
Deliverables and Outcomes 314
The Relational Database Model 317
Well-Structured Relations 317

Normalization 318
Rules of Normalization 319
Functional Dependence and Primary Keys 319
Second Normal Form 320
Third Normal Form 320

Transforming E-R Diagrams Into Relations 321
Represent Entities 322
Represent Relationships 322
Summary of Transforming E-R Diagrams to Relations 326

Merging Relations 326
An Example of Merging Relations 326
View Integration Problems 327

Logical Database Design for Hoosier Burger 328

Physical File and Database Design 331
Designing Fields 331
Choosing Data Types 332
Controlling Data Integrity 333
Designing Physical Tables 334
Arranging Table Rows 337
Designing Controls for Files 341

Physical Database Design for Hoosier Burger 342

Electronic Commerce Application: Designing Databases 343
Designing Databases for Pine Valley Furniture’s WebStore 344

Summary 346

Key Terms 347

Review Questions 348

Problems and Exercises 348

Field Exercises 349

HOOSIER
BURGER

HOOSIER
BURGER

 Contents xv

References 350

BeC Case: designing dataBases 351
Case Questions 352

 10 Designing Forms and reports 353
Learning Objectives 353

Introduction 353

Designing Forms and Reports 353
The Process of Designing Forms and Reports 355
Deliverables and Outcomes 356

Formatting Forms and Reports 360
General Formatting Guidelines 360
Highlighting Information 362
Color versus No Color 364
Displaying Text 365
Designing Tables and Lists 365
Paper versus Electronic Reports 369

Assessing Usability 371
Usability Success Factors 371
Measures of Usability 372

Electronic Commerce Applications: Designing Forms and Reports for Pine
Valley Furniture’s Webstore 373

General Guidelines 373
Designing Forms and Reports at Pine Valley Furniture 373
Lightweight Graphics 374
Forms and Data Integrity Rules 374
Stylesheet-Based HTML 375

Summary 375

Key Terms 376

Review Questions 376

Problems and Exercises 377

Field Exercises 377

References 378

BeC Case: designing Forms and reports 379
Case Questions 379

 11 Designing Interfaces and Dialogues 381
Learning Objectives 381

Introduction 381

Designing Interfaces and Dialogues 381
The Process of Designing Interfaces and Dialogues 381
Deliverables and Outcomes 382

Interaction Methods and Devices 382
Methods of Interacting 382
Hardware Options for System Interaction 390

xvi Contents

Designing Interfaces 392
Designing Layouts 392
Structuring Data Entry 395
Controlling Data Input 397
Providing Feedback 398
Providing Help 400

Designing Dialogues 403
Designing the Dialogue Sequence 404
Building Prototypes and Assessing Usability 405

Designing Interfaces and Dialogues in Graphical Environments 407
Graphical Interface Design Issues 407
Dialogue Design Issues in a Graphical Environment 409

Electronic Commerce Application: Designing Interfaces and Dialogues for Pine Valley
Furniture’s Webstore 409

General Guidelines 410
Designing Interfaces and Dialogues at Pine Valley Furniture 411
Menu-Driven Navigation with Cookie Crumbs 411

Summary 412

Key Terms 412

Review Questions 413

Problems and Exercises 413

Field Exercises 414

References 414

BeC Case: designing interFaCes and dialogues 415
Case Questions 416

 12 Designing Distributed and Internet Systems 417
Learning Objectives 417

Introduction 417

Designing Distributed and Internet Systems 417
The Process of Designing Distributed and Internet Systems 417
Deliverables and Outcomes 418

Designing LAN and Client/Server Systems 419
Designing Systems for LANs 419
Designing Systems for a Client/Server Architecture 421

Cloud Computing 425
What Is Cloud Computing? 425
Managing the Cloud 429
Service-Oriented Architecture 432
Web Services 433

Designing Internet Systems 434
Internet Design Fundamentals 435
Site Consistency 436
Design Issues Related to Site Management 438

 Contents xvii

Electronic Commerce Application: Designing a Distributed Advertisement Server
for Pine Valley Furniture’s Webstore 441

Advertising on Pine Valley Furniture’s WebStore 441
Designing the Advertising Component 442
Designing the Management Reporting Component 443

Summary 444

Key Terms 444

Review Questions 446

Problems and Exercises 446

Field Exercises 447

References 448

BeC Case: designing distriButed and internet systems 449
Case Questions 449

Part FIve implementation and maintenanCe

An Overview Of PArt five 452

 13 System Implementation 453
Learning Objectives 453

Introduction 453

System Implementation 454
Coding, Testing, and Installation Processes 455
Deliverables and Outcomes from Coding, Testing,

and Installation 455
Deliverables and Outcomes from Documenting the System, Training Users,

and Supporting Users 457

Software Application Testing 457
Seven Different Types of Tests 458
The Testing Process 461
Combining Coding and Testing 463
Acceptance Testing by Users 463

Installation 464
Direct Installation 464
Parallel Installation 465
Single-Location Installation 466
Phased Installation 466
Planning Installation 467

Documenting the System 468
User Documentation 468

Training and Supporting Users 470
Training Information Systems Users 470
Supporting Information Systems Users 471
Support Issues for the Analyst to Consider 473

xviii Contents

Organizational Issues in Systems Implementation 474
Why Implementation Sometimes Fails 475
Security Issues 477

Electronic Commerce Application: System Implementation and Operation
for Pine Valley Furniture’s Webstore 478

Developing Test Cases for the WebStore 478
Alpha and Beta Testing the WebStore 480
WebStore Installation 480

Project Closedown 481

Summary 481

Key Terms 482

Review Questions 483

Problems and Exercises 483

Field Exercises 484

References 484

BeC Case: system implementation 485
Case Questions 485

 14 Maintaining Information Systems 486
Learning Objectives 486

Introduction 486

Maintaining Information Systems 486
The Process of Maintaining Information Systems 487
Deliverables and Outcomes 488

Conducting Systems Maintenance 489
Types of Maintenance 489
The Cost of Maintenance 490
Managing Maintenance 492
Role of Automated Development Tools in Maintenance 497

Website Maintenance 497

Electronic Commerce Application: Maintaining an Information System for Pine Valley
Furniture’s Webstore 499

Maintaining Pine Valley Furniture’s WebStore 499
Cannot Find Server 499

Summary 500

Key Terms 501

Review Questions 502

Problems and Exercises 502

Field Exercises 502

References 503

glossary oF terms 504

glossary oF aCronyms 511

index 512

xix

DesCriPtiOn
Modern Systems Analysis and Design, Eighth Edition, covers the concepts, skills, meth-
odologies, techniques, tools, and perspectives essential for systems analysts to suc-
cessfully develop information systems. The primary target audience is upper-division
undergraduates in a management information systems (MIS) or computer informa-
tion systems curriculum; a secondary target audience is MIS majors in MBA and MS
programs. Although not explicitly written for the junior college and professional
 development markets, this book can also be used by these programs.

We have over 55 years of combined teaching experience in systems analysis and
design and have used that experience to create this newest edition of Modern Systems
Analysis and Design. We provide a clear presentation of the concepts, skills, and tech-
niques that students need to become effective systems analysts who work with others
to create information systems for businesses. We use the systems development life
cycle (SDLC) model as an organizing tool throughout the book to provide students
with a strong conceptual and systematic framework. The SDLC in this edition has five
phases and a circular design.

With this text, we assume that students have taken an introductory course on
computer systems and have experience designing programs in at least one program-
ming language. We review basic system principles for those students who have not
been exposed to the material on which systems development methods are based. We
also assume that students have a solid background in computing literacy and a gener-
al understanding of the core elements of a business, including basic terms associated
with the production, marketing, finance, and accounting functions.

new tO the eighth eDitiOn
The following features are new to the Eighth Edition:

•	 New material. To keep up with the changing environment for systems develop-
ment, Chapter 12 has undergone a complete and thorough revision. While
cloud computing is introduced in Chapter 2, it is given extensive coverage in
the revised Chapter 12. Service-oriented architecture has been reintroduced
to the book in the version of Chapter 12. Other new material includes expan-
sions of two of the appendices to Chapter 7. The appendices on activity dia-
grams and on Business Process Management Notation now include additional
text and figures. Throughout the book figures, tables, and related content
have been updated and refreshed.

•	 Updated content. Throughout the book, the content in each chapter has been
updated where appropriate. We have expanded our coverage of multiple top-
ics in Chapter 2. Examples of updates in other chapters include revising the
information on the information services (IS)/information technology job
market in Chapter 1. Another example is Chapter 13, where we have updated
and extended the section on information systems security. All screenshots
come from current versions of leading software products. We have also made
a special effort to update our reference lists, purging out-of-date material and
including current references.

Preface

xx preFaCe

•	 Dropped material. In our efforts to keep the book current and to streamline it,
the coverage of some things was dropped from this edition. Chapter 1 no lon-
ger includes Rapid Application Development. Chapter 12 no longer covers
data warehouses or data marts. Chapter 13 no longer includes a section on
Electronic Performance Support Systems.

•	 Organization. We have retained the organization of the book first introduced
in the Sixth Edition. We have 14 chapters and 6 appendices. The first appen-
dix follows Chapter 1. Four appendices follow Chapter 7, including the new
one on business process modeling. The sixth appendix follows Chapter 8.
This streamlined organization worked well in the Sixth and Seventh Editions,
so we decided to continue with it.

•	 Approach to presentation of object-oriented material. We retain our approach to
object-orientation (OO) from the last edition. Brief appendices related to
the object-oriented approach continue to appear immediately after related
chapters. The OO appendices appear as follows: Chapter 3 features a spe-
cial OO section on IS project management. Chapter 7 now has three OO
appendices: one on use cases; one on sequence diagrams; and one about
activity diagrams. (The fourth appendix to Chapter 7 is about Business
Process Management Notation, which is not part of UML, although it is
governed by the Object Management Group (OMG).) Chapter 8 has a
special section on object-oriented database design. The rationale for this
organization is the same as in the past: to cleanly separate out structured
and object-oriented approaches so that instructors not teaching OO can
bypass it. On the other hand, instructors who want to expose their students
to object-orientation can now do so with minimal effort devoted to finding
the relevant OO material.

•	 Updated illustrations of technology. Screen captures have been updated through-
out the text to show examples using the latest versions of programming and
Internet development environments (including the latest versions of.NET,
Visio, and Microsoft Office) and user interface designs. Many references to
websites are provided for students to stay current with technology trends that
affect the analysis and design of information systems.

themes of Modern Systems Analysis and Design

1. Systems development is firmly rooted in an organizational context. The suc-
cessful systems analyst requires a broad understanding of organizations, orga-
nizational culture, and organizational operations.

2. Systems development is a practical field. Coverage of current practices as well
as accepted concepts and principles is essential in a textbook.

3. Systems development is a profession. Standards of practice, a sense of con-
tinuing personal development, ethics, and a respect for and collaboration
with the work of others are general themes in the textbook.

4. Systems development has significantly changed with the explosive growth in
databases, data-driven systems architectures, rapid development, the Inter-
net, and Agile Methodologies. Systems development and database manage-
ment can be and should be taught in a highly coordinated fashion. The text is
compatible with the Hoffer, Ramesh, and Topi database text, Modern Database
Management, Eleventh Edition, also published by Pearson. The proper linking
of these two textbooks is a strategic opportunity to meet the needs of the IS
 academic field.

 preFaCe xxi

5. Success in systems analysis and design requires not only skills in methodolo-
gies and techniques, but also project management skills for managing time,
resources, and risks. Thus, learning systems analysis and design requires a
thorough understanding of the process as well as the techniques and deliver-
ables of the profession.

Given these themes, this textbook emphasizes the following:

•	 A business, rather than a technology, perspective

•	 The role, responsibilities, and mind-set of the systems analyst as well as the sys-
tems project manager, rather than those of the programmer or business manager

•	 The methods and principles of systems development, rather than the specific
tools or tool-related skills of the field

DistinCtive feAtures
The following are some of the distinctive features of Modern Systems Analysis and
Design:

1. This book is organized in parallel to the Hoffer, Ramesh, and Topi database
text, Modern Database Management, Twelfth Edition (2016), which will facili-
tate consistency of frameworks, definitions, methods, examples, and nota-
tions to better support systems analysis and design and database courses
adopting both texts. Even with the strategic compatibilities between this text
and Modern Database Management, each of these books is designed to stand
alone as a market leader.

2. The grounding of systems development in the typical architecture for systems
in modern organizations, including database management and web-based
systems.

3. A clear linkage of all dimensions of systems description and modeling—pro-
cess, decision, and data modeling—into a comprehensive and compatible set
of systems analysis and design approaches. Such a broad coverage is necessary
so that students understand the advanced capabilities of the many systems de-
velopment methodologies and tools that are automatically generating a large
percentage of code from design specifications.

4. Extensive coverage of oral and written communication skills, including sys-
tems documentation, project management, team management, and a variety
of systems development and acquisition strategies (e.g., life cycle, prototyp-
ing, object orientation, Joint Application Development [JAD], systems reengi-
neering, and Agile Methodologies).

5. Consideration of standards for the methodologies of systems analysis and the
platforms on which systems are designed.

6. Discussion of systems development and implementation within the context
of change management, conversion strategies, and organizational factors in
systems acceptance.

7. Careful attention to human factors in systems design that emphasize usability
in both character-based and graphical user interface situations.

8. Visual development products are illustrated and the current limitations tech-
nologies are highlighted.

9. The text includes a separate chapter on systems maintenance. Given the type
of job many graduates first accept and the large installed base of systems, this
chapter covers an important and often neglected topic in systems analysis and
design texts.

xxii preFaCe

PeDAgOgiCAl feAtures
The pedagogical features of Modern Systems Analysis and Design reinforce and apply
the key content of the book.

three illustrative fictional Cases
The text features three fictional cases, described below.

Pine Valley Furniture (PVF): In addition to demonstrating an electronic business-
to-consumer shopping website, several other systems development activities from
PVF are used to illustrate key points. PVF is introduced in Chapter 3 and revisited
throughout the book. As key systems development life cycle concepts are presented,
they are applied and illustrated with this descriptive case. For example, in Chapter 5
we explore how PVF plans a development project for a customer tracking system. A
margin icon identifies the location of the case segments.

Hoosier Burger (HB): This second illustrative case is introduced in Chapter 7 and revis-
ited throughout the book. HB is a fictional fast-food restaurant in Bloomington, Indiana.
We use this case to illustrate how analysts would develop and implement an automated
food-ordering system. A margin icon identifies the location of the case segments.

Petrie Electronics: This fictional retail electronics company is used as an extended
project case at the end of 12 of the 14 chapters, beginning with Chapter 2. Designed
to bring the chapter concepts to life, this case illustrates how a company initiates,
plans, models, designs, and implements a customer loyalty system. Discussion ques-
tions are included to promote critical thinking and class participation. Suggested
solutions to the discussion questions are provided in the Instructor’s Manual.

end-of-Chapter Material
We developed an extensive selection of end-of-chapter materials that are designed to
accommodate various learning and teaching styles.

•	 Chapter Summary. Reviews the major topics of the chapter and previews the
connection of the current chapter with future ones.

•	 Key Terms. Designed as a self-test feature, students match each key term in
the chapter with a definition.

•	 Review Questions. Test students’ understanding of key concepts.

•	 Problems and Exercises. Test students’ analytical skills and require them to
apply key concepts.

•	 Field Exercises. Give students the opportunity to explore the practice of sys-
tems analysis and design in organizations.

•	 Margin Term Definitions. Each key term and its definition appear in the mar-
gin. Glossaries of terms and acronyms appear at the back of the book.

•	 References. References are located at the end of each chapter. The total num-
ber of references in this text amounts to over 100 books, journals, and web-
sites that can provide students and faculty with additional coverage of topics.

using this text
As stated earlier, this book is intended for mainstream systems analysis and design
courses. It may be used in a one-semester course on systems analysis and design or
over two quarters (first in a systems analysis and then in a systems design course). Be-
cause this book text parallels Modern Database Management, chapters from this book
and from Modern Database Management can be used in various sequences suitable for
your curriculum. The book will be adopted typically in business schools or depart-
ments, not in computer science programs. Applied computer science or computer
technology programs may also adopt the book.

HOOSIER
BURGER

 preFaCe xxiii

The typical faculty member who will find this book most interesting is someone who

•	 has a practical, rather than technical or theoretical, orientation;

•	 has an understanding of databases and the systems that use databases; and

•	 uses practical projects and exercises in their courses.

More specifically, academic programs that are trying to better relate their systems
analysis and design and database courses as part of a comprehensive understanding
of systems development will be especially attracted to this book.

The outline of the book generally follows the systems development life cycle, which
allows for a logical progression of topics; however, it emphasizes that various approaches
(e.g., prototyping and iterative development) are also used, so what appears to be a
logical progression often is a more cyclic process. Part One provides an overview of sys-
tems development and previews the remainder of the book. Part One also introduces
students to the many sources of software that they can draw on to build their systems
and to manage projects. The remaining four parts provide thorough coverage of the five
phases of a generic systems development life cycle, interspersing coverage of alternatives
to the SDLC as appropriate. Some chapters may be skipped depending on the orienta-
tion of the instructor or the students’ background. For example, Chapter 3 (Managing
the Information Systems Project) can be skipped or quickly reviewed if students have
completed a course on project management. Chapter 4 (Identifying and Selecting Sys-
tems Development Projects) can be skipped if the instructor wants to emphasize systems
development once projects are identified or if there are fewer than 15 weeks available
for the course. Chapters 8 (Structuring System Data Requirements) and 9 (Designing
Databases) can be skipped or quickly scanned (as a refresher) if students have already
had a thorough coverage of these topics in a previous database or data structures course.
The sections on object orientation in Chapters 3, 7, and 8 can be skipped if faculty wish
to avoid object-oriented topics. Finally, Chapter 14 (Maintaining Information Systems)
can be skipped if these topics are beyond the scope of your course.

Because the material is presented within the flow of a systems development proj-
ect, it is not recommended that you attempt to use the chapters out of sequence, with
a few exceptions: Chapter 9 (Designing Databases) can be taught after Chapters 10
(Designing Forms and Reports) and 11 (Designing Inferfaces and Dialogues), but
Chapters 10 and 11 should be taught in sequence.

the suPPleMent PACkAge:
www.PeArsOnhighereD.COM/hOffer
A comprehensive and flexible technology support package is available to enhance
the teaching and learning experience. All instructor supplements are available on
the text website: www.pearsonhighered.com/hoffer.

instructor resources
At the Instructor Resource Center, www.pearsonhighered.com/irc, instructors can
easily register to gain access to a variety of instructor resources available with this
text in downloadable format. If assistance is needed, our dedicated technical support
team is ready to help with the media supplements that accompany this text. Visit
http://247.pearsoned.com for answers to frequently asked questions and toll-free
user support phone numbers.

The following supplements are available with this text:

•	 Instructor’s Manual

•	 Test Bank

•	 TestGen® Computerized Test Bank

•	 PowerPoint Presentation

http://www.Pearsonhighered.com/hoffer
http://www.pearsonhighered.com/hoffer
http://www.pearsonhighered.com/irc
http://247.pearsoned.com

xxiv preFaCe

ACknOwleDgMents
The authors have been blessed by considerable assistance from many people on all
aspects of preparation of this text and its supplements. We are, of course, respon-
sible for what eventually appears between the covers, but the insights, corrections,
contributions, and prodding of others have greatly improved our manuscript. Over
the years, dozens of people have reviewed the various editions of this textbook. Their
contributions have stimulated us, frequently prompting us to include new topics and
innovative pedagogy. We greatly appreciate the efforts of the many faculty and prac-
ticing systems analysts who have reviewed this text.

We extend a special note of thanks to Jeremy Alexander, who was instrumental
in conceptualizing and writing the PVF WebStore feature that appears in Chapters 4
through 14. The addition of this feature has helped make those chapters more
modern and innovative. We would also like to thank Jeff Jenkins, of Brigham Young
 University, for his help with the Visual Basic screenshots in the current edition.

We also wish to thank Atish Sinha of the University of Wisconsin–Milwaukee for
writing the original version of some of the object-oriented analysis and design ma-
terial. Dr. Sinha, who has been teaching this topic for several years to both under-
graduates and MBA students, executed a challenging assignment with creativity and
cooperation.

We are also indebted to our undergraduate and MBA students, who have given us
many helpful comments as they worked with drafts of this text, and our thanks go to
Fred McFadden (University of Colorado, Colorado Springs), Mary Prescott (Univer-
sity of South Florida), Ramesh Venkataraman (Indiana University), and Heikki Topi
(Bentley University) for their assistance in coordinating this text with its companion
book, Modern Database Management, also by Pearson Education.

Finally, we have been fortunate to work with a large number of creative and
insightful people at Pearson, who have added much to the development, format,
and production of this text. We have been thoroughly impressed with their com-
mitment to this text and to the IS education market. These people include: Nicole
Sam (Acquisitions Editor), Neeraj Bhalla (Senior Sponsoring Editor), Olivia Vignone
(Editorial Assistant), Ilene Kahn (Project Manager). We would also like to thank
George Jacobs and the crew at Integra Software Services, Inc.

The writing of this text has involved thousands of hours of time from the authors
and from all of the people listed previously. Although our names will be visibly
 associated with this book, we know that much of the credit goes to the individuals
and organizations listed here for any success it might achieve. It is important for the
reader to recognize all the individuals and organizations that have been committed
to the preparation and production of this book.

Joseph S. Valacich, Tucson, Arizona
Joey F. George, Ames, Iowa

1

Part One

Foundations for Systems
Development

Chapter 1
The Systems Development Environment

Chapter 2
The Origins of Software

Chapter 3
Managing the Information Systems Project

2

OVERVIEW

You are beginning a journey that will enable you to
build on every aspect of your education and experi-
ence. Becoming a systems analyst is not a goal; it is a
path to a rich and diverse career that will allow you
to exercise and continue to develop a wide range of
talents. We hope that this introductory part of the
text helps open your mind to the opportunities of the
systems analysis and design field and to the engaging
 nature of systems work.

Chapter 1 shows you what systems analysis and
 design is all about and how it has evolved over the past
several decades. As businesses and systems have become
more sophisticated and more complex, there has been
an increasing emphasis on speed in systems analysis
and design. Systems development began as an art, but
most businesspeople soon realized this was not a tena-
ble long-term solution to developing systems to support
business processes. Systems development became more
structured and more like engineering, and managers
stressed the importance of planning, project manage-
ment, and documentation. Now we are witnessing a
 reaction against excesses in all three of these areas, and
the focus has shifted to agile development. The evo-
lution of systems analysis and design and the current
focus on agility are explained in Chapter 1. It is also
important, however, that you remember that systems
analysis and design exists within a multifaceted orga-
nizational context that involves other organizational
members and external parties. Understanding systems
development requires an understanding not only of
each technique, tool, and method, but also of how
these elements complement and support each other
within an organizational setting.

As you read this book, you’ll also discover that the
systems analysis and design field is constantly adapting
to new situations due to a strong commitment to con-
stant improvement. Our goal in this book is to provide
you with a mosaic of the skills needed to work effectively
in any environment where you may find yourself, armed

with the knowledge to determine the best practices for
that situation and argue for them effectively.

Chapter 2 presents an introduction to the many
sources from which software and software components
can be obtained. Back when systems analysis and design
was an art, all systems were written from scratch by in-
house experts. Businesses had little choice. Now there
is little excuse for in-house development, so it becomes
crucial that systems analysts understand the software
industry and the many different sources of software.
Chapter 2 provides an initial map of the software indus-
try landscape and explains most of the many choices
available to systems analysts.

Chapter 3 addresses a fundamental characteristic
of life as a systems analyst: working within the frame-
work of projects with constrained resources. All systems-
related work demands attention to deadlines, working
within budgets, and coordinating the work of various
people. The very nature of the systems development life
cycle (SDLC) implies a systematic approach to a project,
which is a group of related activities leading to a final
deliverable. Projects must be planned, started, executed,
and completed. The planned work of the project must
be represented so that all interested parties can review
and understand it. In your job as a systems analyst, you
will have to work within the schedule and other project
plans, and thus it is important to understand the man-
agement process controlling your work.

Finally, Part I introduces the Petrie Electronics
case. The Petrie case helps demonstrate how what you
learn in each chapter might fit into a practical organi-
zational situation. The case begins after Chapter 2; the
remaining book chapters through Chapter 13 each have
an associated case installment. The first section intro-
duces the company and its existing information systems.
This introduction provides insights into Petrie, which
will help you understand the company more completely
when we look at the requirements and design for new
systems in later case sections.

Part One

Foundations for Systems Development

3

Information systems analysis and design is a complex,
challenging, and stimulating organizational process
that a team of business and systems professionals uses
to develop and maintain computer-based information
systems. Although advances in information technology
continually give us new capabilities, the analysis and
 design of information systems is driven from an organi-
zational perspective. An organization might consist of
a whole enterprise, specific departments, or individual
work groups. Organizations can respond to and antici-
pate problems and opportunities through innovative use
of information technology. Information systems analysis
and design is therefore an organizational improvement
process. Systems are built and rebuilt for organizational
benefits. Benefits result from adding value during the
process of creating, producing, and supporting the
 organization’s products and services. Thus the analy-
sis and design of information systems is based on your
 understanding of the organization’s objectives, struc-
ture, and processes, as well as your knowledge of how to
 exploit information technology for advantage.

In the current business environment, the Internet,
especially the World Wide Web, has been firmly inte-
grated into an organization’s way of doing business.
 Although you are probably most familiar with marketing
done on the web and web-based retailing sites, such as
eBay or Amazon.com, the overwhelming majority of busi-
ness use of the web is business-to-business applications.

These applications run the gamut of everything busi-
nesses do, including transmitting orders and payments
to suppliers, fulfilling orders and collecting payments
from customers, maintaining business relationships, and
 establishing electronic marketplaces where businesses
can shop online for the best deals on resources they need
for assembling their products and services. Although
the Internet seems to pervade business these days, it is
important to remember that many of the key aspects of
business— offering a product or service for sale, collecting
payment, paying employees, maintaining supplier and cli-
ent relationships—have not changed. Understanding the
business and how it functions is still the key to successful
systems development, even in the fast-paced, technology-
driven environment that organizations find themselves in
today.

Careers in information technology (IT) present a
great opportunity for you to make a significant and visible
impact on business. The demand for skilled informa-
tion technology workers is growing. According to the US
Bureau of Labor Statistics, the professional IT workforce
will grow by more than 22 percent between 2010 and
2020 (Thibodeau, 2012). The fastest growth will come for
software developers (32 percent) and database adminis-
trators (31 percent). One particular aspect of the infor-
mation technology industry, cloud computing, created
almost 14 million technology and related jobs between
2012 and 2015 (McDougall, 2012). Annual revenues from

1.4 describe the Agile Methodologies and eXtreme
Programming, and

1.5 explain object-oriented analysis and design and
the Rational Unified Process (RUP).

Learning Objectives

After studying this chapter, you should be able to

1.1 define information systems analysis and design,

1.2 describe the information systems development life
cycle (SDLC),

1.3 explain computer-aided software engineering
(CASE) tools,

The Systems Development
Environment1

Chapter

Introduction

4 Part I Foundations For systems development

cloud computing will be over $1.1 trillion (USD) starting that year. And the growth
will be global, with the number of cloud computing jobs in Brazil increasing by 186
percent, the number of jobs in China and India almost doubling, and growth in
cloud-related jobs increasing by 66 percent in the United States. (See more about
cloud computing in Chapter 2.) With the challenges and opportunities of dealing
with rapid advances in technology, it is difficult to imagine a more exciting career
choice than information technology, and systems analysis and design is a big part of
the IT landscape. Furthermore, analyzing and designing information systems will
give you the chance to understand organizations at a depth and breadth that might
take many more years to accomplish in other careers.

An important (but not the only) result of systems analysis and design is
 application software, software designed to support a specific organizational function
or process, such as inventory management, payroll, or market analysis. In addition to
application software, the total information system includes the hardware and systems
software on which the application software runs, documentation and training materi-
als, the specific job roles associated with the overall system, controls, and the people
who use the software along with their work methods. Although we will address all of
these various dimensions of the overall system, we will emphasize application soft-
ware development—your primary responsibility as a systems analyst.

In the early years of computing, analysis and design was considered an art. Now
that the need for systems and software has become so great, people in industry and
academia have developed work methods that make analysis and design a disciplined
process. Our goal is to help you develop the knowledge and skills needed to under-
stand and follow such software engineering processes. Central to software engineer-
ing processes (and to this book) are various methodologies, techniques, and tools
that have been developed, tested, and widely used over the years to assist people like
you during systems analysis and design.

Methodologies are comprehensive, multiple-step approaches to systems devel-
opment that will guide your work and influence the quality of your final product—
the information system. A methodology adopted by an organization will be consis-
tent with its general management style (e.g., an organization’s orientation toward
consensus management will influence its choice of systems development methodol-
ogy). Most methodologies incorporate several development techniques.

Techniques are particular processes that you, as an analyst, will follow to help
ensure that your work is well thought out, complete, and comprehensible to others
on your project team. Techniques provide support for a wide range of tasks, includ-
ing conducting thorough interviews to determine what your system should do, plan-
ning and managing the activities in a systems development project, diagramming the
system’s logic, and designing the reports your system will generate.

Tools are typically computer programs that make it easy to use and benefit
from techniques and to faithfully follow the guidelines of the overall development
methodology. To be effective, techniques and tools must both be consistent with an
organization’s systems development methodology. Techniques and tools must make
it easy for systems developers to conduct the steps called for in the methodology.
These three elements—methodologies, techniques, and tools—work together to
form an organizational approach to systems analysis and design (see Figure 1-1).

Although many people in organizations are responsible for systems analysis
and design, in most organizations the systems analyst has the primary responsibil-
ity. When you begin your career in systems development, you will most likely begin
as a systems analyst or as a programmer with some systems analysis responsibilities.
The primary role of a systems analyst is to study the problems and needs of an orga-
nization in order to determine how people, methods, and information technology
can best be combined to bring about improvements in the organization. A systems
analyst helps system users and other business managers define their requirements
for new or enhanced information services. As such, a systems analyst is an agent of
change and innovation.

Information systems analysis
and design
The complex organizational process
whereby computer-based information
systems are developed and maintained.

Application software
Computer software designed to support
organizational functions or processes.

Systems analyst
The organizational role most responsible
for the analysis and design of information
systems.

 ChaPter 1 the systems development environment 5

In the rest of this chapter, we will examine the systems approach to analysis
and design. You will learn how systems analysis and design has changed over the
decades as computing has become more central to business. You will learn about
the systems development life cycle, which provides the basic overall structure of the
systems development process and of this book. This chapter ends with a discussion
of some of the methodologies, techniques, and tools created to support the systems
development process.

A MoDErn ApproACh To SySTEMS AnAlySiS
AnD DESign
The analysis and design of computer-based information systems began in the 1950s.
Since then, the development environment has changed dramatically, driven by
 organizational needs as well as by rapid changes in the technological capabilities
of computers. In the 1950s, development focused on the processes the software
performed. Because computer power was a critical resource, efficiency of process-
ing became the main goal. Computers were large, expensive, and not very reliable.
Emphasis was placed on automating existing processes, such as purchasing or paying,
often within single departments. All applications had to be developed in machine
language or assembly language, and they had to be developed from scratch because
there was no software industry. Because computers were so expensive, computer
memory was also at a premium, so system developers conserved as much memory as
possible for data storage.

The first procedural, or third-generation, computer programming languages did
not become available until the beginning of the 1960s. Computers were still large and
expensive, but the 1960s saw important breakthroughs in technology that enabled the
development of smaller, faster, less expensive computers—minicomputers—and the
 beginnings of the software industry. Most organizations still developed their applications
from scratch using their in-house development staff. Systems development was more an
art than a science. This view of systems development began to change in the 1970s,
however, as organizations started to realize how expensive it was to develop custom-
ized information systems for every application. Systems development came to be more

Methodologies Tools

Techniques

FIgure 1-1
An organizational approach to systems
analysis and design is driven by
methodologies, techniques, and tools
Sources: Top: Mitarart/Fotolia; Left:
Lev/Fotolia; Right: PaulPaladin/Fotolia

6 Part I Foundations For systems development

disciplined as many people worked to make it more like engineering. Early database
management systems, using hierarchical and network models, helped bring discipline
to the storage and retrieval of data. The development of database management systems
helped shift the focus of systems development from processes first to data first.

The 1980s were marked by major breakthroughs in computing in organizations,
as microcomputers became key organizational tools. The software industry expanded
greatly as more and more people began to write off-the-shelf software for microcom-
puters. Developers began to write more and more applications in fourth-generation
languages, which, unlike procedural languages, instructed a computer on what to
do instead of how to do it. Computer-aided software engineering (CASE) tools were
developed to make systems developers’ work easier and more consistent. As com-
puters continued to get smaller, faster, and cheaper, and as the operating systems
for computers moved away from line prompt interfaces to windows- and icon-based
interfaces, organizations moved to applications with more graphics. Organizations
developed less software in-house and bought relatively more from software vendors.
The systems developer’s job went through a transition from builder to integrator.

The systems development environment of the late 1990s focused on systems
 integration. Developers used visual programming environments, such as PowerBuilder
or Visual Basic, to design the user interfaces for systems that run on client/server
platforms. The database, which may be relational or object-oriented, and which may
have been developed using software from firms such as Oracle, Microsoft, or Ingres,
resided on the server. In many cases, the application logic resided on the same server.
Alternatively, an organization may have decided to purchase its entire enterprise-wide
system from companies such as SAP AG or Oracle. Enterprise-wide systems are large,
complex systems that consist of a series of independent system modules. Developers
assemble systems by choosing and implementing specific modules. Starting in the
middle years of the 1990s, more and more systems development efforts focused on
the Internet, especially the web.

Today there is continued focus on developing systems for the Internet and
for firms’ intranets and extranets. As happened with traditional systems, Internet
 developers now rely on computer-based tools to speed and simplify the development
of web-based systems. Many CASE tools directly support web application develop-
ment. More and more, systems implementation involves a three-tier design, with the
database on one server, the application on a second server, and client logic located
on user machines. Another important development is the move to wireless system
components. Wireless devices can access web-based applications from almost any-
where. Finally, the trend continues toward assembling systems from programs and
components purchased off the shelf. In many cases, organizations do not develop the
application in-house. They don’t even run the application in-house, choosing instead
to use the application on a per-use basis by accessing it through the cloud.

DEvEloping inForMATion SySTEMS
AnD ThE SySTEMS DEvElopMEnT liFE CyClE
Most organizations find it beneficial to use a standard set of steps, called a systems
development methodology, to develop and support their information systems. Like
many processes, the development of information systems often follows a life cycle.
For example, a commercial product follows a life cycle in that it is created, tested, and
introduced to the market. Its sales increase, peak, and decline. Finally, the product is
removed from the market and replaced by something else. The systems development
life cycle (SDLC) is a common methodology for systems development in many orga-
nizations; it features several phases that mark the progress of the systems analysis and
design effort. Every textbook author and information systems development organi-
zation uses a slightly different life-cycle model, with anywhere from 3 to almost 20
identifiable phases.

Systems development
life cycle (SDLC)
The traditional methodology used to
develop, maintain, and replace information
systems.

Systems development
methodology
A standard process followed in an
organization to conduct all the steps
necessary to analyze, design, implement,
and maintain information systems.

 ChaPter 1 the systems development environment 7

The life cycle can be thought of as a circular process in which the end of
the useful life of one system leads to the beginning of another project that will
develop a new version or replace an existing system altogether (see Figure 1-2). At
first glance, the life cycle appears to be a sequentially ordered set of phases, but it is
not. The specific steps and their sequence are meant to be adapted as required for a
project, consistent with management approaches. For example, in any given SDLC
phase, the project can return to an earlier phase if necessary. Similarly, if a commer-
cial product does not perform well just after its introduction, it may be temporarily
 removed from the market and improved before being reintroduced. In the SDLC,
it is also possible to complete some activities in one phase in parallel with some
activities of another phase. Sometimes the life cycle is iterative; that is, phases are
repeated as required until an acceptable system is found. Some people consider the
life cycle to be a spiral, in which we constantly cycle through the phases at different
levels of detail (see Figure 1-3). However conceived, the systems development life
cycle used in an organization is an orderly set of activities conducted and planned
for each development project. The skills required of a systems analyst apply to all
life-cycle models. Software is the most obvious end product of the life cycle; other
 essential outputs include documentation about the system and how it was devel-
oped, as well as training for users.

Every medium to large corporation and every custom software producer
will have its own specific life cycle or systems development methodology in place

DesignImplementation

Planning

Maintenance Analysis

FIgure 1-2
Systems development life cycle

Design
Implementation

Planning

Maintenance

Go/No Go Axis

Analysis

FIgure 1-3
Evolutionary model

8 Part I Foundations For systems development

Disposition

Operation and Maintenance

Implementation

Integration and Test

Development

Design

Requirements Analysis

Planning

System Concept Development

Initiation
FIgure 1-4
U.S. Department of Justice’s systems
development life cycle
(Source: Diagram based on http://www.
justice.gov/archive/jmd/irm/lifecycle/ch1.
htm#para1.2)

(see Figure 1-4). Even if a particular methodology does not look like a cycle, and
Figure 1-4 does not, you will probably discover that many of the SDLC steps are
performed and SDLC techniques and tools are used. Learning about systems anal-
ysis and design from the life-cycle approach will serve you well no matter which
systems development methodology you use.

When you begin your first job, you will likely spend several weeks or months
learning your organization’s SDLC and its associated methodologies, techniques, and
tools. In order to make this book as general as possible, we follow a rather generic
life-cycle model, as described in more detail in Figure 1-5. Notice that our model is
circular. We use this SDLC as one example of a methodology but, more important,
as a way to arrange the topics of systems analysis and design. Thus, what you learn
in this book, you can apply to almost any life cycle you might follow. As we describe
this SDLC throughout the book, you will see that each phase has specific outcomes
and deliverables that feed important information to other phases. At the end of each
phase, a systems development project reaches a milestone and, as deliverables are
produced, they are often reviewed by parties outside the project team. In the rest
of this section, we provide a brief overview of each SDLC phase. At the end of the
section, we summarize this discussion in a table that lists the main deliverables or
outputs from each SDLC phase.

The first phase in the SDLC is planning. In this phase, someone identifies the
need for a new or enhanced system. In larger organizations, this recognition may be
part of a corporate and systems planning process. Information needs of the orga-
nization as a whole are examined, and projects to meet these needs are proactively
identified. The organization’s information system needs may result from requests
to deal with problems in current procedures, from the desire to perform additional

Planning
The first phase of the SDLC in which an
organization’s total information system
needs are identified, analyzed, prioritized,
and arranged.

Top to bottom: haveseen/Shutterstock;
Kruwt/Fotolia; Bedrin/Shutterstock;
Pressmaster/Shutterstock; pilotl39/
Fotolia; Sozaijiten; Elnur/ Fotolia;
 rtguest/Shutterstock; michaeljung/
Shutterstock; AleksaStudio/Shutterstock

http://www.justice.gov/archive/jmd/irm/lifecycle/ch1.htm#para1.2
http://www.justice.gov/archive/jmd/irm/lifecycle/ch1.htm#para1.2

 ChaPter 1 the systems development environment 9

tasks, or from the realization that information technology could be used to capitalize
on an existing opportunity. These needs can then be prioritized and translated into
a plan for the information systems department, including a schedule for developing
new major systems. In smaller organizations (as well as in large ones), determination
of which systems to develop may be affected by ad hoc user requests submitted as
the need for new or enhanced systems arises, as well as from a formalized informa-
tion planning process. In either case, during project identification and selection, an
organization determines whether resources should be devoted to the development
or enhancement of each information system under consideration. The outcome of
the project identification and selection process is a determination of which systems
development projects should be undertaken by the organization, at least in terms of
an initial study.

Two additional major activities are also performed during the planning phase:
the formal, yet still preliminary, investigation of the system problem or opportu-
nity at hand and the presentation of reasons why the system should or should not
be developed by the organization. A critical step at this point is determining the
scope of the proposed system. The project leader and initial team of systems analysts
also produce a specific plan for the proposed project the team will follow using the
 remaining SDLC steps. This baseline project plan customizes the standardized SDLC
and specifies the time and resources needed for its execution. The formal definition
of a project is based on the likelihood that the organization’s information systems
department is able to develop a system that will solve the problem or exploit the
 opportunity and determine whether the costs of developing the system outweigh the
benefits it could provide. The final presentation of the business case for proceeding
with the subsequent project phases is usually made by the project leader and other
team members to someone in management or to a special management committee
with the job of deciding which projects the organization will undertake.

The second phase in the SDLC is analysis. During this phase, the analyst thor-
oughly studies the organization’s current procedures and the information systems
used to perform organizational tasks. Analysis has two subphases. The first is require-
ments determination. In this subphase, analysts work with users to determine what
the users want from a proposed system. The requirements determination process
usually involves a careful study of any current systems, manual and computerized,
that might be replaced or enhanced as part of the project. In the second part of
analysis, analysts study the requirements and structure them according to their

Analysis
The second phase of the SDLC in which
system requirements are studied and
structured.

DesignImplementation

Chapters 9–12Chapter 13

Planning

Chapters 4–5

MaintenanceChapter 14 Analysis Chapters 6–8

FIgure 1-5
SDLC-based guide to this book

10 Part I Foundations For systems development

interrelationships and eliminate any redundancies. The output of the analysis phase
is a description of (but not a detailed design for) the alternative solution recom-
mended by the analysis team. Once the recommendation is accepted by those with
funding authority, the analysts can begin to make plans to acquire any hardware and
system software necessary to build or operate the system as proposed.

The third phase in the SDLC is design. During design, analysts convert the
 description of the recommended alternative solution into logical and then physi-
cal system specifications. The analysts must design all aspects of the system, from
input and output screens to reports, databases, and computer processes. The analysts
must then provide the physical specifics of the system they have designed, either as
a model or as detailed documentation, to guide those who will build the new sys-
tem. That part of the design process that is independent of any specific hardware
or software platform is referred to as logical design. Theoretically, the system could
be implemented on any hardware and systems software. The idea is to make sure
that the system functions as intended. Logical design concentrates on the business
aspects of the system and tends to be oriented to a high level of specificity.

Once the overall high-level design of the system is worked out, the analysts
begin turning logical specifications into physical ones. This process is referred to
as physical design. As part of physical design, analysts design the various parts of
the system to perform the physical operations necessary to facilitate data capture,
processing, and information output. This can be done in many ways, from creating
a working model of the system to be implemented to writing detailed specifica-
tions describing all the different parts of the system and how they should be built.
In many cases, the working model becomes the basis for the actual system to be
used. During physical design, the analyst team must determine many of the physi-
cal details necessary to build the final system, from the programming language
the system will be written in, to the database system that will store the data, to the
hardware platform on which the system will run. Often the choices of language,
database, and platform are already decided by the organization or by the client,
and at this point these information technologies must be taken into account in the
physical design of the system. The final product of the design phase is the physical
system specifications in a form ready to be turned over to programmers and other
system builders for construction. Figure 1-6 illustrates the differences between logi-
cal and physical design.

The fourth phase in the SDLC is implementation. The physical system speci-
fications, whether in the form of a detailed model or as detailed written specifi-
cations, are turned over to programmers as the first part of the implementation
phase. During implementation, analysts turn system specifications into a working
system that is tested and then put into use. Implementation includes coding, test-
ing, and installation. During coding, programmers write the programs that make
up the system. Sometimes the code is generated by the same system used to build
the detailed model of the system. During testing, programmers and analysts test
 individual programs and the entire system in order to find and correct errors.
During installation, the new system becomes part of the daily activities of the orga-
nization. Application software is installed, or loaded, on existing or new hardware,
and users are introduced to the new system and trained. Testing and installation
should be planned for as early as the project initiation and planning phase; both
testing and installation require extensive analysis in order to develop exactly the
right approach.

Implementation activities also include initial user support such as the final-
ization of documentation, training programs, and ongoing user assistance. Note
that documentation and training programs are finalized during implementation;
documentation is produced throughout the life cycle, and training (and educa-
tion) occurs from the inception of a project. Implementation can continue for as
long as the system exists, because ongoing user support is also part of implemen-
tation. Despite the best efforts of analysts, managers, and programmers, however,

Design
The third phase of the SDLC in which the
description of the recommended solution
is converted into logical and then physical
system specifications.

Logical design
The part of the design phase of the SDLC
in which all functional features of the system
chosen for development in analysis are
described independently of any computer
platform.

Physical design
The part of the design phase of the SDLC
in which the logical specifications of the
system from logical design are transformed
into technology-specific details from which
all programming and system construction
can be accomplished.

Implementation
The fourth phase of the SDLC, in
which the information system is coded,
tested, installed, and supported in the
organization.

 ChaPter 1 the systems development environment 11

installation is not always a simple process. Many well-designed systems have failed
because the installation process was faulty. Even a well-designed system can fail if
implementation is not well managed. Because the project team usually manages
implementation, we stress implementation issues throughout this book.

The fifth and final phase in the SDLC is maintenance. When a system (includ-
ing its training, documentation, and support) is operating in an organization, users
sometimes find problems with how it works and often think of better ways to perform
its functions. Also, the organization’s needs with respect to the system change over
time. In maintenance, programmers make the changes that users ask for and modify
the system to reflect evolving business conditions. These changes are necessary to
keep the system running and useful. In a sense, maintenance is not a separate phase
but a repetition of the other life cycle phases required to study and implement the
needed changes. One might think of maintenance as an overlay on the life cycle
rather than as a separate phase. The amount of time and effort devoted to mainte-
nance depends a great deal on the performance of the previous phases of the life
cycle. There inevitably comes a time, however, when an information system is no
longer performing as desired, when maintenance costs become prohibitive, or when
an organization’s needs have changed substantially. Such problems indicate that it
is time to begin designing the system’s replacement, thereby completing the loop

Maintenance
The final phase of the SDLC, in which
an information system is systematically
repaired and improved.

1/4 PIPE

REV. DATEDWG. NO.

DRAWN BY:
CAD FILE:

FIgure 1-6
Difference between logical design and
physical design
(a) A skateboard ramp blueprint (logical
design)
(Sources: www.tumyeto.com/tydu/skatebrd/
organizations/plans/14pipe.jpg; www
.tumyeto.com/tydu/skatebrd/organizations/
plans/iuscblue.html. Accessed September
16, 1999. Reprinted by permission of the
International Association of Skateboard
Companies.)

(b) A skateboard ramp (physical design)

http://www.tumyeto.com/tydu/skatebrd/organizations/plans/14pipe.jpg
http://www.tumyeto.com/tydu/skatebrd/organizations/plans/14pipe.jpg
http://www.tumyeto.com/tydu/skatebrd/organizations/plans/iuscblue.html
http://www.tumyeto.com/tydu/skatebrd/organizations/plans/iuscblue.html
http://www.tumyeto.com/tydu/skatebrd/organizations/plans/iuscblue.html

12 Part I Foundations For systems development

and starting the life cycle over again. Often the distinction between major mainte-
nance and new development is not clear, which is another reason maintenance often
 resembles the life cycle itself.

The SDLC is a highly linked set of phases whose products feed the activities
in subsequent phases. Table 1-1 summarizes the outputs or products of each phase
based on the in-text descriptions. The chapters on the SDLC phases will elaborate on
the products of each phase as well as on how the products are developed.

Throughout the SDLC, the systems development project itself must be care-
fully planned and managed. The larger the systems project, the greater the need for
project management. Several project management techniques have been developed
over the past decades, and many have been made more useful through automation.
Chapter 3 contains a more detailed treatment of project planning and management
techniques. Next, we will discuss some of the criticisms of the SDLC and present
 alternatives developed to address those criticisms. First, however, we will introduce
you to a specialized SDLC that focuses on security during development.

A SpECiAlizED SySTEMS DEvElopMEnT
liFE CyClE
Although the basic SDLC provides an overview of the systems development process,
the concept of the SDLC can also be applied to very specific aspects of the process. As
mentioned previously, the maintenance phase can be described in terms of the SDLC.
Another example of a specialized SDLC is Microsoft’s Security Development Lifecycle
(SDL) (see http://www.microsoft.com/security/sdl/default.aspx for details). The
Security Development Lifecycle is depicted in Figure 1-7. First note how the five basic
phases of the development life cycle (in green) are not exactly the same as the five
phases of the SDLC we will use in this book. Three of the five phases are almost identi-
cal to the phases in our SDLC. The Microsoft SDL starts with “requirements,” which
is similar to “analysis”; this is followed by the design phase, which is followed by imple-
mentation. Our life cycle starts with planning and ends with maintenance. Both of
these phases are peculiar to systems development in an organizational context, where

Table 1-1 Products of SDlC Phases
Phase Products, Outputs, or Deliverables
Planning Priorities for systems and projects; an architecture for data, networks,

and selection hardware, and information systems management are
the result of associated systems

Detailed steps, or work plan, for project
Specification of system scope and planning and high-level system

requirements or features
Assignment of team members and other resources
System justification or business case

Analysis Description of current system and where problems or opportunities exist,
with a general recommendation on how to fix, enhance, or replace
current system

Explanation of alternative systems and justification for chosen alternative
Design Functional, detailed specifications of all system elements (data,

processes, inputs, and outputs)
Technical, detailed specifications of all system elements (programs, files,

network, system software, etc.)
Acquisition plan for new technology

Implementation Code, documentation, training procedures, and support capabilities
Maintenance New versions or releases of software with associated updates to

documentation, training, and support

http://www.microsoft.com/security/sdl/default.aspx

 ChaPter 1 the systems development environment 13

the information systems that are procured are used inside the organization. Careful
planning is required to determine which systems will be developed for an organiza-
tion. Each system developed is an investment, and if the organization invests in a par-
ticular system, it cannot invest in some alternative system or in something else, such
as a new store. Investment funds are limited, after all. Maintenance is also peculiar to
an organizational context. Once systems go into general use, the organization needs
to earn as much of a return on those investments as it can, so it is important that the
systems run as long as possible. Companies such as Microsoft, which develop systems
for others to use, do not need to worry about internal planning and maintenance
in their product life cycles. Instead, as they have limited control over systems once
they have been sold, they are concerned about selling a mature and reliable prod-
uct. Therefore, they have two phases after implementation: verification and release.
Verification involves quality assurance for products before they are released. Release
involves all of the activities related to making the product available for general use.
Next, note the two parts of the SDL that precede and follow the main development
phases: training (in blue) and response (in orange). Two things make this particular
SDLC specialized to security issues: the two unique phases that begin and end the
life cycle (training and response), and the particular security activities associated with
each phase in the development life cycle.

Training in Microsoft’s SDL refers to the training each member of a develop-
ment team receives about security basics and trends in security. The idea behind the
training—indeed, the idea behind a specialized security development life cycle—is
to have security become part of the development process from the beginning and
not suddenly appear at the end of the SDLC. By training team members about
 security and how it can be addressed throughout the life cycle, security measures
can be built into the system throughout its development. The response at the end of
the SDL refers to a response plan developed during the release phase. If there is a
 security threat to a particular product, then the previously developed response plan is
 executed. The security-related activities that take place throughout the development
life cycle vary by phase. Listing and explaining each activity is beyond the scope of
this chapter, but we can provide some examples. One specialized activity performed
during the requirements phase is a separate analysis of requirements related to both
security and privacy. During design, developers can model threats to a system and
consider how those threats differ with different design options. During implementa-
tion, project team members can conduct static analyses of source code, looking for
security threats. During verification, they can conduct dynamic analyses. As part of
the release phase, team members develop the incident response plan, mentioned
previously, and they conduct a final security review. By adhering to a specialized life
cycle devoted to security, project team members can ensure not only that security is
addressed, but that it is addressed in a planned, systematic manner.

ThE hEArT oF ThE SySTEMS DEvElopMEnT
proCESS
The SDLC provides a convenient way to think about the processes involved in sys-
tems development and the organization of this book. The different phases are clearly
defined, their relationships to one another are well specified, and the sequencing of
phases from one to the next, from beginning to end, has a compelling logic. In many

Training Requirements Design Implementation Verification Release Response

FIgure 1-7
Microsoft’s Security Development
Lifecycle (SDL)
(Source: http://www.microsoft.com/security/
sdl/default.aspx. Used by permission.)

http://www.microsoft.com/security/sdl/default.aspx
http://www.microsoft.com/security/sdl/default.aspx

14 Part I Foundations For systems development

ways, though, the SDLC is fiction. Although almost all systems development projects
adhere to some type of life cycle, the exact location of activities and the specific
sequencing of steps can vary greatly from one project to the next. Current practice
combines the activities traditionally thought of as belonging to analysis, design, and
implementation into a single process. Instead of systems requirements being pro-
duced in analysis, systems specifications being created in design, and coding and
testing being done at the beginning of implementation, current practice combines
all of these activities into a single analysis–design–code–test process (Figure 1-8).
These activities are the heart of systems development, as we suggest in Figure 1-9.
This combination of activities is typical of current practices in Agile Methodologies.
A well-known instance of one of the Agile Methodologies is eXtreme Programming,
although there are other variations. We will introduce you to Agile Methodologies
and eXtreme Programming, but first it is important that you learn about the prob-
lems with the traditional SDLC. You will read about these problems next. Then you
will read about CASE tools, Agile Methodologies, and eXtreme Programming.

Code

Analysis

DesignTest

FIgure 1-8
Analysis–design–code–test loop

DesignImplementation

Planning

Maintenance Analysis

FIgure 1-9
Heart of systems development

 ChaPter 1 the systems development environment 15

The Traditional Waterfall SDlC
There are several criticisms of the traditional life-cycle approach to systems develop-
ment; one relates to the way the life cycle is organized. To better understand these
criticisms, it is best to see the form in which the life cycle has traditionally been por-
trayed, the so-called waterfall (Figure 1-10). Note how the flow of the project begins
in the planning phase and from there runs “downhill” to each subsequent phase,
just like a stream that runs off a cliff. Although the original developer of the waterfall
model, W. W. Royce, called for feedback between phases in the waterfall, this feed-
back came to be ignored in implementation (Martin, 1999). It became too tempting
to ignore the need for feedback and to treat each phase as complete unto itself,
never to be revisited once finished.

Traditionally, one phase ended and another began once a milestone had been
reached. The milestone usually took the form of some deliverable or prespecified
output from the phase. For example, the design deliverable is the set of detailed physi-
cal design specifications. Once the milestone had been reached and the new phase
initiated, it became difficult to go back. Even though business conditions continued
to change during the development process and analysts were pressured by users and
others to alter the design to match changing conditions, it was necessary for the ana-
lysts to freeze the design at a particular point and go forward. The enormous amount
of effort and time necessary to implement a specific design meant that it would be
very expensive to make changes in a system once it was developed. The traditional
waterfall life cycle, then, had the property of locking users into requirements that had
been previously determined, even though those requirements might have changed.

Yet another criticism of the traditional waterfall SDLC is that the role of system
users or customers was narrowly defined (Kay, 2002). User roles were often relegated
to the requirements determination or analysis phases of the project, where it was
assumed that all of the requirements could be specified in advance. Such an assump-
tion, coupled with limited user involvement, reinforced the tendency of the waterfall
model to lock in requirements too early, even after business conditions had changed.

In addition, under the traditional waterfall approach, nebulous and intangible
processes such as analysis and design are given hard-and-fast dates for completion,

Maintenance

Planning

Analysis

Physical
Design

Implementation

Logical
Design

FIgure 1-10
Traditional waterfall SDLC

16 Part I Foundations For systems development

and success is overwhelmingly measured by whether those dates are met. The focus
on milestone deadlines, instead of on obtaining and interpreting feedback from the
development process, leads to too little focus on doing good analysis and design. The
focus on deadlines leads to systems that do not match users’ needs and that require
extensive maintenance, unnecessarily increasing development costs. Finding and fix-
ing a software problem after the delivery of the system is often far more expensive
than finding and fixing it during analysis and design (Griss, 2003). The result of
focusing on deadlines rather than on good practice is unnecessary rework and main-
tenance effort, both of which are expensive. According to some estimates, mainte-
nance costs account for 40 to 70 percent of systems development costs (Dorfman and
Thayer, 1997). Given these problems, people working in systems development began
to look for better ways to conduct systems analysis and design.

DiFFErEnT ApproAChES To iMproving
DEvElopMEnT
In the continuing effort to improve the systems analysis and design process, several
different approaches have been developed. We will describe the more important
 approaches in more detail in later chapters. Attempts to make systems development
less of an art and more of a science are usually referred to as systems engineering or soft-
ware engineering. As the names indicate, rigorous engineering techniques have been
applied to systems development. One manifestation of the engineering approach is
CASE tools, which you will read about next.

CASE Tools
Other efforts to improve the systems development process have taken advantage of
the benefits offered by computing technology itself. The result has been the creation
and fairly widespread use of computer-aided software engineering (CASE) tools.
CASE tools have been developed for internal use and for sale by several leading
firms, but the best known is the series of Rational tools made by IBM.

CASE tools are used to support a wide variety of SDLC activities. CASE tools
can be used to help in multiple phases of the SDLC: project identification and
 selection, project initiation and planning, analysis, design, and implementation and
maintenance. An integrated and standard database called a repository is the common
method for providing product and tool integration, and has been a key factor in
 enabling CASE to more easily manage larger, more complex projects and to seam-
lessly integrate data across various tools and products. The idea of a central reposi-
tory of information about a project is not new—the manual form of such a repository
is called a project dictionary or workbook.

The general types of CASE tools are listed below:

•	 Diagramming tools enable system process, data, and control structures to be
represented graphically.

•	 Computer display and report generators help prototype how systems “look and
feel.” Display (or form) and report generators make it easier for the systems
 analyst to identify data requirements and relationships.

•	 Analysis tools automatically check for incomplete, inconsistent, or incorrect
specifications in diagrams, forms, and reports.

•	 A central repository enables the integrated storage of specifications, diagrams,
reports, and project management information.

•	 Documentation generators produce technical and user documentation in
 standard formats.

•	 Code generators enable the automatic generation of program and database def-
inition code directly from the design documents, diagrams, forms, and reports.

Computer-aided software
 engineering (CASe) tools
Software tools that provide automated
support for some portion of the systems
development process.

 ChaPter 1 the systems development environment 17

CASE helps programmers and analysts do their jobs more efficiently and more
effectively by automating routine tasks. However, many organizations that use CASE
tools do not use them to support all phases of the SDLC. Some organizations may
extensively use the diagramming features but not the code generators. Table 1-2 sum-
marizes how CASE is commonly used within each SDLC phase. There are a variety of
reasons why organizations choose to adopt CASE partially or not use it at all. These
reasons range from a lack of vision for applying CASE to all aspects of the SDLC, to
the belief that CASE technology will fail to meet an organization’s unique system
development needs. In some organizations, CASE has been extremely successful,
whereas in others it has not.

AgilE METhoDologiES
Many approaches to systems analysis and design have been developed over the years.
In February 2001, many of the proponents of these alternative approaches met in
Utah and reached a consensus on several of the underlying principles their various
approaches contained. This consensus turned into a document they called “The
Agile Manifesto” (Table 1-3). According to Fowler (2003), the Agile Methodologies
share three key principles: (1) a focus on adaptive rather than predictive method-
ologies, (2) a focus on people rather than roles, and (3) a focus on self-adaptive
processes.

The Agile Methodologies group argues that software development meth-
odologies adapted from engineering generally do not fit with real-world software
 development (Fowler, 2003). In engineering disciplines, such as civil engineering,
 requirements tend to be well understood. Once the creative and difficult work of
 design is completed, construction becomes very predictable. In addition, construc-
tion may account for as much as 90 percent of the total project effort. For software, on
the other hand, requirements are rarely well understood, and they change continually
during the lifetime of the project. Construction may account for as little as 15 percent
of the total project effort, with design constituting as much as 50 percent. Applying
techniques that work well for predictable, stable projects, such as bridge building,
tend not to work well for fluid, design-heavy projects such as writing software, say
the Agile Methodology proponents. What is needed are methodologies that embrace
change and that are able to deal with a lack of predictability. One mechanism for
dealing with a lack of predictability, which all Agile Methodologies share, is iterative
development (Martin, 1999). Iterative development focuses on the frequent produc-
tion of working versions of a system that have a subset of the total number of required
features. Iterative development provides feedback to customers and developers alike.

The Agile Methodologies’ focus on people is an emphasis on individuals rather
than on the roles that people perform (Fowler, 2003). The roles that people fill, of

Table 1-2 examples of CaSe Usage within the SDlC
SDLC Phase Key Activities CASE Tool Usage
Project identification

and selection
Display and structure high-level

organizational information
Diagramming and matrix tools to create and structure information

Project initiation
and planning

Develop project scope and
feasibility

Repository and documentation generators to develop project plans

Analysis Determine and structure system
requirements

Diagramming to create process, logic, and data models

Logical and physical
design

Create new system designs Form and report generators to prototype designs; analysis and documentation
generators to define specifications

Implementation Translate designs into an
information system

Code generators and analysis, form and report generators to develop system;
documentation generators to develop system and user documentation

Maintenance Evolve information system All tools are used (repeat life cycle)

18 Part I Foundations For systems development

systems analyst or tester or manager, are not as important as the individuals who fill
those roles. Fowler argues that the application of engineering principles to systems
development has resulted in a view of people as interchangeable units instead of a
view of people as talented individuals, each bringing something unique to the devel-
opment team.

The Agile Methodologies promote a self-adaptive software development pro-
cess. As software is developed, the process used to develop it should be refined
and improved. Development teams can do this through a review process, often
associated with the completion of iterations. The implication is that, as processes
are adapted, one would not expect to find a single monolithic methodology within
a given corporation or enterprise. Instead, one would find many variations of the
methodology, each of which reflects the particular talents and experience of the
team using it.

Agile Methodologies are not for every project. Fowler (2003) recommends an
agile or adaptive process if your project involves

•	 unpredictable or dynamic requirements,
•	 responsible and motivated developers, and
•	 customers who understand the process and will get involved.

Table 1-3 The agile Manifesto
The Manifesto for Agile Software Development
Seventeen anarchists agree:
We are uncovering better ways of developing software by doing it and helping others do it.

Through this work we have come to value:

•	 Individuals and interactions over processes and tools.
•	Working software over comprehensive documentation.
•	Customer collaboration over contract negotiation.
•	Responding to change over following a plan.

That is, while we value the items on the right, we value the items on the left more. We follow
the following principles:

•	Our highest priority is to satisfy the customer through early and continuous delivery of
 valuable software.

•	Welcome changing requirements, even late in development. Agile processes harness change
for the customer’s competitive advantage.

•	Deliver working software frequently, from a couple of weeks to a couple of months, with
a preference to the shorter timescale.

•	Businesspeople and developers work together daily throughout the project.
•	Build projects around motivated individuals. Give them the environment and support they

need, and trust them to get the job done.
•	 The most efficient and effective method of conveying information to and within a development

team is face-to-face conversation.
•	Working software is the primary measure of progress.
•	Continuous attention to technical excellence and good design enhances agility.
•	Agile processes promote sustainable development. The sponsors, developers, and users

should be able to maintain a constant pace indefinitely.
•	Simplicity—the art of maximizing the amount of work not done—is essential.
•	 The best architectures, requirements, and designs emerge from self-organizing teams.
•	At regular intervals, the team reflects on how to become more effective, then tunes and

 adjusts its behavior accordingly.

—Kent Beck, Mike Beedle, Arie van Bennekum, Alistair Cockburn, Ward Cunningham,
Martin Fowler, James Grenning, Jim Highsmith, Andrew Hunt, Ron Jeffries, Jon Kern,
Brian Marick, Robert C. Martin, Steve Mellor, Ken Schwaber, Jeff Sutherland, Dave Thomas
(www.agileAlliance.org)

(Source: http://agilemanifesto.org/ © 2001, the above authors. This declaration may be freely
copied in any form, but only in its entirety through this notice.)

http://www.agileAlliance.org
http://agilemanifesto.org/

 ChaPter 1 the systems development environment 19

A more engineering-oriented, predictable process may be called for if the
 development team exceeds 100 people or if the project is operating under a fixed-
price or fixed-scope contract. In fact, whether a systems development project is
 organized in terms of Agile or more traditional methodologies depends on many dif-
ferent considerations. If a project is considered to be high risk and highly complex,
and has a development team made up of hundreds of people, then more traditional
methods will apply. Less risky, smaller, and simpler development efforts lend them-
selves more to Agile methods. Other determining factors include organizational
practice and standards, and the extent to which different parts of the system will be
contracted out to others for development. Obviously, the larger the proportion of
the system that will be outsourced, the more detailed the design specifications will
need to be so that subcontractors can understand what is needed. Although not uni-
versally agreed upon, the key differences between these development approaches
are listed in Table 1-4, which is based on work by Boehm and Turner (2004). These
differences can be used to help determine which development approach would
work best for a particular project.

Many different individual methodologies come under the umbrella of Agile
Methodologies. Fowler (2003) lists the Crystal family of methodologies, Adaptive
Software Development, Scrum, Feature Driven Development, and others as Agile
Methodologies. Perhaps the best known of these methodologies, however, is
 eXtreme Programming, discussed next.

eXtreme programming
eXtreme Programming is an approach to software development put together by
Beck and Andres (2004). It is distinguished by its short cycles, incremental planning
 approach, focus on automated tests written by programmers and customers to monitor
the development process, and reliance on an evolutionary approach to development
that lasts throughout the lifetime of the system. Key emphases of eXtreme Programming

Table 1-4 Five Critical Factors That Distinguish agile and Traditional approaches
to Systems Development

Factor Agile Methods Traditional Methods
Size Well matched to small products and

teams. Reliance on tacit knowledge
limits scalability.

Methods evolved to handle large
products and teams. Hard to tailor
down to small projects.

Criticality Untested on safety-critical products.
Potential difficulties with simple
design and lack of documentation.

Methods evolved to handle highly
critical products. Hard to tailor down
to products that are not critical.

Dynamism Simple design and continuous
refactoring are excellent for highly
dynamic environments but a source
of potentially expensive rework for
highly stable environments.

Detailed plans and Big Design Up Front,
excellent for highly stable environment
but a source of expensive rework for
highly dynamic environments.

Personnel Requires continuous presence of a
critical mass of scarce experts.
Risky to use non-agile people.

Needs a critical mass of scarce experts
during project definition but can work
with fewer later in the project, unless
the environment is highly dynamic.

Culture Thrives in a culture where people feel
comfortable and empowered by
having many degrees of freedom
(thriving on chaos).

Thrives in a culture where people feel
comfortable and empowered by
having their roles defined by clear
practices and procedures (thriving
on order).

(Source: Boehm, Barry; Turner, Richard, Balancing Agility and Discipline: A Guide for the
Perplexed, 1st Ed., © 2004. Reprinted and electronically reproduced by permission of Pearson
Education, Inc. New York, NY.)

20 Part I Foundations For systems development

are its use of two-person programming teams, described later, and having a customer
on-site during the development process. The relevant parts of eXtreme Programming
that relate to design specifications are (1) how planning, analysis, design, and construc-
tion are all fused into a single phase of activity; and (2) its unique way of capturing
and presenting system requirements and design specifications. With eXtreme
Programming, all phases of the life cycle converge into a series of activities based on
the basic processes of coding, testing, listening, and designing.

Under this approach, coding and testing are intimately related parts of the same
process. The programmers who write the code also develop the tests. The emphasis
is on testing those things that can break or go wrong, not on testing everything.
Code is tested very soon after it is written. The overall philosophy behind eXtreme
Programming is that the code will be integrated into the system it is being developed
for and tested within a few hours after it has been written. If all the tests run suc-
cessfully, then development proceeds. If not, the code is reworked until the tests are
successful.

Another part of eXtreme Programming that makes the code-and-test process
work more smoothly is the practice of pair programming. All coding and testing is
done by two people working together to write code and develop tests. Beck says that
pair programming is not one person typing while the other one watches; rather, the
two programmers work together on the problem they are trying to solve, exchanging
information and insight and sharing skills. Compared to traditional coding practices,
the advantages of pair programming include: (1) more (and better) communica-
tion among developers, (2) higher levels of productivity, (3) higher-quality code, and
(4) reinforcement of the other practices in eXtreme Programming, such as the code-
and-test discipline (Beck & Andres, 2004). Although the eXtreme Programming pro-
cess has its advantages, just as with any other approach to systems development, it is
not for everyone and is not applicable to every project.

objECT-oriEnTED AnAlySiS AnD DESign
There is no question that object-oriented analysis and design (OOAD) is becoming
more and more popular (we elaborate on this approach later throughout the book).
OOAD is often called the third approach to systems development, after the process-
oriented and data-oriented approaches. The object-oriented approach combines
data and processes (called methods) into single entities called objects. Objects usually
correspond to the real things an information system deals with, such as customers,
suppliers, contracts, and rental agreements. Putting data and processes together in
one place recognizes the fact that there are a limited number of operations for any
given data structure, and the object-oriented approach makes sense even though
typical systems development keeps data and processes independent of each other.
The goal of OOAD is to make systems elements more reusable, thus improving sys-
tem quality and the productivity of systems analysis and design.

Another key idea behind object orientation is inheritance. Objects are orga-
nized into object classes, which are groups of objects sharing structural and behav-
ioral characteristics. Inheritance allows the creation of new classes that share some of
the characteristics of existing classes. For example, from a class of objects called “per-
son,” you can use inheritance to define another class of objects called “customer.”
Objects of the class “customer” would share certain characteristics with objects of the
class “person”: They would both have names, addresses, phone numbers, and so on.
Because “person” is the more general class and “customer” is more specific, every
customer is a person but not every person is a customer.

As you might expect, a computer programming language is required that can
create and manipulate objects and classes of objects in order to create object-oriented
information systems. Several object-oriented programming languages have been cre-
ated (e.g., C++, Eiffel, and Java). In fact, object-oriented languages were developed

Object
A structure that encapsulates (or packages)
attributes and methods that operate on
those attributes. An object is an abstraction
of a real-world thing in which data and
processes are placed together to model
the structure and behavior of the real-world
object.

Object-oriented analysis
and design (OOAD)
Systems development methodologies and
techniques based on objects rather than
data or processes.

Object class
A logical grouping of objects that have the
same (or similar) attributes and behaviors
(methods).

Inheritance
The property that occurs when entity
types or object classes are arranged in a
hierarchy and each entity type or object
class assumes the attributes and methods
of its ancestors, that is, those higher up in
the hierarchy. Inheritance allows new but
related classes to be derived from existing
classes.

 ChaPter 1 the systems development environment 21

first, and object-oriented analysis and design techniques followed. Because OOAD
is still relatively new, there is little consensus or standardization among the many
OOAD techniques available. In general, the primary task of object-oriented analysis
is identifying objects and defining their structure and behavior and their relation-
ships. The primary tasks of object-oriented design are modeling the details of the
objects’ behavior and communication with other objects so that system requirements
are met, and reexamining and redefining objects to better take advantage of inheri-
tance and other benefits of object orientation.

The object-oriented approach to systems development shares the iterative
 development approach of the Agile Methodologies. Some say that the current focus
on agility in systems development is nothing more than the mainstream acceptance
of object-oriented approaches that have been germinating for years, so this similar-
ity should come as no surprise (Fowler, 2003). One of the most popular realizations
of the iterative approach for object-oriented development is the Rational Unified
Process (RUP), which is based on an iterative, incremental approach to systems
 development. RUP has four phases: inception, elaboration, construction, and transi-
tion (see Figure 1-11).

In the inception phase, analysts define the scope, determine the feasibility of
the project, understand user requirements, and prepare a software development
plan. In the elaboration phase, analysts detail user requirements and develop a base-
line architecture. Analysis and design activities constitute the bulk of the elaboration
phase. In the construction phase, the software is actually coded, tested, and docu-
mented. In the transition phase, the system is deployed, and the users are trained
and supported. As is evident from Figure 1-11, the construction phase is generally
the longest and the most resource intensive. The elaboration phase is also long, but
less resource intensive. The transition phase is resource intensive but short. The
 inception phase is short and the least resource intensive. The areas of the rectangles
in Figure 1-11 provide an estimate of the overall resources allocated to each phase.

Each phase can be further divided into iterations. The software is developed
incrementally as a series of iterations. The inception phase will generally entail
a single iteration. The scope and feasibility of the project is determined at this

rational unified Process
(ruP)
An object-oriented systems development
methodology. RUP establishes four phases
of development: inception, elaboration,
construction, and transition. Each phase
is organized into a number of separate
iterations.

Resource

Time

Inception Elaboration Construction Transition

FIgure 1-11
Phases of OOAD-based development

22 Part I Foundations For systems development

stage. The elaboration phase may have one or two iterations and is generally con-
sidered the most critical of the four phases (Kruchten, 2000). The elaboration
phase is mainly about systems analysis and design, although other activities are
also involved. At the end of the elaboration phase, the architecture of the project
should have been developed. The architecture includes a vision of the product, an
executable demonstration of the critical pieces, a detailed glossary and a prelimi-
nary user manual, a detailed construction plan, and a revised estimate of planned
expenditures.

Although the construction phase mainly involves coding, which is accom-
plished in several iterations, revised user requirements could require analysis and
design. The components are developed or purchased and used in the code. As each
executable is completed, it is tested and integrated. At the end of the construction
phase, a beta version of the project is released that should have operational capa-
bilities. The transition phase entails correcting problems, beta testing, user training,
and conversion of the product. The transition phase is complete when the project
objectives meet the acceptance criteria. Once acceptance criteria have been met, the
product can then be released for distribution.

our ApproACh To SySTEMS DEvElopMEnT
Much of the criticism of the SDLC has been based on abuses of the life cycle per-
spective, both real and imagined. One of the criticisms, one based in reality, is that
reliance on the life-cycle approach forced intangible and dynamic processes, such
as analysis and design, into timed phases that were doomed to fail (Martin, 1999).
Developing software is not like building a bridge, and the same types of engineer-
ing processes cannot always be applied (Fowler, 2003), even though viewing software
development as a science rather than an art has no doubt resulted in vast improve-
ments in the process and the resulting products. Another criticism with its basis in
fact is that life cycle reliance has resulted in massive amounts of process and docu-
mentation, much of which seems to exist for its own sake. Too much process and
documentation does slow down development, hence the streamlining that underlies
the Agile Methodologies and the admonition from Agile developers that source code
is enough documentation. A criticism of the SDLC that is based more on fiction
is that all versions of the SDLC are waterfall-like, with no feedback between steps.
Another false criticism is that a life-cycle approach necessarily limits the involvement
of users in the earliest stages of the process. Yet Agile Methodologies, and eXtreme
Programming in particular, advocate an analysis–design–code–test sequence that is a
cycle (Figure 1-8), and users can be and are involved in every step of this cycle; thus,
cycles in and of themselves do not necessarily limit user involvement.

Whether the criticisms have been based on fact or not, however, it is true that
the traditional SDLC waterfall approach has problems, and we applaud the changes
taking place in the systems development community. These changes are allowing
problems with traditional approaches to be fixed, and without a doubt the result is
better software produced more expertly and more quickly.

However, despite the criticisms of a life-cycle approach to systems analysis and
design, the view of systems analysis and design taking place in a cycle continues to be
pervasive, and, we think, true as well. There are many types of cycles, from the water-
fall to the analysis–design–code–test cycle, and they all capture the iterative nature of
systems development. The waterfall approach may be losing its relevance, but the cycle
in Figure 1-8 is gaining in popularity, and the analysis–design–code–test cycle is embed-
ded in a larger organizational cycle. Although we typically use the terms systems analysis
and design and systems development interchangeably, perhaps it is better to think about
systems analysis and design as being the cycle in Figure 1-8 and systems development as
being the larger cycle in Figure 1-2. The analysis– design–code–test cycle largely ignores
the organizational planning that precedes it and the organizational installation and

 ChaPter 1 the systems development environment 23

systems maintenance that follow, yet they are all important aspects of the larger systems
development effort. And to us, the best, clearest way to think about both efforts is in
terms of cycles.

Therefore, in this book you will see Figure 1-2 at the beginning of almost every
chapter. We will use our SDLC as an organizing principle in this book, with activities
and processes arranged according to whether they fit under the category of planning,
analysis, design, implementation, or maintenance. To some extent, we will artificially
separate activities and processes so that each one can be individually studied and
 understood. Once individual components are clearly understood, it is easier to see
how they fit with other components, and eventually it becomes easy to see the whole.
Just as we may artificially separate activities and processes, we may also construct arti-
ficial boundaries between phases of the SDLC. Our imposition of boundaries should
never be interpreted as hard-and-fast divisions. In practice, as we have seen with the
Agile Methodologies and in the introduction to OOAD, phases and parts of phases
may be combined for speed, understanding, and efficiency. Our intent is to intro-
duce the pieces in a logical manner, so that you can understand all the pieces and
how to assemble them in the best way for your systems development purposes. Yet the
overall structure of the cycle, of iteration, remains throughout. Think of the cycle as
an organizing and guiding principle.

Summary
This chapter introduced you to information systems analy-
sis and design, the complex organizational process whereby
computer-based information systems are developed and
maintained. You read about how systems analysis and design
in organizations has changed over the past several decades.
You also learned about the basic framework that guides
systems analysis and design—the systems development life
cycle (SDLC), with its five major phases: planning, analysis,
design, implementation, and maintenance. The SDLC life
cycle has had its share of criticism, which you read about,

and other frameworks have been developed to address the
life cycle’s problems. These approaches include computer-
aided software engineering (CASE) tools and the Agile
Methodologies, the most famous of which is eXtreme
Programming. You were also briefly introduced to object-
oriented analysis and design, an approach that is becoming
more and more popular. All of these approaches share the
underlying idea of iteration, as manifested in the systems
development life cycle and the analysis–design–code–test
cycle of the Agile Methodologies.

Key TermS

 1.1 Analysis
 1.2 Application software
 1.3 Computer-aided software

 engineering (CASE) tools
 1.4 Design
 1.5 Implementation
 1.6 Information systems analysis

and design

 1.7 Inheritance
 1.8 Logical design
 1.9 Maintenance
 1.10 Object
 1.11 Object class
 1.12 Object-oriented analysis and design

(OOAD)
 1.13 Physical design

 1.14 Planning
 1.15 Rational Unified Process

(RUP)
 1.16 Systems analyst
 1.17 Systems development life cycle

(SDLC)
 1.18 Systems development

methodology

Match each of the key terms above with the definition that best
fits it.

____ The complex organizational process whereby computer-
based information systems are developed and maintained.

____ Computer software designed to support organizational
functions or processes.

____ The organizational role most responsible for the analysis
and design of information systems.

____ A standard process followed in an organization to conduct
all the steps necessary to analyze, design, implement, and
maintain information systems.

____ The traditional methodology used to develop, maintain,
and replace information systems.

____ The first phase of the SDLC, in which an organization’s
 total information system needs are identified, analyzed,
prioritized, and arranged.

24 Part I Foundations For systems development

____ The second phase of the SDLC, in which system require-
ments are studied and structured.

____ The third phase of the SDLC, in which the description of
the recommended solution is converted into logical and
then physical system specifications.

____ The part of the design phase of the SDLC in which all
functional features of the system chosen for development
are described independently of any computer platform.

____ The part of the design phase of the SDLC in which the
logical specifications of the system from logical design are
transformed into technology-specific details from which all
programming and system construction can be accomplished.

____ The fourth phase of the SDLC, in which the information
system is coded, tested, installed, and supported in the
organization.

____ The final phase of the SDLC, in which an information sys-
tem is systematically repaired and improved.

____ Software tools that provide automated support for some
portion of the systems development process.

____ Systems development methodologies and techniques
based on objects rather than data or processes.

____ A structure that encapsulates (or packages) attributes
and the methods that operate on those attributes. It is an
 abstraction of a real-world thing in which data and pro-
cesses are placed together to model the structure and
 behavior of the real-world object.

____ The property that occurs when entity types or object
classes are arranged in a hierarchy and each entity type
or object class assumes the attributes and methods of its
ancestors—that is, those higher up in the hierarchy. The
property allows new but related classes to be derived from
existing classes.

____ A logical grouping of objects that have the same (or simi-
lar) attributes and behaviors (methods).

____ An object-oriented systems development methodology.
This methodology establishes four phases of development,
each of which is organized into a number of separate itera-
tions: inception, elaboration, construction, and transition.

revIew QueSTIonS
 1.19 What is information systems analysis and design?

 1.20 How has systems analysis and design changed over the past
four decades?

 1.21 List and explain the different phases in the SDLC.

 1.22 List and explain some of the problems with the traditional
waterfall SDLC.

 1.23 What are CASE tools?

 1.24 Describe each major component of a comprehensive CASE
system. Is any component more important than any other?

 1.25 Describe how CASE is used to support each phase of the
SDLC.

 1.26 Explain what is meant by Agile Methodologies.

 1.27 What is eXtreme Programming?

 1.28 When would you use Agile Methodologies versus an
 engineering-based approach to development?

 1.29 What is object-oriented analysis and design?

ProblemS and exercISeS
 1.30 Why is it important to use systems analysis and design

methodologies when building a system? Why not just
build the system in whatever way appears to be “quick and
easy”? What value is provided by using an “engineering”
approach?

 1.31 Compare Figures 1-2 and 1-3. What similarities and differ-
ences do you see?

 1.32 Compare Figures 1-2 and 1-4. Can you match steps in
Figure 1-4 with phases in Figure 1-2? How might you
 explain the differences between the two figures?

 1.33 Compare Figures 1-2 and 1-10. How does Figure 1-10 il-
lustrate some of the problems of the traditional waterfall
 approach that are not illustrated in Figure 1-2? How does
converting Figure 1-10 into a circle (like Figure 1-2) fix
these problems?

 1.34 Explain how object-oriented analysis and design differs
from the traditional approach. Why isn’t RUP (Figure 1-11)
represented as a cycle? Is that good or bad? Explain your
response.

 ChaPter 1 the systems development environment 25

FIeld exercISeS
 1.35 Choose an organization that you interact with regularly

and list as many different “systems” (computer-based or
not) as you can that are used to process transactions, pro-
vide information to managers and executives, help man-
agers and executives make decisions, aid group decision
making, capture knowledge and provide expertise, help
design products and/or facilities, and assist people in com-
municating with one another. Draw a diagram that shows
how these systems interact (or should interact) with one
another. Are these systems well integrated?

 1.36 Imagine an information system built without using a systems
analysis and design methodology and without any thinking
about the SDLC. Use your imagination and describe any
and all problems that might occur, even if they seem a bit
extreme or absurd. (The problems you will describe have
probably occurred in one setting or another.)

 1.37 Choose a relatively small organization that is just beginning
to use information systems. What types of systems are being
used? For what purposes? To what extent are these systems
integrated with one another? With systems outside the orga-
nization? How are these systems developed and controlled?
Who is involved in systems development, use, and control?

 1.38 Interview information systems professionals who use CASE
tools and find out how they use the tools throughout the

SDLC process. Ask them what advantages and disadvan-
tages they see in using the tools that they do.

 1.39 Go to a CASE tool vendor’s website and determine the
product’s price, functionality, and advantages. Try to find
information related to any future plans for the product. If
changes are planned, what changes and/or enhancements
are planned for future versions? Why are these changes
 being made?

 1.40 Use the web to find out more about the Agile Methodolo-
gies. Write a report on what the movement toward agility
means for the future of systems analysis and design.

 1.41 You may want to keep a personal journal of ideas and
 observations about systems analysis and design while you
are studying this book. Use this journal to record com-
ments you hear, summaries of news stories or professional
articles you read, original ideas or hypotheses you create,
and questions that require further analysis. Keep your eyes
and ears open for anything related to systems analysis and
design. Your instructor may ask you to turn in a copy of
your journal from time to time in order to provide feed-
back and reactions. The journal is an unstructured set of
personal notes that will supplement your class notes and
can stimulate you to think beyond the topics covered
within the time limitations of most courses.

reFerenceS
Beck, K., and C. Andres. 2004. eXtreme Programming eXplained.

Upper Saddle River, NJ: Addison-Wesley.
Boehm, B., and R. Turner. 2004. Balancing Agility and Discipline.

Boston: Addison-Wesley.
Dorfman, M., and R. M. Thayer (eds). 1997. Software Engineering.

Los Alamitos, CA: IEEE Computer Society Press.
Fowler, M. 2003. “The New Methodologies.” December. Avail-

able at http://martinfowler.com/articles/newMethodology.
html. Accessed February 3, 2009.

Fowler, M., and J. Highsmith. 2001. “The Agile Manifesto.”
Available at www.ddj.com/architect/184414755. Accessed
March 19, 2009.

Griss, M. 2003. “Ranking IT Productivity Improvement Strategies.”
Available at http://martin.griss.com/pub/WPGRISS01.pdf.
Accessed February 3, 2009.

Kay, R. 2002. “QuickStudy: System Development Life Cycle.”
Computerworld, May 14. Available at www.computerworld
.com. Accessed February 3, 2009.

Kruchten, P. 2000. “From Waterfall to Iterative Lifecycle—A
Tough Transition for Project Managers.” Rational Software

White Paper: TP-173 5/00. Available at www.ibm.com/
developerworks/rational. Accessed February 3, 2009.

Martin, R. C. 1999. “Iterative and Incremental Development I.”
Available at http://www.objectmentor.com/resources/ articles/
IIDI.pdf. Accessed October 12, 2012.

McDougall, P. 2012. “Cloud Will Create 14 Million Jobs, Study
Says.” InformationWeek, March 5. Available at http://
www.informationweek.com/news/windows/microsoft_
news/232601993. Accessed March 13, 2012.

Mearian, L. 2002. “Merrill Lynch Unit Puts Software Develop-
ment Process to the Test.” Computerworld, October 14. Avail-
able at www.computerworld.com. Accessed February 3,
2009.

Thibodeau, P. 2012. “IT jobs will grow 22% through 2020,
says U.S.” Computerworld, March 29. Available at http://
www.computerworld.com/s/article/print/9225673/
IT_jobs_will_grow_22_through_2020_says_U.S.?taxono
myName=Management+and+Careers&taxonomyId=14.
 Accessed March 3, 2012.

http://martinfowler.com/articles/newMethodology.html
http://www.ddj.com/architect/184414755
http://martin.griss.com/pub/WPGRISS01.pdf
http://www.computerworld.com
http://www.ibm.com/developerworks/rational
http://www.objectmentor.com/resources/articles/IIDI.pdf
http://www.informationweek.com/news/windows/microsoft_news/232601993
http://www.informationweek.com/news/windows/microsoft_news/232601993
http://www.computerworld.com
http://www.computerworld.com/s/article/print/9225673/IT_jobs_will_grow_22_through_2020_says_U.S.?taxonomyName=Management+and+Careers&taxonomyId=14
http://www.computerworld.com/s/article/print/9225673/IT_jobs_will_grow_22_through_2020_says_U.S.?taxonomyName=Management+and+Careers&taxonomyId=14
http://www.computerworld.com
http://www.ibm.com/developerworks/rational
http://www.objectmentor.com/resources/articles/IIDI.pdf
http://www.informationweek.com/news/windows/microsoft_news/232601993
http://martinfowler.com/articles/newMethodology.html

26

you need to know more about where software originates
in today’s development environment.

In this chapter, you will learn about the various sources
of software for organizations. The first source considered is
outsourcing, in which all or part of an organization’s infor-
mation systems, their development, and their maintenance
are given over to another organization. You will then read
about six different sources of software: (1) information
technology services firms, (2) packaged software providers,
(3) vendors of enterprise-wide solution software, (4) cloud
computing, (5) open-source software, and (6) the organiza-
tion itself when it develops software in-house. You will learn
about criteria to evaluate software from these different
sources. The chapter closes with a discussion of reuse and
its impact on software development.

SyStemS AcquiSition
Although there will always be some debate about when and
where the first administrative information system was devel-
oped, there is general agreement that the first such system
in the United Kingdom was developed at J. Lyons & Sons.
In the United States, the first administrative information sys-
tem was General Electric’s (GE) payroll system, which was
developed in 1954 (Computer History Museum, 2003). At
that time, and for many years afterward, obtaining an infor-
mation system meant one thing only: in-house development.
The software industry did not even come into existence until
a decade after GE’s payroll system was implemented.

As you learned in Chapter 1, there was a time, not too
long ago, when no systems analysts and no symbolic com-
puter programming languages existed. Yet people still
wrote and programmed applications for computers. In
Chapter 1 you read about the changes over the last 60-plus
years. Even though today’s systems analyst has dozens of
programming languages and development tools to work
with, you could easily argue that systems development is
even more difficult now than it was 60 years ago. Then,
as well as even more recently, certain issues were decided
for you: If you wanted to write application software, you
did it in-house, and you wrote the software from scratch.
Today there are many different sources of software, and
many of you reading this book will end up working for
firms that produce software, rather than in the informa-
tion systems department of a corporation. But for those
of you who do go on to work in a corporate information
systems department, the focus is no longer exclusively
on in-house development. Instead, the focus will be on
where to obtain the many pieces and components that
you will combine into the application system you have
been asked to create. You and your peers will still write
code, mainly to make all the different pieces work to-
gether, but more and more of your application software
will be written by someone else. Even though you will
not write the code, you will still use the basic structure
and processes of the systems analysis and design life
cycle to build the application systems your organization
 demands. The organizational process of systems develop-
ment remains the focus for the rest of the book, but first

2.3 discuss how to evaluate off-the-shelf software, and

2.4 explain reuse and its role in software development.

Learning Objectives

After studying this chapter, you should be able to

2.1 explain outsourcing,

2.2 describe six different sources of software,

the origins of Software
2

chapter

Introduction

 Chapter 2 The Origins Of sOfTware 27

Since GE’s payroll system was built, in-house development has become a pro-
gressively smaller piece of all the systems development work that takes place in and
for organizations. Internal corporate information systems departments now spend
a smaller and smaller proportion of their time and effort on developing systems
from scratch. Companies continue to spend relatively little time and money on tra-
ditional software development and maintenance. Instead, they invest in packaged
software, open-source software, and outsourced services. Organizations today have
many choices when seeking an information system. We will start with a discussion of
outsourcing development and operation and then move on to a presentation on the
sources of software.

outsourcing
If one organization develops or runs a computer application for another orga-
nization, that practice is called outsourcing. Outsourcing includes a spectrum
of working arrangements. At one extreme is having a firm develop and run your
 application on its computers—all you do is supply input and take output. A com-
mon example of such an arrangement is a company that runs payroll applications
for clients so that clients do not have to develop an independent in-house pay-
roll system. Instead, they simply provide employee payroll information to the com-
pany, and, for a fee, the company returns completed paychecks, payroll accounting
 reports, and tax and other statements for employees. For many organizations, pay-
roll is a very cost-effective operation when outsourced in this way. Another example
of outsourcing would be if you hired a company to run your applications at your
site on your computers. In some cases, an organization employing such an arrange-
ment will dissolve some or all of its information systems (IS) unit and fire all of its
IS employees. Often the company brought in to run the organization’s computing
will rehire many of the organization’s original IS unit employees.

Outsourcing is big business. Some organizations outsource the information
technology (IT) development of many of their IT functions at a cost of billions of
dollars. Most organizations outsource at least some aspect of their information sys-
tems activities. One example of the extent of outsourcing is Shell Oil. In 2008, Shell
signed outsourcing contracts with EDS, T-Systems, and AT&T worth $3.2 billion
USD. In addition, Shell signed application support deals with IBM, Logica, Wipro,
and Accenture. In 2011, Shell outsourced all of its SAP-based human resources and
payroll application management services to Accenture. More than 90,000 Shell em-
ployees in 60 countries around the world use these systems. Accenture delivers these
services through outsourcing centers in India and the Philippines. Individual out-
sourcing vendors, such as EDS, IBM, and Accenture, typically sign large contracts for
their services. These vendors have multiple outsourcing contracts in place with many
different firms all over the world.

Why would an organization outsource its information systems operations? As
we saw in the payroll example, outsourcing may be cost-effective. If a company spe-
cializes in running payroll for other companies, it can leverage the economies of
scale it achieves from running one stable computer application for many organiza-
tions into very low prices. Outsourcing also provides a way for firms to leapfrog their
current position in information systems and to turn over development and opera-
tions to outside staff who possess knowledge and skills not found internally (Ketler
and Willems, 1999). Other reasons for outsourcing include

•	 freeing up internal resources,
•	 increasing the revenue potential of the organization,
•	 reducing time to market,
•	 increasing process efficiencies, and
•	 outsourcing noncore activities.

Outsourcing
The practice of turning over responsibility
for some or all of an organization’s
information systems applications and
operations to an outside firm.

28 part I fOundaTiOns fOr sysTems develOpmenT

An organization may move to outsourcing and dissolve its entire information
processing unit for political reasons as well, such as overcoming operating problems
the organization faces in its information systems unit. For example, the city of Grand
Rapids, Michigan, hired an outside firm to run its computing center 40 years ago in
order to better manage its computing center employees. Union contracts and civil
service constraints then in force made it difficult to fire people, so the city brought
in a facilities management organization to run its computing operations, and it was
able to get rid of problem employees at the same time. As mentioned earlier, another
reason for total outsourcing is that an organization’s management may feel its core
mission does not involve managing an information systems unit and that it might
achieve more effective computing by turning over all of its operations to a more
experienced, computer-oriented company. Kodak decided in the late 1980s that
it was not in the computer applications business and turned over management of
its mainframes to IBM and management of its personal computers to Businessland
(Applegate and Montealagre, 1991).

Although you have most likely heard about outsourcing in terms of IT jobs from
all over the world going to India, it turns out that the global outsourcing marketplace
is much more complicated. According to a 2014 report by ATKearney (2014), India
is the number one outsourcing nation, while China is close behind, and Malaysia is
third. Despite much turmoil in the overall outsourcing market over the years, the top
three rankings have not changed since ATKearney’s first report on outsourcing in
2003. Not all of the 2014 top 10 outsourcing countries are located in Asia. Although
six are in Asia, two are in Latin America (Mexico and Brazil), one is in Europe
(Bulgaria), and one is in Africa (Egypt). Even the United States is an outsourcing
nation, number 14 on the ATKearney list. In fact, Indian outsourcing firms, such as
Wipro, Infosys, and Tata Consulting, operate offices in the United States. As Indian
firms have become so successful at offshoring, and as currencies have fluctuated, it
has become more expensive for firms to contract with Indian companies, so many
firms have started to look elsewhere. Many US firms have turned to what is called
nearshoring, or contracting with companies in Latin American countries. Many of
these countries are no more than one time zone away, and they maintain some of the
labor cost advantages that are eroding in India (King, 2008a). Mexico is increasingly
seen as a complement to India and other offshore locations and is listed as number
four in the ATKearney 2014 list. It is also becoming more common for firms to dis-
tribute their outsourcing work across vendors in several countries at the same time.

Analysts need to be aware of outsourcing as an alternative. When generating
alternative system development strategies for a system, as an analyst you should con-
sult organizations in your area that provide outsourcing services. It may well be that
at least one such organization has already developed and is running an application
very close to what your users are asking for. Perhaps outsourcing the replacement
system should be one of your alternatives. Knowing what your system requirements
are before you consider outsourcing means that you can carefully assess how well the
suppliers of outsourcing services can respond to your needs. However, should you
decide not to consider outsourcing, you need to determine whether some software
components of your replacement system should be purchased and not built in-house.

Sources of Software
We can group the sources of software into six major categories: information tech-
nology services firms, packaged software producers, enterprise-wide solutions, cloud
computing vendors, open-source software, and in-house developers (Figure 2-1).
These various sources represent points along a continuum of options, with many
hybrid combinations along the way.

Information Technology Services Firms If a company needs an information system
but does not have the expertise or the personnel to develop the system in-house,

 Chapter 2 The Origins Of sOfTware 29

and a suitable off-the-shelf system is not available, the company will likely consult
an information technology services firm. IT services firms help companies develop
custom information systems for internal use, or they develop, host, and run applica-
tions for customers, or they provide other services. Note in Table 2-1 that many of
the leading software companies in the world specialize in services, which include
custom systems development. These firms employ people with expertise in the devel-
opment of information systems. Their consultants may also have expertise in a given
business area. For example, consultants who work with banks understand financial

Cloud Computing
IT Services Firms

Packaged Software
Providers

In-House

Open Source

ERP Providers

Figure 2-1
Sources of application software

Table 2-1 leading Software Firms and Their Development Specializations
Specialization Example Firms or Websites
IT Services Accenture

Computer Sciences Corporation (CSC)
IBM
HP

Packaged Software Providers Intuit
Microsoft
Oracle
SAP AG
Symantec

Enterprise Software Solutions Oracle
SAP AG

Cloud Computing Amazon.com
Google
IBM
Microsoft
Salesforce.com

Open Source SourceForge.net

Sources: Middle: Paulista/Fotolia,
 Clockwise starting with upper left:
 Kamira/Shutterstock; Amit John/
Pearson India Education Services Pvt.
Ltd; Dmitry Kalinovsky/Shutterstock;
mubus/Fotolia; grgroup/Fotolia;
Le Do/Shutterstock

30 part I fOundaTiOns fOr sysTems develOpmenT

institutions as well as information systems. Consultants use many of the same meth-
odologies, techniques, and tools that companies use to develop systems in-house.

It may surprise you to see IBM listed as a top global software producer; some
people still think of it as primarily a hardware company. Yet IBM has been moving
away from a reliance on hardware development for many years. The purchase of the
IT consulting arm of PricewaterhouseCoopers by IBM in 2002 solidified its move into
services and consulting. IBM is also well known for its development of web server
and middleware software. Other leading IT services firms include traditional consult-
ing firms, such as Computer Sciences Corp., Accenture, and HP (Hewlett-Packard).
HP, another company formerly focused on hardware, has made the transition to an
IT services firm. In 2008, HP bought EDS, continuing its transition to a services-
oriented company.

Packaged Software Producers The growth of the software industry has been
phenomenal since its beginnings in the mid-1960s. Some of the largest computer
companies in the world are companies that produce software exclusively. A good
example is Microsoft, probably the best-known software company in the world.
Almost 87 percent of Microsoft’s revenue comes from its software sales, mostly for
its Windows operating systems and its personal productivity software, the Microsoft
Office Suite. Also listed in Table 2-1, Oracle is exclusively a software company
known primarily for its database software, but Oracle also makes enterprise sys-
tems. Another company on the list, SAP, is also a software-focused company that
develops enterprise-wide system solutions. You will read more about Oracle and
SAP shortly, in the section on enterprise systems.

Software companies develop what are sometimes called prepackaged or off-the-shelf
systems. Microsoft’s Word (Figure 2-2) and Intuit’s Quicken, QuickPay, and QuickBooks
are popular examples of such software. The packaged software development indus-
try serves many market segments. Their software offerings range from general, broad-
based packages, such as productivity tools, to very narrow, niche packages, such as
 software to help manage a day care center. Software companies develop software to run
on many different computer platforms, from microcomputers to large mainframes.
The companies range in size from just a few people to thousands of employees.

Figure 2-2
A document created in Microsoft’s Word
(Source: Microsoft Corporation.)

 Chapter 2 The Origins Of sOfTware 31

Software companies consult with system users after the initial software design
has been completed and an early version of the system has been built. The systems
are then tested in actual organizations to determine whether there are any problems
or if any improvements can be made. Until testing is completed, the system is not
 offered for sale to the public.

Some off-the-shelf software systems cannot be modified to meet the specific,
 individual needs of a particular organization. Such application systems are some-
times called turnkey systems. The producer of a turnkey system will make changes
to the software only when a substantial number of users ask for a specific change.
However, other off-the-shelf application software can be modified or extended, by
the producer or by the user, to more closely fit the needs of the organization. Even
though many organizations perform similar functions, no two organizations do the
same thing in quite the same way. A turnkey system may be good enough for a certain
level of performance, but it will never perfectly match the way a given organization
does business. A reasonable estimate is that off-the-shelf software can at best meet
70 percent of an organization’s needs. Thus, even in the best case, 30 percent of the
software system does not match the organization’s specifications.

Enterprise Solutions Software As mentioned in Chapter 1, many firms have chosen
complete software solutions, called enterprise solutions or enterprise resource plan-
ning (ERP) systems, to support their operations and business processes. These ERP
software solutions consist of a series of integrated modules. Each module supports
an individual, traditional business function, such as accounting, distribution, manu-
facturing, or human resources. The difference between the modules and traditional
approaches is that the modules are integrated to focus on business processes rather
than on business functional areas. For example, a series of modules will support
the entire order entry process, from receiving an order, to adjusting inventory, to
shipping to billing, to after-the-sale service. The traditional approach would use dif-
ferent systems in different functional areas of the business, such as a billing system
in accounting and an inventory system in the warehouse. Using enterprise software
solutions, a firm can integrate all parts of a business process in a unified information
system. All aspects of a single transaction occur seamlessly within a single informa-
tion system, rather than as a series of disjointed, separate systems focused on busi-
ness functional areas.

The benefits of the enterprise solutions approach include a single repository of
data for all aspects of a business process and the flexibility of the modules. A single
repository ensures more consistent and accurate data, as well as less maintenance.
The modules are flexible because additional modules can be added as needed once
the basic system is in place. Added modules are immediately integrated into the
existing system. However, there are disadvantages to enterprise solutions software.
The systems are very complex, so implementation can take a long time to complete.
Organizations typically do not have the necessary expertise in-house to implement
the systems, so they must rely on consultants or employees of the software vendor,
which can be very expensive. In some cases, organizations must change how they do
business in order to benefit from a migration to enterprise solutions.

Several major vendors provide enterprise solution software. The best known
is probably SAP AG, the German firm mentioned earlier, known for its flagship
 product R/3. SAP stands for Systems, Applications, and Products in Data Processing.
SAP AG was founded in 1972, but most of its growth has occurred since 1992. Since
2010, SAP has been one of the largest suppliers of software in the world. The other
major vendor of enterprise solutions is Oracle Corp., a US-based firm, perhaps
better known for its database software. Oracle captured a large share of the ERP
market through its own financial systems and through the acquisition of other ERP
vendors. At the end of 2004, Oracle acquired PeopleSoft, Inc., a US firm founded
in 1987. PeopleSoft began with enterprise solutions that focused on human re-
sources management and expanded to cover financials, materials management,

enterprise resource planning
(erP) systems
A system that integrates individual
traditional business functions into a series of
modules so that a single transaction occurs
seamlessly within a single information
system rather than several separate systems.

32 part I fOundaTiOns fOr sysTems develOpmenT

distribution, and manufacturing before Oracle acquired them. Just before being
purchased by Oracle, PeopleSoft had boosted its corporate strength in 2003
through acquiring another ERP vendor, JD Edwards. Together, SAP and Oracle
control about 36 percent of the ERP market (Compare Business Products, 2014).
Because the higher end of the market has become saturated with ERP systems,
most ERP vendors are looking to medium and small businesses for growth. For
example, SAP’s offering for medium and small businesses is called SAP Business
ByDesign (Figure 2-3).

Cloud Computing Another method for organizations to obtain applications is to
rent them or license them from third-party providers who run the applications at
remote sites. Users have access to the applications through the Internet or through
virtual private networks. The application provider buys, installs, maintains, and
 upgrades the applications. Users pay on a per-use basis or they license the software,
typically month to month. Although this practice has been known by many different
names over the years, today it is called cloud computing. Cloud computing refers to
the provision of applications over the Internet, where customers do not have to invest
in the hardware and software resources needed to run and maintain the applications.
You may have seen the Internet referred to as a cloud in other contexts, which comes
from how the Internet is depicted on computer network diagrams. A well-known
example of cloud computing is Google Apps, where users can share and create docu-
ments, spreadsheets, and presentations (Figure 2-4). Another well-known example is
Salesforce.com, which provides customer relationship management software online.
Cloud computing encompasses many areas of technology, including software as a
service (often referred to as SaaS), which includes Salesforce.com, and hardware as
a service, which includes Amazon Web Services and allows companies to order server
capacity and storage on demand.

Microsoft and IDC predicted that cloud computing would create 14 million
new jobs by 2015 and that the total global market for cloud computing would reach
$1.1 trillion USD that year (McDougall, 2012). The companies most likely to profit

Cloud computing
The provision of computing resources,
including applications, over the Internet,
so customers do not have to invest in the
computing infrastructure needed to run and
maintain the resources.

Figure 2-3
SAP’s Business ByDesign, a product
designed for medium-sized companies
(Source: www.sap.com/usa/solutions/
Sme/Businessbydesign/Flash/bsm/A1S.
html. © Copyright SAP AG. All rights
reserved.)

http://www.sap.com/usa/solutions/Sme/Businessbydesign/Flash/bsm/A1S.html
http://www.sap.com/usa/solutions/Sme/Businessbydesign/Flash/bsm/A1S.html
http://www.sap.com/usa/solutions/Sme/Businessbydesign/Flash/bsm/A1S.html

 Chapter 2 The Origins Of sOfTware 33

immediately are those that can quickly adjust their product lines to meet the needs
of cloud computing. These include such well-known names as IBM, which has built
multiple cloud computing centers worldwide; Microsoft, which in 2008 announced
its Azure platform to support the development and operation of business applica-
tions and consumer services on its own servers; and Amazon.com, which provides
storage and capacity from its own servers to customers.

As these growth forecasts indicate, taking the cloud computing route has its
advantages. The top three reasons for choosing to go with cloud computing, all of
which result in benefits for the company, are (1) freeing internal IT staff, (2) gaining
access to applications faster than via internal development, and (3) achieving lower-
cost access to corporate-quality applications. Especially appealing is the ability to gain
access to large and complex systems without having to go through the expensive and
time-consuming process of implementing the systems themselves in-house. Getting
your computing through a cloud also makes it easier to walk away from an unsatisfac-
tory systems solution. Other reasons include cost effectiveness, speed to market, and
better performance (Moyle & Kelley, 2011).

IT managers do have some concerns about cloud computing, however. The
primary concern is over security. Concerns over security are based on storing com-
pany data on machines one does not own and that others can access. In fact, the top
two reasons for not using cloud services are concerns about unauthorized access to
proprietary information and unauthorized access to customer information (Moyle &
Kelley, 2011). Another concern is reliability. Some warn that the cloud is actually a
network of networks, and as such, it is vulnerable to unexpected risks due to its com-
plexity (kfc, 2012). Still another concern is compliance with government regulations,
such as the Sarbanes-Oxley Act. Experts recommend a three-step process for secure
migration to the cloud (Moyle & Kelley, 2011). First, have the company’s security
experts involved early in the migration process, so that a vendor who understands the
company’s security and regulatory requirements can be selected. Second, set realistic
security requirements. Make sure the requirements are clearly spelled out as part of
the bidding process. Third, do an honest risk assessment. Determine which data will
be migrated and pay attention to how it will be managed by the cloud vendor. Once
migration has occurred, it is important for companies to continue to monitor their
data and systems and actively work with the vendor to maintain security.

Figure 2-4
A presentation edited in Google Apps
Reprinted by permission from Joey F.
George.

34 part I fOundaTiOns fOr sysTems develOpmenT

Open-Source Software Open-source software is unlike the other types of software
you have read about so far. Open-source software is different because it is freely
available, not just the final product but the source code itself. It is also different
 because it is developed by a community of interested people instead of by employees
of a particular company. Open-source software performs the same functions as
 commercial software, such as operating systems, e-mail, database systems, web
browsers, and so on. Some of the most well-known and popular open-source soft-
ware names are Linux, an operating system; mySQL, a database system; and Firefox,
a web browser. Open source also applies to software components and objects. Open
source is developed and maintained by communities of people, and sometimes these
communities can be very large. Developers often use common web resources, such
as SourceForge.net, to organize their activities. As of January 2105, SourceForge.
net hosted 430,000 projects and had over 3.7 million registered users. There is no
 question that the open-source movement would not be having the success it enjoys
without the availability of the Internet for providing access and organizing develop-
ment activities.

If the software is free, you might wonder how anybody makes any money by
developing open-source software. Companies and individuals can make money
with open source in two primary ways: (1) by providing maintenance and other
services or (2) by providing one version of the software free and selling a more fully
featured version. Some open-source solutions have more of an impact on the soft-
ware industry than others. Linux, for example, has been very successful in the
server software market, where it is estimated to have as much as 36 percent of the
market share (W3Techs, 2015). In the desktop operating systems market, Linux
has about 1 percent market share. Other open-source software products, such as
mySQL, have also been successful, and open source’s share of the software industry
seems destined to continue to grow.

In-House Development We have talked about several different types of external
organizations that serve as sources of software, but in-house development remains
an option. In-house development has become a progressively smaller piece of all sys-
tems development work that takes place in and for organizations. As you read earlier
in this chapter, internal corporate information systems departments now spend a
smaller and smaller proportion of their time and effort on developing systems from
scratch. In-house development can lead to a larger maintenance burden than other
development methods, such as packaged applications. A study by Banker, Davis, and
Slaughter found that using a code generator as the basis for in-house development
was related to an increase in maintenance hours, whereas using packaged applica-
tions was associated with a decrease in maintenance effort.

Of course, in-house development need not entail development of all of
the software that will constitute the total system. Hybrid solutions involving
some purchased and some in-house software components are common. If you
choose to acquire software from outside sources, this choice is made at the end of
the analysis phase. The choice between a package and an external supplier will be
determined by your needs, not by what the supplier has to sell. As we will discuss,
the results of your analysis study will define the type of product you want to buy
and will make working with an external supplier much easier, more productive,
and worthwhile. Table 2-2 compares the six different software sources discussed
in this section.

choosing off-the-Shelf Software
Once you have decided to purchase off-the-shelf software rather than write some or
all of the software for your new system, how do you decide what to buy? There are
several criteria to consider, and special criteria may arise with each potential software

 Chapter 2 The Origins Of sOfTware 35

purchase. For each criterion, an explicit comparison should be made between the
software package and the process of developing the same application in-house. The
most common criteria include the following:

•	 Cost
•	 Functionality
•	 Vendor support
•	 Viability of vendor
•	 Flexibility
•	 Documentation
•	 Response time
•	 Ease of installation

These criteria are presented in no particular order. The relative importance of the
criteria will vary from project to project and from organization to organization. If you
had to choose two criteria that would always be among the most important, those
two would probably be vendor viability and vendor support. You do not want to get
involved with a vendor that might not be in business tomorrow. Similarly, you do not
want to license software from a vendor with a reputation for poor support. How you
rank the importance of the remaining criteria will very much depend on the specific
situation in which you find yourself.

Cost involves comparing the cost of developing the same system in-house with
the cost of purchasing or licensing the software package. You should include a com-
parison of the cost of purchasing vendor upgrades or annual license fees with the
costs you would incur to maintain your own software. Costs for purchasing and
 developing in-house can be compared based on economic feasibility measures (e.g.,
a present value can be calculated for the cash flow associated with each alternative).

Functionality refers to the tasks the software can perform and the mandatory,
essential, and desired system features. Can the software package perform all or just
some of the tasks your users need? If only some, can it perform the necessary core
tasks? Note that meeting user requirements occurs at the end of the analysis phase
because you cannot evaluate packaged software until user requirements have been
gathered and structured. Purchasing application software is not a substitute for con-
ducting the systems analysis phase; rather, purchasing software is part of one design
strategy for acquiring the system identified during analysis.

As we said earlier, vendor support refers to whether vendor can provide support,
and how much it can provide. Support occurs in the form of assistance with installing

Table 2-2 Comparison of Six Different Sources of Software Components

Producers

When to Go to This Type of
Organization for Software

Internal Staffing Requirements

IT services firms When task requires custom support
and system can’t be built internally
or system needs to be sourced

Internal staff may be needed,
depending on application

Packaged software
producers

When supported task is generic Some IS and user staff to define
requirements and evaluate
packages

Enterprise-wide
solutions vendors

For complete systems that cross
functional boundaries

Some internal staff necessary
but mostly need consultants

Cloud computing For instant access to an application;
when supported task is generic

Few; frees up staff for other
IT work

Open-source
software

When supported task is generic
but cost is an issue

Some IS and user staff to define
requirements and evaluate
packages

In-house developers When resources and staff are
available and system must be built
from scratch

Internal staff necessary though
staff size may vary

36 part I fOundaTiOns fOr sysTems develOpmenT

the software, training user and systems staff on the software, and providing help as
problems arise after installation. Recently, many software companies have signifi-
cantly reduced the amount of free support they will provide customers, so the cost to
use telephone, on-site, fax, or computer bulletin board support facilities should be
considered. Related to support is the vendor’s viability. You do not want to get stuck
with software developed by a vendor that might go out of business soon. This latter
point should not be minimized. The software industry is quite dynamic, and innova-
tive application software is created by entrepreneurs working from home offices—the
classic cottage industry. Such organizations, even with outstanding software, often
do not have the resources or business management ability to stay in business very
long. Further, competitive moves by major software firms can render the products
of smaller firms outdated or incompatible with operating systems. One software firm
we talked to while developing this book was struggling to survive just trying to make
its software work on any supposedly Windows PC (given the infinite combination of
video boards, monitors, BIOS chips, and other components). Keeping up with hard-
ware and system software changes may be more than a small firm can handle, and
good off-the-shelf application software can be lost.

Flexibility refers to how easy it is for you, or the vendor, to customize the soft-
ware. If the software is not very flexible, your users may have to adapt the way they
work to fit the software. Are they likely to adapt in this manner? Purchased software
can be modified in several ways. Sometimes the vendor will be willing to make cus-
tom changes for you, if you are willing to pay for the redesign and programming.
Some vendors design the software for customization. For example, the software may
include several different ways of processing data and, at installation time, the cus-
tomer chooses which to initiate. Also, displays and reports may be easily redesigned
if these modules are written in a fourth-generation language. Reports, forms, and
displays may be easily customized using a process whereby your company name and
chosen titles for reports, displays, forms, column headings, and so forth are selected
from a table of parameters you provide. You may want to employ some of these same
customization techniques for systems developed in-house so that the software can be
easily adapted for different business units, product lines, or departments.

Documentation includes the user’s manual as well as technical documentation.
How understandable and up-to-date is the documentation? What is the cost for mul-
tiple copies, if required? Response time refers to how long it takes the software pack-
age to respond to the user’s requests in an interactive session. Another measure of
time would be how long it takes the software to complete running a job. Finally, ease
of installation is a measure of the difficulty of loading the software and making it
operational.

Of course, the criteria for software acquisition will vary with the type of system
you are acquiring. For example, if you are thinking about licensing an ERP system,
you will certainly take all of the prior criteria into account, but you will also want to
investigate criteria that are specific to ERP systems. Verville and colleagues (2005)
studied organizations that had acquired ERP systems to discover what the critical
factors were for success. They found 10 success factors, with 5 related to the acquisi-
tion process, and 5 related to the people in the process. They found the acquisition
process had to be highly planned and structured, and it had to be rigorous. For the
process to be successful, nothing could be overlooked during planning. It was impor-
tant that two of the five success factors related to the process were completed before
ERP vendors were contacted. These two factors were determining all of the system
requirements and establishing the selection and evaluation criteria. These two fac-
tors helped the organizations compose clear descriptions of their needs and evaluate
bids from vendors. The fifth process-related criterion was obtaining accurate infor-
mation. Information sources needed to be verified and cross-validated.

The other five success factors dealt with the people involved in the acquisition
process. The first factor was clear and unambiguous authority. The person in charge
of the process needed to be objective and a strong leader. Second, the composition

 Chapter 2 The Origins Of sOfTware 37

of the acquisition team was important. The team needed to be diverse, with each
member having a particular skill set that was complementary to those of the other
team members. Third, it was considered important to approach the relationship with
the vendor as a partnership, as opposed to an adversarial or neutral relationship.
Given the complexity and cost of ERP systems, members of the acquiring organiza-
tion would be working with the vendors for several years, so a comfortable working
relationship was essential. Fourth, future users of the ERP system were active partici-
pants in the acquisition process. Lastly, the fifth success factor related to people in
the process was user buy-in. In the companies studied, user buy-in often translated
into user acceptance of the system and even enthusiasm and excitement about it.

Validating Purchased Software information
One way to get all of the information you want about a software package is to collect it
from the vendor. Some of this information may be contained in the software documen-
tation and technical marketing literature. Other information can be provided upon
 request. For example, you can send prospective vendors a questionnaire, asking specific
questions about their packages. This may be part of a request for proposal (RFP) or a
request for quote (RFQ) process your organization requires when major purchases are
made. Space does not permit us to discuss the topic of RFPs and RFQs here; you may
wish to refer to purchasing and marketing texts if you are unfamiliar with such processes
(additional references about RFPs and RFQs are found at the end of this chapter).

There is, of course, no replacement for actually using the software yourself
and running it through a series of tests based on your software selection criteria.
Remember to test not only the software, but also the documentation, training
 materials, and even the technical support facilities. One requirement you can place
on prospective software vendors as part of the bidding process is that they install
(free or at an agreed-upon cost) their software for a limited amount of time on your
computers. This way you can determine how their software works in your environ-
ment, not in some optimized environment they have for demonstration purposes.

One of the most reliable and insightful sources is other users of the software.
Vendors will usually provide a list of customers (remember, they will naturally tell you
about satisfied customers, so you may have to probe for a cross section of customers)
and people who are willing to be contacted by prospective customers. And here is
where your personal network of contacts, developed through professional groups,
college friends, trade associations, or local business clubs, can be a resource; do not
hesitate to find some contacts on your own. Such current or former customers can
provide a depth of insight on the use of a package at their organizations.

To gain a range of opinions about possible packages, you can use independent
software testing and abstracting services that periodically evaluate software and col-
lect user opinions. Such surveys are available for a fee either as subscription services
or on demand (two popular services are Auerbach Publishers and DataPro); occa-
sionally, unbiased surveys appear in trade publications. Often, however, articles in
trade publications, even software reviews, are actually seeded by the software manu-
facturer and are not unbiased.

If you are comparing several software packages, you can assign scores for each
package on each criterion and compare the scores using the quantitative method we
demonstrate in Chapter 4 for comparing alternative system design strategies.

ReuSe
Reuse is the use of previously written software resources in new applications. Because
so many bits and pieces of applications are relatively generic across applications, it
seems intuitive that great savings can be achieved in many areas if those generic
bits and pieces do not have to be written anew each time they are needed. Reuse

request for proposal (rFP)
A document provided to vendors that asks
them to propose hardware and system
software that will meet the requirements of
a new system.

reuse
The use of previously written software
resources, especially objects and
components, in new applications.

38 part I fOundaTiOns fOr sysTems develOpmenT

should increase programmer productivity because being able to use existing soft-
ware for some functions means they can perform more work in the same amount of
time. Reuse should also decrease development time, minimizing schedule overruns.
Because existing pieces of software have already been tested, reusing them should
also result in higher-quality software with lower defect rates, decreasing mainte-
nance costs.

Although reuse can conceivably apply to many different aspects of software,
 typically it is most commonly applied to two different development technologies:
object-oriented and component-based development. You were briefly introduced to
object-oriented development in Chapter 1. For example, consider an object class
created to model an employee. The object class Employee would contain both the
data about employees and the instructions necessary for calculating payroll for a
 variety of job types. The object class could be used in any application that dealt with
 employees, but if changes had to be made in calculating payroll for different types
of employees, the changes would have to be made only to the object class and not to
the various applications that used it. By definition, using the Employee object class in
more than one application constitutes reuse.

Component-based development is similar to object-oriented development in
that the focus is on creating general-purpose pieces of software that can be used
 interchangeably in many different programs. Components can be as small as objects
or as large as pieces of software that handle single business functions, such as cur-
rency conversion. The idea behind component-based development is the assembly of
an application from many different components at many different levels of complex-
ity and size. Many vendors are working on developing libraries of components that
can be retrieved and assembled, as needed, into desired applications.

Some evidence suggests that reuse can be effective, especially for object classes.
For example, one laboratory study found that reuse of object class libraries resulted
in increased productivity, reduced defect density, and reduced rework (Basili et al.,
1996). For HP, a reuse program resulted in cutting time to market for certain prod-
ucts by a factor of three or more, from 18 months to less than 5 months (Griss,
2003). However, for reuse to work in an organizational setting, many different issues
must be addressed. Technical issues include the current lack of a methodology for
creating and clearly defining and labeling reusable components for placement in a
library, and the small number of reusable and reliable software resources currently
available. Key organizational issues include the lack of commitment to reuse, as well
as the lack of proper training and rewards needed to promote it, the lack of organi-
zational support for institutionalizing reuse, and the difficulty in measuring the eco-
nomic gains from reuse. Royce (1998) argues that, due to the considerable costs of
developing a reusable component, most organizations cannot compete economically
with established commercial organizations that focus on selling components as their
main line of business. Success depends on being able to leverage the cost of compo-
nents across a large user and project base (Figure 2-5). There are also key legal and
contractual issues concerning the reuse of object classes and components originally
used in other applications (Kim and Stohr, 1998).

When an organization’s management decides to pursue reuse as a strategy, it is
important for the organization to match its approach to reuse with its strategic busi-
ness goals (Griss, 2003). The benefits of reuse grow as more corporate experience is
gained from it, but so do the costs and the amount of resources necessary for reuse
to work well. Software reuse has three basic steps: abstraction, storage, and recontex-
tualization (Grinter, 2001). Abstraction involves the design of a reusable piece of soft-
ware, starting from existing software assets or from scratch. Storage involves making
software assets available for others to use. Although it sounds like a simple problem,
storage can actually be very challenging. The problem is not simply putting software
assets on a shelf; the problem is correctly labeling and cataloging assets so that others
can find the ones they want to use. Once an asset has been found, recontextualiza-
tion becomes important. This involves making the reusable asset understandable to

 Chapter 2 The Origins Of sOfTware 39

developers who want to use it in their systems. Software is complex, and a software
asset developed for a particular system under system-specific circumstances may not at
all be the asset it appears to be. What appears to be a generic asset called “customer”
may actually be something quite different, depending on the context in which it was
developed. It may often appear to be easier to simply build your own assets rather
than invest the time and energy it takes to establish a good understanding of software
someone else has developed. A key part of a reuse strategy, as mentioned previously,
is establishing rewards, incentives, and organizational support for reuse to help make
it more worthwhile than developing your own assets.

According to Griss (2003), an organization can take one of four approaches
to reuse (Table 2-3). The ad hoc approach to reuse is not really an approach at
all, at least from an official organizational perspective. With this approach, indi-
viduals are free to find or develop reusable assets on their own, and there are few,
if any, organizational rewards for reusing assets. Storage is not an issue, because
 individuals keep track of and distribute their own software assets. For such an ad
hoc, individually driven approach, it is difficult to measure any potential benefits
to the company.

Another approach to reuse is facilitated reuse. With this approach, developers are
not required to practice reuse, but they are encouraged to do so. The organization
makes available some tools and techniques that enable the development and sharing

Development
Cost and
Schedule
Resources

Number of Projects Using Reusable Assets

Many-project solution: High value per unit investment

5-project solution: 125% more cost and
150% more time

2-project solution: 50% more cost and 100% more time

1-project solution

Figure 2-5
Investments necessary to achieve
reusable components
(Source: Royce, Walker, Software Project
Management: A Unified Framework, 1st ed.,
©1998. Reprinted and Electronically
reproduced by permission of Pearson
Education, Inc. Upper Saddle River,
New Jersey.)

Table 2-3 Four approaches to Reuse
Approach Reuse Level Cost Policies and Procedures
Ad hoc None to low Low None.
Facilitated Low Low Developers are encouraged to reuse but are not

required to do so.
Managed Moderate Moderate Development, sharing, and adoption of reusable

assets are mandated; organizational policies
are established for documentation, packaging,
and certification.

Designed High High Reuse is mandated; policies are put in place
so that reuse effectiveness can be measured;
code must be designed for reuse during initial
development, regardless of the application
it is originally designed for; there may be a
corporate office for reuse.

(Source: Based on Flashline, Inc. and Griss, 2003.)

40 part I fOundaTiOns fOr sysTems develOpmenT

of reusable assets, and one or more employees may be assigned the role of evangelist
to publicize and promote the program. Very little is done to track the quality and use
of reusable assets, however, and the overall corporate investment is small.

Managed reuse is a more structured, and more expensive, mode of managing
software reuse. With managed reuse, the development, sharing, and adoption of
 reusable assets is mandated. The organization establishes processes and policies for
ensuring that reuse is practiced and that the results are measured. The organization
also establishes policies and procedures for ensuring the quality of its reusable assets.
The focus is on identifying existing assets that can be potentially reused from various
sources, including from utility asset libraries that come with operating systems, from
companies that sell assets, from the open-source community, from internal reposito-
ries, from scouring existing legacy code, and so on.

The most expensive and extensive approach to reuse is designed reuse. In addition
to mandating reuse and measuring its effectiveness, the designed reuse approach
takes the extra step of mandating that assets be designed for reuse as they are being
designed for specific applications. The focus is more on developing reusable assets
than on finding existing assets that might be candidates for reuse. A corporate reuse
office may be established to monitor and manage the overall methodology. Under
such an approach, as much as 90 percent of software assets may be reused across dif-
ferent applications.

Each approach to reuse has its advantages and disadvantages. No single
 approach is a silver bullet that will solve the reuse puzzle for all organizations and
for all situations. Successful reuse requires an understanding of how reuse fits within
larger organizational goals and strategies, as well as an understanding of the social
and technical world into which the reusable assets must fit.

Summary
As a systems analyst, you must be aware of where you can
obtain software that meets some or all of an organization’s
needs. You can obtain application (and system) software
from information technology services firms, packaged
software providers, vendors of enterprise-wide solution
software, cloud computing vendors, and open-source soft-
ware providers, as well as from internal systems develop-
ment resources, including the reuse of existing software
components. You can even hire an organization to handle

all of your systems development needs, which is called
outsourcing. You must also know the criteria to use when
choosing among off-the-shelf software products. These cri-
teria include cost, functionality, vendor support, vendor
 viability, flexibility, documentation, response time, and
ease of installation. Requests for proposals are one way
you can collect more information about system software,
its performance, and its costs.

Key TermS

 2.1 Cloud computing
 2.2 Enterprise resource planning

(ERP) systems

 2.3 Outsourcing
 2.4 Request for proposal (RFP)

 2.5 Reuse

Match each of the key terms above with the definition that best
fits it.

____ The practice of turning over responsibility of some or all
of an organization’s information systems applications and
operations to an outside firm.

____ A system that integrates individual traditional business
functions into a series of modules so that a single transac-
tion occurs seamlessly within a single information system,
rather than several separate systems.

____ A document that is provided to vendors to ask them to
propose hardware and system software that will meet the
requirements of your new system.

____ The use of previously written software resources, especially
objects and components, in new applications.

____ The provision of computing resources, including applica-
tions, over the Internet so customers do not have to invest
in the computing infrastructure needed to run and main-
tain computing resources.

 Chapter 2 The Origins Of sOfTware 41

revIew QueSTIonS
 2.6 Describe and compare the various sources of software.

 2.7 How can you decide among various off-the-shelf software
options? What criteria should you use?

 2.8 What is an RFP, and how do analysts use one to gather infor-
mation on hardware and system software?

 2.9 What methods can a systems analyst employ to verify vendor
claims about a software package?

 2.10 What are ERP systems? What are the benefits and disadvan-
tages of such systems as a design strategy?

 2.11 Explain reuse and its advantages and disadvantages.

 2.12 Compare and contrast the four approaches to reuse.

ProblemS and exercISeS
 2.13 Research how to prepare an RFP.

 2.14 Review the criteria for selecting off-the-shelf software pre-
sented in this chapter. Use your experience and imagination
and describe other criteria that are or might be used to select
off-the-shelf software in the real world. For each new crite-
rion, explain how use of this criterion might be functional
(i.e., it is useful to use this criterion), dysfunctional, or both.

 2.15 In the section on choosing off-the-shelf software, eight
criteria are proposed for evaluating alternative packages.

Suppose the choice was between alternative custom soft-
ware developers rather than prewritten packages. What cri-
teria would be appropriate to select and compare among
competing bidders for custom development of an applica-
tion? Define each of these criteria.

 2.16 How might the project team recommending an ERP design
strategy justify its recommendation as compared with other
types of design strategies?

FIeld exercISeS
 2.17 Interview businesspeople who participate in the purchase

of off-the-shelf software in their organizations. Review
with them the criteria for selecting off-the-shelf software
presented in this chapter. Have them prioritize the list of
criteria as they are used in their organization and provide
an explanation of the rationale for the ranking of each cri-
terion. Ask them to list and describe any other criteria that
are used in their organization.

 2.18 Obtain copies of actual RFPs used for information systems
 developments and/or purchases. If possible, obtain RFPs

from public and private organizations. Find out how they are
used. What are the major components of these proposals? Do
these proposals seem to be useful? Why or why not? How and
why do RFPs from public and private organizations differ?

 2.19 Contact an organization that has implemented or is imple-
menting an integrated ERP application. Why did it choose
this design strategy? How has it managed this development
project differently from prior large projects? What organi-
zational changes have occurred due to this design strategy?
How long did the implementation last, and why?

reFerenceS
Applegate, L. M., and R. Montealegre. 1991. “Eastman Kodak

Company: Managing Information Systems through Stra-
tegic Alliances.” Harvard Business School case 9-192-030.
Cambridge, MA: President and Fellows of Harvard College.

ATKearney. 2014. “A Wealth of Choices: From Anywhere on
Earth to No Location at All.” Available at http://www
.atkearney.com/research-studies/global-services-location-
index. Accessed February 21, 2015.

Banker, R. D., G. B. Davis, and S. A. Slaughter. 1998. “Software
Development Practices, Software Complexity, and Software
Maintenance Performance: A Field Study.” Management
 Science 44(4): 433–50.

Basili, V. R., L. C. Briand, and W. L. Melo. 1996. “How Reuse
Influences Productivity in Object-Oriented Systems.” Com-
munications of the ACM 39(10): 104–16.

Compare Business Products. 2014. “The Top Ten ERP Vendors.”
Available at http://www.comparebusinessproducts.com/
resources/item/the-top-ten-erp-vendors-2015. Accessed
February 21, 2015.

Computer History Museum. 2003. Timeline of Computer
 History. Available at www.computerhistory.org. Accessed
February 14, 2009.

Grinter, R. E. 2001. “From Local to Global Coordination:
 Lessons from Software Reuse.” In Proceedings of Group ’01,
144–53. Boulder, CO: Association for Computing Machin-
ery SIGGROUP.

Griss, M. 2003. “Reuse Comes in Several Flavors.” Flashline white
paper. Available at www.flashline.com. Accessed February
10, 2009.

Ketler, K., and J. R. Willems. 1999. “A Study of the Outsourcing
Decision: Preliminary Results.” Proceedings of SIGCPR ’99,
New Orleans, LA: 182–89.

kfc. 2012. “The Hidden Risk of a Meltdown in the Cloud.”
 Technology Review. Available at http://www.technologyre-
view.com/printer_friendly_blog.aspx?id=27642. Accessed
April 17, 2012.

Kim, Y., and E. A. Stohr. 1998. “Software Reuse: Survey and
 Research Directions.” Journal of MIS 14(4): 113–47.

http://www.atkearney.com/research-studies/global-services-locationindex
http://www.comparebusinessproducts.com/resources/item/the-top-ten-erp-vendors-2015
http://www.computerhistory.org
http://www.flashline.com
http://www.technologyre-view.com/printer_friendly_blog.aspx?id=27642
http://www.technologyre-view.com/printer_friendly_blog.aspx?id=27642
http://www.atkearney.com/research-studies/global-services-locationindex
http://www.atkearney.com/research-studies/global-services-locationindex
http://www.comparebusinessproducts.com/resources/item/the-top-ten-erp-vendors-2015

42 part I fOundaTiOns fOr sysTems develOpmenT

King, L. 2010. “Shell Standardising Operations in $3bn Saving
Drive.” Computerworld UK, February 4. Available at http://
www.computerworlduk.com/news/applications/18669/.
Accessed January 11, 2012.

King, R. 2008a. “The New Economics of Outsourcing.” Business-
Week online, April 7. Available at http://www.businessweek
.com/stories/2008-04-07/the-new-economics-ofoutsourc-
ingbusinessweek-business-news-stock-market-and-financial-
advice. Accessed August 25, 2012.

McDougall, P. 2012. “Cloud Will Create 14 Million Jobs, Study
Says.” InformationWeek, March 5. Available at http://
www.informationweek.com/news/windows/microsoft_
news/232601993. Accessed March 13, 2012.

Moyle, E., and D. Kelley. 2011. “Cloud Security: Understand the
Risks Before You Make the Move.” InformationWeek Analytics.
Available at http://analytics.informationweek.com. Accessed
April 14, 2012.

Nguyen, A. 2012. “Shell Completes Transition of HR
 Application Services to Accenture.” Computerworld UK,
 January 25. From http://www.computerworld.com/s/
article/print/9223159/Shell_completes_transition_of_
HR_ application_services_to_Accenture. Accessed Janu-
ary 11, 2012.

Royce, W. 1998. Software Project Management: A Unified Framework.
Boston: Addison-Wesley.

Verville, J., C. Bernadas, and A. Halingten. 2005. “So You’re
Thinking of Buying an ERP? Ten Critical Factors for Suc-
cessful Acquisition.” Journal of Enterprise Information Manage-
ment 18(6), 665–77.

W3Techs, 2015. “Usage Statistics and Market Share of Linux for
Websites.” Available at http://w3techs.com/technologies/
details/os-linux/all/all. Accessed on February 21, 2015.

http://www.computerworlduk.com/news/applications/18669/
http://www.computerworlduk.com/news/applications/18669/
http://www.businessweek.com/stories/2008-04-07/the-new-economics-ofoutsourcingbusinessweek-business-news-stock-market-and-financialadvice
http://www.informationweek.com/news/windows/microsoft_news/232601993
http://www.informationweek.com/news/windows/microsoft_news/232601993
http://analytics.informationweek.com
http://www.computerworld.com/s/article/print/9223159/Shell_completes_transition_of_HR_application_services_to_Accenture
http://w3techs.com/technologies/details/os-linux/all/all
http://www.businessweek.com/stories/2008-04-07/the-new-economics-ofoutsourcingbusinessweek-business-news-stock-market-and-financialadvice
http://www.informationweek.com/news/windows/microsoft_news/232601993
http://www.computerworld.com/s/article/print/9223159/Shell_completes_transition_of_HR_application_services_to_Accenture
http://www.computerworld.com/s/article/print/9223159/Shell_completes_transition_of_HR_application_services_to_Accenture
http://w3techs.com/technologies/details/os-linux/all/all

 Chapter 2 The Origins Of sOfTware 43

Just then, as Jim was trying to decide if he needed a big-
ger TV, Ella Whinston, the CEO at Petrie, walked into his
office. “How’s it going, Jim? Joe keeping you busy?” Joe
was Joe Swanson, Jim’s boss, the director of IT. Joe was
away for the week, at a meeting in Tucson, Arizona. Jim
quickly pulled his feet off his desk.

“Hi, Ella. Oh, yeah, Joe keeps me busy. I’ve got to get
through the entire corporate strategic IT plan before he
gets back—he’s going to quiz me—and then there’s the
new help desk training we’re going to start next week.”

“I didn’t know we had a strategic IT plan,” Ella teased.
“Anyway, what I came in here for is to give you some good
news. I want you to be the project manager for a project
that’s crucial to our corporate survival.”

“Me?” Jim said, “But I just got here.”
“Who better than you? You have a different perspective,

new ideas. You aren’t chained down by the past and by
the Petrie way of doing things, like the rest of us. Not that
it matters, since you don’t have a choice. Joe and I both
agree that you’re the best person for the job.”

“So,” Jim asked, “what’s the project about?”
“Well,” Ella began, “the executive team has decided that

the number one priority we have right now is to not only
survive but to thrive and prosper, and the way to do that
is to develop closer relationships with our customers. The
person on the executive team who’s even more excited
about this than me is John Smith, head of marketing. We
want to attract new customers, like all of our competitors.
But also like our competitors, we want to keep our cus-
tomers for life, kind of like a frequent-flier program, but
better. Better for us and for our loyal customers. And we
want to reward most the customers who spend the most.
We’re calling the project ‘No Customer Escapes.’”

“I hope that’s only an internal name,” Jim joked.
 “Seriously, I can see how something like this would
be good for Petrie, and I can see how IT would play an
 important, no, crucial role in making something like this
happen. So, what’s the next step in getting the project
approved?”

Case Questions

 2.20 How do information systems projects get started in
organizations?

 2.21 How are organizational information systems related
to company strategy? How does strategy affect the
information systems a company develops and uses?

 2.22 Research customer loyalty programs in retail firms.
How common are they? What are their primary
features?

 2.23 What do you think Jim’s next step would be? Why?
 2.24 Why would a systems analyst new to a company be

a good choice to lead an important systems develop-
ment effort?

Chapter 2: The Origins of Software

Jim Watanabe looked around his new office. He couldn’t
believe that he was the assistant director of information
technology at Petrie Electronics, his favorite consumer
electronics retail store. He always bought his new DVDs
and video games for his Xbox 360 at Petrie. In fact, he
bought his Blu-ray player and his Xbox 360 at Petrie,
along with his surround sound system and his 40-inch flat-
screen HD LED TV. And now he worked there, too. The
employee discount was a nice perk1 of his new job, but
he was also glad that his technical and people skills were
finally recognized by the people at Petrie. He worked
for five years at Broadway Entertainment Company as a
 senior systems analyst, and it was clear that he was not
going to be promoted there. He was really glad he posted
his résumé on Monster.com and that now he had a bigger
salary and a great job with more responsibility at Petrie.

Petrie Electronics started as a single electronics store
in 1984 in San Diego, California. The store was started by
 Jacob Rosenstein in a strip mall. It was named after Rob
Petrie, the TV writer played by Dick Van Dyke in the TV
show of the same name. Rosenstein always liked that show.
When he had grown the store to a chain of 13 locations in
the Southern California area, the business became too much
for Rosenstein to handle. He sold out in 1992, for a hand-
some profit, to the Matsutoya Corporation, a huge Japanese
conglomerate that saw the chain of stores as a place to sell
its many consumer electronics goods in the United States.

Matsutoya aggressively expanded the chain to 218
stores nationwide by the time they sold it in 2002, for a
handsome profit, to Sam and Harry’s, a maker and seller
of ice cream. Sam and Harry’s was looking for a way to
 diversify and invest the considerable cash they made
creating and selling ice cream, with flavors named after
 actors and actresses, like their best-selling Lime Neeson
and Jim Carrey-mel. Sam and Harry’s brought in pro-
fessional management to run the chain, and since they
bought it, they had added 15 more stores, including 1
in Mexico and 3 in Canada. Even though they originally
wanted to move the headquarters to their home-base state
of Delaware, Sam and Harry decided to keep Petrie head-
quartered in San Diego.

The company had made some smart moves and had done
well, Jim knew, but he also knew that competition was
fierce. Petrie competitors included big electronics retail
chains like BestBuy. In California, Fry’s was a ferocious
competitor. Other major players in the arena included the
electronics departments of huge chains like Walmart and
Target and online vendors like Amazon.com. Jim knew
that part of his job in IT was to help the company grow and
prosper and beat the competition—or at least survive.

petrIe eLeCtrOnICs

1perquisite

44

Payroll
System

Invoicing
System

Order Filling
System

Program
A

Program
B

Program
C

Program
A

Program
B

Program
A

Program
B

Accounting DepartmentOrders Department Payroll Department

Customer
Master

File

Inventory
Pricing

File

Inventory
Master

File

Customer
Master

File

Back
Order
File

Employee
Master

File

Chapter Managing the Information
Systems Project3

Learning Objectives

After studying this chapter, you should be able to

3.1 explain the process of managing an information
systems project, including project initiation, project
planning, project execution, and project
closedown,

3.2 describe how to represent and schedule project
plans using Gantt charts and network diagrams, and

3.3 explain how commercial project management
software packages can be used to assist in
representing and managing project schedules.

In Chapters 1 and 2, we introduced the five phases of
the systems development life cycle (SDLC) and explained
how an information systems project moves through those
five phases, in some cases repeatedly. In this chapter,
we focus on the systems analyst’s role as project man-
ager of an information systems project. Throughout the
SDLC, the project manager is responsible for initiat-
ing, planning, executing, and closing down the systems
 development project. Project management is arguably
the most important aspect of an information systems
 development project. Effective project management
helps to ensure that systems development projects meet
customer expectations and are delivered within budget
and time constraints.

Today, there is a shift in the types of projects most
firms are undertaking, which makes project manage-
ment much more difficult and even more critical to
project success (Fuller et al., 2008; Schiff, 2014a). For ex-
ample, in the past, organizations focused much of their
development on very large, custom-designed, stand-alone
applications. Today, much of the systems development ef-
fort in organizations focuses on implementing packaged
software such as enterprise resource planning (ERP)
and data warehousing systems. Existing legacy applica-
tions are also being modified so that business-to-business
transactions can occur seamlessly over the Internet. New
web-based interfaces are being added to existing legacy
systems so that a broader range of users, often distributed
globally, can access corporate information and systems.
Additionally, software developed by global outsourcing

partners that must be integrated into an organization’s
existing portfolio of applications is now common practice
(Overby, 2013). Working with vendors to supply applica-
tions, with customers or suppliers to integrate systems, or
with a broader and more diverse user community requires
that project managers be highly skilled. Consequently, it is
important that you gain an understanding of the project
management process; this will become a critical skill for
your future success.

In this chapter, we focus on the systems analyst’s role
in managing information systems projects and will refer
to this role as the project manager. The first section will
provide the background for Pine Valley Furniture (PVF),
a manufacturing company that we will visit throughout
the remainder of the book. We will then provide you with
an understanding of the project manager’s role and the
project management process. The discussion then turns
to techniques for reporting project plans using Gantt
charts and network diagrams. The chapter will conclude
with a discussion of the use of commercially available proj-
ect management software that can be used to assist with a
wide variety of project management activities.

PIne Valley FurnIture
CoMPany BaCkground
PVF manufactures high-quality wood furniture and dis-
tributes it to retail stores throughout the United States.
Its product lines include dinette sets, stereo cabinets,

Introduction

 Chapter 3 Managing the inforMation SySteMS Project 45

wall units, living room furniture, and bedroom furniture. In the early 1980s, PVF’s
founder, Alex Schuster, started to make and sell custom furniture in his garage. Alex
managed invoices and kept track of customers by using file folders and a filing cabi-
net. By 1984, business expanded and Alex had to rent a warehouse and hire a part-
time bookkeeper. PVF’s product line had multiplied, sales volume had doubled, and
staff had increased to 50 employees. By 1990, PVF moved into its third and present
location. Due to the added complexity of the company’s operations, Alex reorga-
nized the company into the following functional areas:

•	 Manufacturing, which was further subdivided into three separate functions—
Fabrication, Assembling, and Finishing

•	 Sales
•	 Orders
•	 Accounting
•	 Purchasing

Alex and the heads of the functional areas established manual information
systems, such as accounting ledgers and file folders, which worked well for a time.
Eventually, however, PVF selected and installed a network server to automate invoic-
ing, accounts receivable, and inventory control applications.

When the applications were first computerized, each separate application had
its own individual data files tailored to the needs of each functional area. As is typical
in such situations, the applications closely resembled the manual systems on which
they were based. Three computer applications at PVF are depicted in Figure 3-1:
order filling, invoicing, and payroll. In the late 1990s, PVF formed a task force to study
the possibility of moving to a database approach. After a preliminary study, manage-
ment decided to convert its information systems to such an approach. The company
upgraded its network server and implemented a centralized database management
system. Today, PVF has successfully deployed an integrated, company-wide database
and has converted its applications to work with the database. However, PVF is continu-
ing to grow at a rapid rate, putting pressure on its current application systems.

The computer-based applications at PVF support its business processes. When
customers order furniture, their orders must be processed appropriately: Furniture
must be built and shipped to the right customer and the right invoice mailed to the

Payroll
System

Invoicing
System

Order Filling
System

Program
A

Program
B

Program
C

Program
A

Program
B

Program
A

Program
B

Accounting DepartmentOrders Department Payroll Department

Customer
Master

File

Inventory
Pricing

File

Inventory
Master

File

Customer
Master

File

Back
Order
File

Employee
Master

File

FIGURE 3-1
Three computer applications at PVF: order filling, invoicing, and payroll
Hoffer, Jeffrey A.; Venkataraman, Ramesh; Topi, Heikki, Modern Database Management, 11th Ed., ©2013,
p. 8. Reprinted and electronically reproduced by permission of Pearson Education, Inc., New York, NY.

46 part I foundationS for SySteMS develoPMent

right address. Employees have to be paid for their work. Given these tasks, most of
PVF’s computer-based applications are located in the accounting and financial areas.
The applications include order filling, invoicing, accounts receivable, inventory con-
trol, accounts payable, payroll, and general ledger. At one time, each application had
its own data files. For example, there was a customer master file, an inventory master
file, a back-order file, an inventory pricing file, and an employee master file. The
order filling system used data from three files: customer master, inventory master,
and back order. Today, however, all systems are designed and integrated through
a company-wide database in which data are organized around entities, or subjects,
such as customers, invoices, and orders.

PVF, like many firms, decided to develop its application software in-house; that
is, it hired staff and bought the computer hardware and software necessary to build
application software suited to its own needs. (Other methods used to obtain appli-
cation software were discussed in Chapter 2.) Although PVF continues to grow at a
rapid rate, market conditions are becoming extremely competitive, especially with
the advent of the Internet and the web. Let’s see how a project manager plays a key
role in developing a new information system for PVF.

ManagIng the InForMatIon SySteMS ProjeCt
Project management is an important aspect of the development of information sys-
tems and a critical skill for a systems analyst. The focus of project management is to
ensure that systems development projects meet customer expectations and are deliv-
ered within budget and time constraints.

The project manager is a systems analyst with a diverse set of skills—manage-
ment, leadership, technical, conflict management, and customer relationship—who
is responsible for initiating, planning, executing, and closing down a project. As a
project manager, your environment is one of continual change and problem solving.
In some organizations, the project manager is a very experienced systems analyst,
whereas in others, both junior and senior analysts are expected to take on this role,
managing parts of a project or actively supporting a more senior colleague who
 assumes the project manager role. Understanding the project management process
is a critical skill for your future success.

Creating and implementing successful projects requires managing the
 resources, activities, and tasks needed to complete the information systems project.
A project is a planned undertaking of a series of related activities to reach an objec-
tive that has a beginning and an end. The first question you might ask yourself is
“Where do projects come from?” and, after considering all the different things that
you could be asked to work on within an organization, “How do I know which proj-
ects to work on?” The ways in which each organization answers these questions vary.

In the rest of this section, we describe the process followed by Juanita Lopez
and Chris Martin during the development of PVF’s Purchasing Fulfillment System.
Juanita works in the Order department, and Chris is a systems analyst.

Juanita observed problems with the way orders were processed and reported:
Sales growth had increased the workload for the Manufacturing department, and the
current systems no longer adequately supported the tracking of orders. It was becom-
ing more difficult to track orders and get the right furniture and invoice to the right
customers. Juanita contacted Chris, and together they developed a system that cor-
rected these Order department problems.

The first deliverable, or end product, produced by Chris and Juanita was a System
Service Request (SSR), a standard form PVF uses for requesting systems development
work. Figure 3-2 shows an SSR for a purchasing fulfillment system. The form includes
the name and contact information of the person requesting the system, a statement of
the problem, and the name and contact information of the liaison and sponsor.

Project manager
A systems analyst with a diverse set of
skills—management, leadership, technical,
conflict management, and customer
relationship—who is responsible for
initiating, planning, executing, and closing
down a project.

Project
A planned undertaking of related activities
to reach an objective that has a beginning
and an end.

Deliverable
An end product of an SDLC phase.

 Chapter 3 Managing the inforMation SySteMS Project 47

This request was then evaluated by the Systems Priority Board of PVF. Because
all organizations have limited time and resources, not all requests can be approved.
The board evaluates development requests in relation to the business problems or
opportunities the system will solve or create; it also considers how the proposed proj-
ect fits within the organization’s information systems architecture and long-range
development plans. The review board selects those projects that best meet overall or-
ganizational objectives (we learn more about organizational objectives in Chapter 4).
In the case of the Purchasing Fulfillment System request, the board found merit in
the request and approved a more detailed feasibility study. A feasibility study, which
is conducted by the project manager, involves determining if the information system
makes sense for the organization from an economic and operational standpoint. The
study takes place before the system is constructed. Figure 3-3 is a graphical view of
the steps followed during the project initiation of the Purchasing Fulfillment System.

In summary, systems development projects are undertaken for two primary rea-
sons: to take advantage of business opportunities and to solve business problems.
Taking advantage of an opportunity might mean providing an innovative service
to customers through the creation of a new system. For example, PVF may want to
create a website so that customers can easily access its catalog and place orders at any
time. Solving a business problem could involve modifying the way an existing system
processes data so that more accurate or timely information is provided to users. For
example, a company such as PVF may create a password-protected intranet site that
contains important announcements and budget information. Of course, projects
are not always initiated for the aforementioned rational reasons (taking advantage

Feasibility study
A study that determines if the proposed
information system makes sense for the
organization from an economic and
operational standpoint.

Pine Valley Furniture
System Service Request

REQUESTED BY

DEPARTMENT

LOC ATION

CONTACT

TYPE OF REQUEST

PROBLEM STATEMENT

URGENCY

DATEJuanita Lopez

Purchasing, Manufacturing Support

Headquarters, 1-322

Tel: 4-3267 FAX: 4-3270 e-mail: jlopez

October 1, 2017

[

[
[

]

]
]

[

[
[

]

]
]

New System

System Enhancement
System Error Correction

Immediate – Operations are impaired or
opportunity lost
Problems exist, but can be worked around
Business losses can be tolerated until new
system installed

X

X

Sales growth at PVF has caused greater volume of work for the manufacturing support unit within Purchasing. Further,
more concentration on customer service has reduced manufacturing lead times, which puts more pressure on purchasing
activities. In addition, cost-cutting measures force Purchasing to be more aggressive in negotiating terms with vendors,
improving delivery times, and lowering our investments in inventory. The current modest systems support for
Manufacturing/Purchasing is not responsive to these new business conditions. Data are not available, information cannot
be summarized, supplier orders cannot be adequately tracked, and commodity buying is not well supported. PVF is
spending too much on raw materials and not being responsive to manufacturing needs.

SERVICE REQUEST

I request a thorough analysis of our current operations with the intent to design and build a completely new information
system. This system should handle all purchasing transactions, support display and reporting of critical purchasing data,
and assist purchasing agents in commodity buying.

IS LIAISON

SPONSOR

TO BE COMPLETED BY SYSTEMS PRIORITY BOARD
[

[
[
[

]

]
]
]

Request approved

Recommend revision
Suggest user development
Reject for reason

Assigned to
Start date

Chris Martin (Tel: 4-6204 FAX: 4-6200 e-mail: cmartin)

Sal Divario, Director, Purchasing

FIGURE 3-2
System Service Request for Purchasing
Fulfillment System with name and contact
information of the person requesting the
system, a statement of the problem, and
the name and contact information of the
liaison and sponsor

48 part I foundationS for SySteMS develoPMent

of business opportunities or solving business problems). For example, in some in-
stances, organizations and government undertake projects to spend resources, to at-
tain or pad budgets, to keep people busy, or to help train people and develop their
skills. Our focus in this chapter is not on how and why organizations identify projects
but on the management of projects once they have been identified.

Once a potential project has been identified, an organization must determine
the resources required for its completion. This is done by analyzing the scope of
the project and determining the probability of successful completion. After getting
this information, the organization can then determine whether taking advantage of
an opportunity or solving a particular problem is feasible within time and resource
constraints. If deemed feasible, a more detailed project analysis is then conducted.
As you will see, the ability to determine the size, scope, and resource requirements of
a project is just one of the many skills that a project manager must possess. A project
manager is often thought of as a juggler keeping aloft many balls, which reflect the
various aspects of a project’s development, as depicted in Figure 3-4.

To successfully orchestrate the construction of a complex information system, a
project manager must have interpersonal, leadership, and technical skills. Table 3-1
lists the project manager’s common skills and activities. Note that many of the skills
are related to personnel or general management, not simply technical skills. Table 3-1
shows that not only does an effective project manager have varied skills, but he or
she is also the most instrumental person to the successful completion of any project.

The remainder of this chapter will focus on the project management process,
which involves four phases:

1. Initiating the project
2. Planning the project
3. Executing the project
4. Closing down the project

Project management
A controlled process of initiating, planning,
executing, and closing down a project.

1. Juanita observed problems with the existing
purchasing system.

2. Juanita contacted Chris within the IS development
group to initiate a System Service Request.

3. SSR was reviewed and approved by Systems
Priority Board.

4. Steering committee was assigned to oversee project.

5. Detailed project plan was developed and executed.

FIGURE 3-3
A graphical view of the five steps
followed during the project initiation of
the Purchasing Fulfillment System
Sources: Top to bottom: mast3r/
Shutterstock; sheff/Shutterstock;
wavebreakmedia/Shutterstock; Rob
Marmion/123rf; wavebreakmedia/
Shutterstock

 Chapter 3 Managing the inforMation SySteMS Project 49

Customer and
Management
Expectations

Technological
Change

Documentation
and

Communication

Contractors
and Vendors

Managing
People

Methodologies
and Tools

Time and
Resource

Constraints

Systems
Development

Life Cycle

Organizational
Change and
Complexity

The Art
of

Project
Management

FIGURE 3-4
A project manager juggles numerous
activities

Table 3-1 Common activities and Skills of a Project Manager
Activity Description Skill
Leadership Influencing the activities of others toward the

attainment of a common goal through the use of
intelligence, personality, and abilities

Communication; liaison between management, users, and
developers; assigning activities; monitoring progress

Management Getting projects completed through the effective
utilization of resources

Defining and sequencing activities; communicating
expectations; assigning resources to activities; monitoring
outcomes

Customer relations Working closely with customers to ensure that
project deliverables meet expectations

Interpreting system requests and specifications; site
preparation and user training; contact point for customers

Technical problem
solving

Designing and sequencing activities to attain
project goals

Interpreting system requests and specifications; defining
activities and their sequence; making trade-offs between
alternative solutions; designing solutions to problems

Conflict management Managing conflict within a project team to assure
that conflict is not too high or too low

Problem solving; smoothing out personality differences;
compromising; goal setting

Team management Managing the project team for effective team
performance

Communication within and between teams; peer evaluations;
conflict resolution; team building; self-management

Risk and change
management

Identifying, assessing, and managing the risks and
day-to-day changes that occur during a project

Environmental scanning; risk and opportunity identification
and assessment; forecasting; resource redeployment

Several activities must be performed during each of these four phases. Following
this formal project management process greatly increases the likelihood of project
success.

Source: ra2 studio/Fotolia

50 part I foundationS for SySteMS develoPMent

Initiating a Project
During project initiation, the project manager performs several activities to assess
the size, scope, and complexity of the project and to establish procedures to support
subsequent activities. Depending on the project, some initiation activities may be
unnecessary and some may be very involved. The types of activities you will perform
when initiating a project are summarized in Figure 3-5 and described next.

1. Establishing the project initiation team. This activity involves organizing an initial
core of project team members to assist in accomplishing the project initiation
activities (Chau et al., 2012; Verma, 1996; 1997). For example, during the Pur-
chasing Fulfillment System project at PVF, Chris Martin was assigned to support
the Purchasing department. It is a PVF policy that all initiation teams consist of at
least one user representative, in this case Juanita Lopez, and one member of the
information systems (IS) development group. Therefore, the project initiation
team consisted of Chris and Juanita; Chris was the project manager.

2. Establishing a relationship with the customer. A thorough understanding of your cus-
tomer builds stronger partnerships and higher levels of trust. At PVF, manage-
ment has tried to foster strong working relationships between business units (like
Purchasing) and the IS development group by assigning a specific individual to
work as a liaison between both groups. Because Chris had been assigned to the
Purchasing unit for some time, he was already aware of some of the problems
with the existing purchasing systems. PVF’s policy of assigning specific individ-
uals to each business unit helped to ensure that both Chris and Juanita were
comfortable working together prior to the initiation of the project. Many orga-
nizations use a similar mechanism for establishing relationships with customers.

3. Establishing the project initiation plan. This step defines the activities required to
organize the initiation team while it is working to define the goals and scope of
the project (Abdel-Hamid et al., 1999). Chris’s role was to help Juanita translate
her business requirements into a written request for an improved information
system. This required the collection, analysis, organization, and transformation
of a lot of information. Because Chris and Juanita were already familiar with each
other and their roles within a development project, they next needed to define
when and how they would communicate, define deliverables and project steps,
and set deadlines. Their initiation plan included agendas for several meetings.
These steps eventually led to the creation of their SSR form.

4. Establishing management procedures. Successful projects require the development of
effective management procedures. Within PVF, many of these management pro-
cedures had been established as standard operating procedures by the Systems
Priority Board and the IS development group. For example, all project develop-
ment work is charged back to the functional unit requesting the work. In other or-
ganizations, each project may have unique procedures tailored to its needs. Yet, in
general, when establishing procedures, you are concerned with developing team
communication and reporting procedures, job assignments and roles, project

Project initiation
The first phase of the project management
process in which activities are performed to
assess the size, scope, and complexity of
the project and to establish procedures to
support later project activities.

Project Initiation

1. Establishing the Project Initiation Team

2. Establishing a Relationship with the Customer

3. Establishing the Project Initiation Plan

4. Establishing Management Procedures

5. Establishing the Project Management
Environment and Project Workbook

6. Developing the Project CharterFIGURE 3-5
Six project initiation activities

 Chapter 3 Managing the inforMation SySteMS Project 51

change procedures, and determining how project funding and billing will be han-
dled. It was fortunate for Chris and Juanita that most of these procedures were
already established at PVF, allowing them to move on to other project activities.

5. Establishing the project management environment and project workbook. The focus of
this activity is to collect and organize the tools that you will use while managing
the project and to construct the project workbook. Diagrams, charts, and system
descriptions provide much of the project workbook contents. Thus, the project
workbook serves as a repository for all project correspondence, inputs, outputs,
deliverables, procedures, and standards established by the project team (Rettig,
1990; Dinsmore and Cabanis-Brewin, 2006). The project workbook can be stored
as an online electronic document or in a large three-ring binder. The project
workbook is used by all team members and is useful for project audits, orienta-
tion of new team members, communication with management and customers,
identifying future projects, and performing post-project reviews. The establish-
ment of a workbook and the diligent recording of all project information are two
of the most important activities you will perform as project manager.

Figure 3-6 shows the project workbook for the Purchasing Fulfillment Sys-
tem on the PVF intranet. Keeping the project workbook online has many advan-
tages for keeping the project team on track and efficient. Online documents can
be easily accessed by all team members. Additionally, everyone is always working
with the most up-to-date information. The best feature of using the web as your
repository is that it enables project members and customers to review a project’s
status and all related information continually.

6. Developing the project charter. The project charter is a short (typically one page),
high-level document prepared for the customer that describes what the project
will deliver and outlines many of the key elements of the project. A project
charter can vary in the amount of detail it contains, but it often includes the
following elements:

•	 Project title and date of authorization
•	 Project manager name and contact information

Project workbook
An online or hard-copy repository for all
project correspondence, inputs, outputs,
deliverables, procedures, and standards
that is used for performing project
audits, orienting new team members,
communicating with management and
customers, identifying future projects, and
performing post-project reviews.

Project charter
A short document prepared for the
customer during project initiation that
describes what the project will deliver and
outlines generally at a high level all work
required to complete the project.

Pine Valley Furniture
Information Systems Development Group
Project: Purchasing Fulfillment System

1.
2.
3.
4.
5.
6.
7.
8.
9.

Project overview
Initiation plan and SSR
Project scope and risks
Management procedures
Data descriptions
Process descriptions
Team correspondence
Project charter
Project schedule

Logged in: Chris Martin

FIGURE 3-6
The project workbook for the Purchasing
Fulfillment System project contains nine
key elements
Source: A-R-T/Shutterstock

52 part I foundationS for SySteMS develoPMent

•	 Customer name and contact information
•	 Projected start and completion dates
•	 Key stakeholders, project role, and responsibilities
•	 Project objectives and description
•	 Key assumptions or approach
•	 Signature section for key stakeholders

The project charter ensures that both you and your customer gain a common
understanding of the project. It is also a very useful communication tool; it helps to
announce to the organization that a particular project has been chosen for develop-
ment. A sample project charter is shown in Figure 3-7.

Project initiation is complete once these six activities have been performed.
Before moving on to the next phase of the project, the work performed during
 project initiation is reviewed at a meeting attended by management, customers, and
project team members. An outcome of this meeting is a decision to continue, modify,

FIGURE 3-7
A Project Charter for a Proposed
Information Systems Project

Pine Valley Furniture Prepared: November 2, 2017

Project Charter
Project Name: Customer Tracking System
Project Manager: Jim Woo (jwoo@pvf.com)

Customer: Marketing
Project Sponsor: Jackie Judson (jjudson@pvf.com)
Project Start/End (projected): 10/2/17–2/1/18

Project Overview:

This project will implement a customer tracking system for the marketing department. The
purpose of this system is to automate the … to save employee time, reduce errors, have
more timely information ….

Objectives:

•	 Minimize data entry errors
•	 Provide more timely information
•	 …

Key Assumptions:

•	 System will be built in house
•	 Interface will be a web browser
•	 System will access customer database
•	 …

Stakeholders and Responsibilities:

Stakeholder Role Responsibility Signatures

Jackie Judson VP Marketing Project Vision, Resources Jackie Judson
Alex Datta CIO Monitoring, Resources Alex Datta

Jim Woo Project Manager Planning, Monitoring,
Executing Project

Jim Woo

James Jordan Director of Sales System Functionality James Jordan

Mary Shide VP Human Resources Staff Assignments Mary Shide

mailto:jwoo@pvf.com
mailto:jjudson@pvf.com

 Chapter 3 Managing the inforMation SySteMS Project 53

or abandon the project. In the case of the Purchasing Fulfillment System project at
PVF, the board accepted the SSR and selected a project steering committee to moni-
tor project progress and to provide guidance to the team members during subsequent
 activities. If the scope of the project is modified, it may be necessary to return to project
initiation activities and collect additional information. Once a decision is made to con-
tinue the project, a much more detailed project plan is developed during the project
planning phase.

Planning the Project
The next step in the project management process is project planning. Research has
found a positive relationship between effective project planning and positive project
outcomes (Guinan et al., 1998; Kirsch, 2000). Project planning involves defining
clear, discrete activities and the work needed to complete each activity within a sin-
gle project. It often requires you to make numerous assumptions about the availabil-
ity of resources such as hardware, software, and personnel. It is much easier to plan
nearer-term activities than those occurring in the future. In actual fact, you often
have to construct longer-term plans that are more general in scope and nearer-term
plans that are more detailed. The repetitive nature of the project management pro-
cess requires that plans be constantly monitored throughout the project and period-
ically updated (usually after each phase), based upon the most recent information.

Figure 3-8 illustrates the principle that nearer-term plans are typically more
specific and firmer than longer-term plans. For example, it is virtually impossible to
rigorously plan activities late in the project without first completing the earlier activi-
ties. Also, the outcome of activities performed earlier in the project is likely to affect
later activities. This means that it is very difficult, and very likely inefficient, to try to
plan detailed solutions for activities that will occur far into the future.

As with the project initiation process, varied and numerous activities must be
performed during project planning. For example, during the Purchasing Fulfillment
System project, Chris and Juanita developed a 10-page plan. However, project plans
for very large systems may be several hundred pages in length. The types of activities
that you can perform during project planning are summarized in Figure 3-9 and are
described in the following list:

1. Describing project scope, alternatives, and feasibility. The purpose of this activity
is to understand the content and complexity of the project. Within PVF’s sys-
tems development methodology, one of the first meetings must focus on defin-
ing a project’s scope. Although project scope information was not included in
the SSR developed by Chris and Juanita, it was important that both shared the

Project planning
The second phase of the project
management process that focuses on
defining clear, discrete activities and the
work needed to complete each activity
within a single project.

1 Week
Out

Low

Medium

High

1 Month
Out

6 Months
Out

Planning Horizon

P
la

nn
in

g
D

et
ai

l

FIGURE 3-8
Level of project planning detail should be
high in the short term, with less detail as
time goes on

54 part I foundationS for SySteMS develoPMent

same vision for the project before moving too far along. During this activity, you
should reach agreement on the following questions:

•	 What problem or opportunity does the project address?
•	 What are the quantifiable results to be achieved?
•	 What needs to be done?
•	 How will success be measured?
•	 How will we know when we are finished?

After defining the scope of the project, your next objective is to identify
and document general alternative solutions for the current business problem or
opportunity. You must then assess the feasibility of each alternative solution and
choose which to consider during subsequent SDLC phases. In some instances,
off-the-shelf software can be found. It is also important that any unique prob-
lems, constraints, and assumptions about the project be clearly stated.

2. Dividing the project into manageable tasks. This is a critical activity during the proj-
ect planning process. Here, you must divide the entire project into manageable
tasks and then logically order them to ensure a smooth evolution between tasks.
The definition of tasks and their sequence is referred to as the work breakdown
structure (PMBOK, 2013; Project Management Institute, 2002). Some tasks may
be performed in parallel, whereas others must follow one another sequentially.
Task sequence depends on which tasks produce deliverables needed in other
tasks, when critical resources are available, the constraints placed on the project
by the client, and the process outlined in the SDLC.

For example, suppose that you are working on a new development project
and need to collect system requirements by interviewing users of the new system
and reviewing reports they currently use to do their job. A work breakdown for
these activities is represented in a Gantt chart in Figure 3-10. A Gantt chart is a
graphical representation of a project that shows each task as a horizontal bar
whose length is proportional to its time for completion. Different colors, shades,
or shapes can be used to highlight each kind of task. For example, those ac-
tivities on the critical path (defined later) may be in red and a summary task
could have a special bar. Note that the black horizontal bars—rows 1, 2, and 6 in
Figure 3-10—represent summary tasks. Planned versus actual times or progress
for an activity can be compared by parallel bars of different colors, shades, or
shapes. Gantt charts do not (typically) show how tasks must be ordered (prece-
dence), but simply show when an activity should begin and end. In Figure 3-10,
the task duration is shown in the second column by days, “d,” and necessary prior

Work breakdown structure
The process of dividing the project into
manageable tasks and logically ordering
them to ensure a smooth evolution between
tasks.

Gantt chart
A graphical representation of a project
that shows each task as a horizontal bar
whose length is proportional to its time for
completion.

Project Planning

1. Describing Project Scope, Alternatives,
and Feasibility

2. Dividing the Project into Manageable Tasks

3. Estimating Resources and Creating a
Resource Plan

4. Developing a Preliminary Schedule

5. Developing a Communication Plan

6. Determining Project Standards and Procedures

7. Identifying and Assessing Risk

8. Creating a Preliminary Budget

9. Developing a Project Scope Statement

10. Setting a Baseline Project Plan

FIGURE 3-9
Ten project planning activities

 Chapter 3 Managing the inforMation SySteMS Project 55

tasks are noted in the third column as predecessors. Most project management
software tools support a broad range of task durations, including minutes, hours,
days, weeks, and months. As you will learn in later chapters, the SDLC consists of
several phases that you will need to break down into activities. Creating a work
breakdown structure requires that you decompose phases into activities—sum-
mary tasks—and activities into specific tasks. For example, Figure 3-10 shows that
the activity Interviewing consists of three tasks: design interview form, schedule
appointments, and conduct interviews.

Defining tasks in too much detail will make the management of the project un-
necessarily complex. You will develop the skill of discovering the optimal level of de-
tail for representing tasks through experience. For example, it may be very difficult
to list tasks that require less than one hour of time to complete in a final work break-
down structure. Alternatively, choosing tasks that are too large in scope (e.g., several
weeks long) will not provide you with a clear sense of the status of the project or of
the interdependencies between tasks. What are the characteristics of a “task”? A task

•	 can be done by one person or a well-defined group,
•	 has a single and identifiable deliverable (the task is, however, the process of

creating the deliverable),
•	 has a known method or technique,
•	 has well-accepted predecessor and successor steps, and
•	 is measurable so that the percentage completed can be determined.

3. Estimating resources and creating a resource plan. The goal of this activity is to estimate
resource requirements for each project activity and to use this information to cre-
ate a project resource plan. The resource plan helps assemble and deploy resources
in the most effective manner. For example, you would not want to bring additional
programmers onto the project at a rate faster than you could prepare work for them.
Project managers use a variety of tools to assist in making estimates of project size
and costs. The most widely used method is called COCOMO (COnstructive COst
MOdel), which uses parameters that were derived from prior projects of differing
complexity (Boehm et al., 2000). COCOMO uses these different parameters to pre-
dict human resource requirements for basic, intermediate, and very complex systems.

People are the most important, and expensive, part of project resource
planning. Project time estimates for task completion and overall system quality
are significantly influenced by the assignment of people to tasks. It is important
to give people tasks that allow them to learn new skills. It is equally important
to make sure that project members are not “in over their heads” or working on
a task that is not well suited to their skills. Resource estimates may need to be
revised based upon the skills of the actual person (or people) assigned to a par-
ticular activity. Figure 3-11 indicates the relative programming speed versus the

COCOMO
The Constructive Cost Model (COCOMO)
is an automated software estimation model
that uses historical project data and current
as well as future project characteristics to
estimate project costs.

FIGURE 3-10
Gantt chart showing project tasks,
duration times for those tasks, and
predecessors
(Source: Microsoft Corporation.)

56 part I foundationS for SySteMS develoPMent

relative programming quality of three programmers. The figure suggests that
Carl should not be assigned tasks in which completion time is critical and that
Brenda should be assigned tasks in which high quality is most vital.

One approach to assigning tasks is to assign a single task type (or only a few
task types) to each worker for the duration of the project. For example, you could
assign one worker to create all computer displays and another to create all system
reports. Such specialization ensures that both workers become efficient at their
own particular tasks. A worker may become bored if the task is too specialized or
is long in duration, so you could assign workers to a wider variety of tasks. How-
ever, this approach may lead to lowered task efficiency. A middle ground would be
to make assignments with a balance of both specialization and task variety. Assign-
ments depend on the size of the development project and the skills of the project
team. Regardless of the manner in which you assign tasks, make sure that each
team member works only on one task at a time. Exceptions to this rule can occur
when a task occupies only a small portion of a team member’s time (e.g., testing
the programs developed by another team member) or during an emergency.

4. Developing a preliminary schedule. During this activity, you use the information on
tasks and resource availability to assign time estimates to each activity in the work
breakdown structure. These time estimates will enable you to create target start-
ing and ending dates for the project. Target dates can be revisited and modified
until a schedule is produced that is acceptable to the customer. Determining an
acceptable schedule may require that you find additional or different resources
or that the scope of the project be changed. The schedule may be represented as
a Gantt chart, as illustrated in Figure 3-10, or as a network diagram, as illustrated
in Figure 3-12. A network diagram is a graphical depiction of project tasks and

Network diagram
A diagram that depicts project tasks and
their interrelationships.

Low

High

Time of Programming a Task

Brenda

Adam
Carl

Q
ua

lit
y

of
 W

or
k

LongShort

FIGURE 3-11
Trade-offs between the quality of the
program code versus the speed of
programming

FIGURE 3-12
A network diagram illustrates tasks with
rectangles (or ovals) and the relationships
and sequences of those activities with
arrows
(Source: Microsoft Corporation.)

 Chapter 3 Managing the inforMation SySteMS Project 57

their interrelationships. As with a Gantt chart, each type of task can be high-
lighted by different features on the network diagram. The distinguishing feature
of a network diagram is that the ordering of tasks is shown by connecting tasks—
depicted as rectangles or ovals—with their predecessor and successor tasks. However,
the relative size of a node (representing a task) or a gap between nodes does not
imply the task’s duration. Only the individual task items are drawn on a network dia-
gram, which is why the summary tasks 1, 2, and 6—the black bars—from Figure 3-10
are not shown in Figure 3-12. We describe both of these charts later in this chapter.

5. Developing a communication plan. The goal of this activity is to outline the communi-
cation procedures among management, project team members, and the customer.
The communication plan includes when and how written and oral reports will be
provided by the team, how team members will coordinate work, what messages will
be sent to announce the project to interested parties, and what kinds of informa-
tion will be shared with vendors and external contractors involved with the project.
It is important that free and open communication occur among all parties with re-
spect to proprietary information and confidentiality with the customer (Fuller et al.,
2008; Kettelhut, 1991; Kirsch, 2000; Vaidyanathan, 2013;Verma, 1996). When de-
veloping a communication plan, numerous questions must be answered in order
to assure that the plan is comprehensive and complete, including the following:

•	 Who are the stakeholders for this project?
•	 What information does each stakeholder need?
•	 When, and at what interval, does this information need to be produced?
•	 What sources will be used to gather and generate this information?
•	 Who will collect, store, and verify the accuracy of this information?
•	 Who will organize and package this information into a document?
•	 Who will be the contact person for each stakeholder should any questions arise?
•	 What format will be used to package this information?
•	 What communication medium will be most effective for delivering this infor-

mation to the stakeholder?

Once these questions are answered for each stakeholder, a comprehensive
communication plan can be developed. In this plan, a summary of communica-
tion documents, work assignments, schedules, and distribution methods will be
outlined. Additionally, a project communication matrix can be developed that
provides a summary of the overall communication plan (see Figure 3-13). This
matrix can be easily shared among team members, and verified by stakeholders
outside the project team, so that the right people are getting the right informa-
tion at the right time, and in the right format.

6. Determining project standards and procedures. During this activity, you will spec-
ify how various deliverables are produced and tested by you and your project
team. For example, the team must decide which tools to use, how the standard
SDLC might be modified, which SDLC methods will be used, documentation
styles (e.g., type fonts and margins for user manuals), how team members will re-
port the status of their assigned activities, and terminology. Setting project stan-
dards and procedures for work acceptance is a way to ensure the development
of a high-quality system. Also, it is much easier to train new team members when
clear standards are in place. Organizational standards for project management
and conduct make the determination of individual project standards easier and
the interchange or sharing of personnel among different projects feasible.

7. Identifying and assessing risk. The goal of this activity is to identify sources of
project risk and estimate the consequences of those risks (Wideman, 1992).
Risks might arise from the use of new technology, prospective users’ resistance
to change, availability of critical resources, competitive reactions or changes in
regulatory actions due to the construction of a system, or team member inexperi-
ence with technology or the business area. You should continually try to identify
and assess project risk.

58 part I foundationS for SySteMS develoPMent

The identification of project risk is required to develop PVF’s new Purchas-
ing Fulfillment System. Chris and Juanita met to identify and describe possible
negative outcomes of the project and their probabilities of occurrence. Although
we list the identification of risks and the outline of project scope as two discrete
activities, they are highly related and often concurrently discussed.

8. Creating a preliminary budget. During this phase, you need to create a preliminary
budget that outlines the planned expenses and revenues associated with your
project. The project justification will demonstrate that the benefits are worth
these costs. Figure 3-14 shows a cost-benefit analysis for a new development proj-
ect. This analysis shows net present value calculations of the project’s benefits
and costs as well as a return on investment and cash flow analysis. We discuss
project budgets fully in Chapter 5.

9. Developing a Project Scope Statement. An important activity that occurs near the end
of the project planning phase is the development of the Project Scope Statement.
 Developed primarily for the customer, this document outlines work that will be done
and clearly describes what the project will deliver. The Project Scope Statement is
useful to make sure that you, the customer, and other project team members have a
clear understanding of the intended project size, duration, and outcomes.

10. Setting a Baseline Project Plan. Once all of the prior project planning activities have
been completed, you will be able to develop a Baseline Project Plan. This baseline
plan provides an estimate of the project’s tasks and resource requirements and is
used to guide the next project phase—execution. As new information is acquired
during project execution, the baseline plan will continue to be updated.

At the end of the project planning phase, a review of the Baseline Project Plan
is conducted to double-check all information in the plan. As with the project initia-
tion phase, it may be necessary to modify the plan, which means returning to prior
project planning activities before proceeding. As with the Purchasing Fulfillment
System project, you may submit the plan and make a brief presentation to the project
steering committee at this time. The committee can endorse the plan, ask for modifi-
cations, or determine that it is not wise to continue the project as currently outlined.

executing the Project
Project execution puts the Baseline Project Plan into action. Within the context of
the SDLC, project execution occurs primarily during the analysis, design, and imple-
mentation phases. During the development of the Purchasing Fulfillment System,

Project execution
The third phase of the project management
process in which the plans created in
the prior phases (project initiation and
planning) are put into action.

Stakeholder

Team Members

Management
Supervisor

User Group

Internal IT Sta	

IT Manager

Contract Programmers

Training Subcontractor

Document

Project Status Report

Project Status Report

Project Status Report

Project Status Report

Project Status Report

Software Specifications

Implementation and
 Training Plan

Format

Project Intranet

Hard Copy

Hard Copy

E-Mail

Hard Copy

E-Mail/Project Intranet

Hard Copy

Team Contact

Juan
Kim

Juan
Kim

James
Kim

Jackie
James

Juan
Jeremy

Jordan
Kim

Jordan
James

Date Due

First Monday of Month

First Monday of Month

First Monday of Month

First Monday of Month

First Monday of Month

October 1, 2017

January 7, 2018

FIGURE 3-13
The project communication matrix
provides a high-level summary of the
communication plan

 Chapter 3 Managing the inforMation SySteMS Project 59

Chris Martin was responsible for five key activities during project execution. These
activities are summarized in Figure 3-15 and described in the remainder of this
section:

1. Executing the Baseline Project Plan. As project manager, you oversee the execution
of the baseline plan. This means that you initiate the execution of project ac-
tivities, acquire and assign resources, orient and train new team members, keep
the project on schedule, and ensure the quality of project deliverables. This is a
formidable task, but a task made much easier through the use of sound project
management techniques. For example, as tasks are completed during a project,
they can be “marked” as completed on the project schedule. In Figure 3-16, tasks
3 and 7 are marked as completed by showing 100 percent in the “% Complete”
column; task 8 is marked as being partially completed. Members of the project
team will come and go. You are responsible for initiating new team members by
providing them with the resources they need and helping them assimilate into
the team. You may want to plan social events, regular team project status meet-
ings, team-level reviews of project deliverables, and other group events to mold
the group into an effective team.

FIGURE 3-14
A financial cost and benefit analysis for
a systems development project
(Source: Microsoft Corporation.)

Project Execution

1. Executing the Baseline Project Plan

2. Monitoring Project Progress against the
Baseline Project Plan

3. Managing Changes to the Baseline Project Plan

4. Maintaining the Project Workbook

5. Communicating the Project Status FIGURE 3-15
Five project execution activities

60 part I foundationS for SySteMS develoPMent

2. Monitoring project progress against the Baseline Project Plan. While you execute the
Baseline Project Plan, you should monitor your progress. If the project gets
ahead of (or behind) schedule, you may have to adjust resources, activities, and
budgets. Monitoring project activities can result in modifications to the current
plan. Measuring the time and effort expended on each activity will help you im-
prove the accuracy of estimations for future projects. It is possible, with project
schedule charts such as Gantt charts, to show progress against a plan, and it is
easy with network diagrams to understand the ramifications of delays in an ac-
tivity. Monitoring progress also means that the team leader must evaluate and
appraise each team member, occasionally change work assignments or request
changes in personnel, and provide feedback to the employee’s supervisor.

3. Managing changes to the Baseline Project Plan. You will encounter pressure to make
changes to the baseline plan. At PVF, policies dictate that only approved changes
to the project specification can be made and all changes must be reflected in the
baseline plan and project workbook, including all charts. For example, if Juanita
suggests a significant change to the existing design of the Purchasing Fulfillment
System, a formal change request must be approved by the steering committee.
The request should explain why changes are desired and describe all possible ef-
fects on prior and subsequent activities, project resources, and the overall project
schedule. Chris would have to help Juanita develop such a request. This informa-
tion allows the project steering committee to more easily evaluate the costs and
benefits of a significant midcourse change.

In addition to changes occurring through formal request, changes may also
occur from events outside your control. In fact, numerous events may initiate a
change to the Baseline Project Plan, including the following possibilities:

•	 A slipped completion date for an activity
•	 A bungled activity that must be redone
•	 The identification of a new activity that becomes evident later in the project
•	 An unforeseen change in personnel due to sickness, resignation, or

termination

When an event occurs that delays the completion of an activity, you typi-
cally have two choices: devise a way to get back on schedule or revise the plan.
Devising a way to get back on schedule is the preferred approach because no
changes to the plan will have to be made. The ability to head off and smoothly
work around problems is a critical skill that you need to master.

As you will see later in this chapter, project schedule charts are very helpful
in assessing the impact of change. Using such charts, you can quickly see if the
completion time of other activities will be affected by changes in the duration of

FIGURE 3-16
Gantt chart with tasks 3 and 7
completed, and task 8 partially
completed
(Source: Microsoft Corporation.)

 Chapter 3 Managing the inforMation SySteMS Project 61

a given activity or if the whole project completion date will change. Often you
will have to find a way to rearrange the activities because the ultimate project
completion date may be rather fixed. There may be a penalty to the organization
(even legal action) if the expected completion date is not met.

4. Maintaining the project workbook. As in all project phases, maintaining complete
records of all project events is necessary. The workbook provides the documen-
tation new team members require to assimilate project tasks quickly. It explains
why design decisions were made and is a primary source of information for pro-
ducing all project reports.

5. Communicating the project status. The project manager is responsible for keeping
all stakeholders—system developers, managers, and customers—abreast of the
project status. In other words, communicating the project status focuses on the
execution of the project communication plan and the response to any ad hoc in-
formation requests by stakeholders. A broad variety of methods can be used to
distribute information, each with strengths and weaknesses. Some methods are
easier for the information sender, but more difficult or less convenient for the
receiver. With the maturing digital networks and the Internet, more and more
digital communication is being exchanged. Procedures for communicating proj-
ect activities vary from formal meetings to informal hallway discussions. Some
procedures are useful for informing others of the project’s status, others are bet-
ter for resolving issues, and still others are better for keeping permanent records
of information and events. Two types of information are routinely exchanged
throughout the project: work results—the outcomes of the various tasks and activi-
ties that are performed to complete the project—and the project plan—the formal
comprehensive document that is used to execute the project; it contains numer-
ous items including the project charter, project schedule, budgets, and risk plan.
Table 3-2 lists numerous communication procedures, their level of formality, and
their most likely use. Whichever procedure you use, frequent communication
helps to ensure project success (Kettelhut, 1991; Kirsch, 2000; Verma, 1996).

This section outlined your role as the project manager during the execution of
the Baseline Project Plan. The ease with which the project can be managed is signifi-
cantly influenced by the quality of prior project phases. If you develop a high-quality
project plan, it is much more likely that the project will be successfully executed.
The next section describes your role during project closedown, the final phase of the
project management process.

Table 3-2 Project Team Communication Methods
Procedure Formality Use
Project workbook High Inform

Permanent record
Meetings Medium to high Resolve issues
Seminars and workshops Low to medium Inform
Project newsletters Medium to high Inform
Status reports High Inform
Specification documents High Inform

Permanent record
Minutes of meetings High Inform

Permanent record
Bulletin boards Low Inform
Memos Medium to high Inform
Brown bag lunches Low Inform
Hallway discussions Low Inform

Resolve issues

62 part I foundationS for SySteMS develoPMent

Closing down the Project
The focus of project closedown is to bring the project to an end. Projects can con-
clude with a natural or unnatural termination. A natural termination occurs when
the requirements of the project have been met—the project has been completed
and is a success. An unnatural termination occurs when the project is stopped be-
fore completion (Keil et al., 2000). Several events can cause an unnatural termi-
nation of a project. For example, it may be learned that the assumption used to
guide the project proved to be false, that the performance of the systems or devel-
opment group was somehow inadequate, or that the requirements are no longer
relevant or valid in the customer’s business environment. The most likely reasons
for the unnatural termination of a project relate to running out of time or money,
or both. Regardless of the project termination outcome, several activities must be
performed: closing down the project, conducting post-project reviews, and closing the
customer contract. Within the context of the SDLC, project closedown occurs after the
implementation phase. The system maintenance phase typically represents an ongoing
series of projects, each of which must be individually managed. Figure 3-17 summa-
rizes the project closedown activities that are described more fully in the remainder
of this section:

1. Closing down the project. During closedown, you perform several diverse activi-
ties. For example, if you have several team members working with you, project
completion may signify job and assignment changes for some members. You will
likely be required to assess each team member and provide an appraisal for per-
sonnel files and salary determination. You may also want to provide career advice
to team members, write letters to superiors praising special accomplishments of
team members, and send thank-you letters to those who helped but were not
team members. As project manager, you must be prepared to handle possible
negative personnel issues such as job termination, especially if the project was
not successful. When closing down the project, it is also important to notify all
interested parties that the project has been completed and to finalize all project
documentation and financial records so that a final review of the project can be
conducted. You should also celebrate the accomplishments of the team. Some
teams will hold a party, and each team member may receive memorabilia (e.g., a
T-shirt with “I survived the X project”). The goal is to celebrate the team’s effort
to bring a difficult task to a successful conclusion.

2. Conducting postproject reviews. Once you have closed down the project, final re-
views of the project should be conducted with management and customers. The
objective of these reviews is to determine the strengths and weaknesses of project
deliverables, the processes used to create them, and the project management
process. It is important that everyone understands what went right and what went
wrong in order to improve the process for the next project. Remember, the sys-
tems development methodology adopted by an organization is a living guideline
that must undergo continual improvement.

3. Closing the customer contract. The focus of this final activity is to ensure that all
contractual terms of the project have been met. A project governed by a contrac-
tual agreement is typically not completed until agreed to by both parties, often in
writing. Thus, it is imperative that you gain agreement from your customer that
all contractual obligations have been met and that further work is either their
responsibility or covered under another SSR or contract.

Closedown is a very important activity. A project is not complete until it is closed,
and it is at closedown that projects are deemed a success or failure. Completion also
signifies the chance to begin a new project and to apply what you have learned. Now
that you have an understanding of the project management process, the next sec-
tion describes specific techniques used in systems development for representing and
scheduling activities and resources.

Project closedown
The final phase of the project management
process that focuses on bringing a project
to an end.

Project Closedown

1. Closing Down the Project

2. Conducting Postproject Reviews

3. Closing the Customer Contract

FIGURE 3-17
Three project closedown activities

 Chapter 3 Managing the inforMation SySteMS Project 63

rePreSentIng and SChedulIng ProjeCt PlanS
A project manager has a wide variety of techniques available for depicting and docu-
menting project plans. These planning documents can take the form of graphical
or textual reports, although graphical reports have become most popular for depict-
ing project plans. The most commonly used methods are Gantt charts and network
diagrams. Because Gantt charts do not (typically) show how tasks must be ordered
(precedence) but simply show when a task should begin and when it should end,
they are often more useful for depicting relatively simple projects or subparts of a
larger project, showing the activities of a single worker, or monitoring the progress
of activities compared to scheduled completion dates (Figure 3-18). Recall that a net-
work diagram shows the ordering of activities by connecting a task to its predecessor
and successor tasks. Sometimes a network diagram is preferable; other times a Gantt

FIGURE 3-18
Graphical diagrams that depict project
plans
(a) A Gantt chart
(b) A network diagram
(Source: Microsoft Corporation.)

64 part I foundationS for SySteMS develoPMent

chart more easily shows certain aspects of a project. Here are the key differences be-
tween these two charts:

•	 Gantt charts visually show the duration of tasks, whereas a network diagram visu-
ally shows the sequence dependencies between tasks.

•	 Gantt charts visually show the time overlap of tasks, whereas a network diagram
does not show time overlap but does show which tasks could be done in parallel.

•	 Some forms of Gantt charts can visually show slack time available within an earli-
est start and latest finish duration. A network diagram shows this by data within
activity rectangles.

Project managers also use textual reports that depict resource utilization by
task, complexity of the project, and cost distributions to control activities. For ex-
ample, Figure 3-19 shows a screen from Microsoft Project for Windows that summa-
rizes all project activities, their durations in weeks, and their scheduled starting and
ending dates. Most project managers use computer-based systems to help develop
their graphical and textual reports. Later in this chapter, we discuss these automated
systems in more detail.

A project manager will periodically review the status of all ongoing project task
activities to assess whether the activities will be completed early, on time, or late. If
early or late, the duration of the activity, depicted in column 2 of Figure 3-19, can
be updated. Once changed, the scheduled start and finish times of all subsequent
tasks will also change. Making such a change will also alter a Gantt chart or network
diagram used to represent the project tasks. The ability to easily make changes to
a project is a very powerful feature of most project management environments. It
enables the project manager to determine easily how changes in task duration affect
the project completion date. It is also useful for examining the impact of “what if”
scenarios of adding or reducing resources, such as personnel, for an activity.

representing Project Plans
Project scheduling and management require that time, costs, and resources be con-
trolled. Resources are any person, group of people, piece of equipment, or material
used in accomplishing an activity. Network diagramming is a critical path scheduling
technique used for controlling resources. A critical path refers to a sequence of task
activities whose order and durations directly affect the completion date of a project.

Resources
Any person, group of people, piece
of equipment, or material used in
accomplishing an activity.

Critical path scheduling
A scheduling technique whose order and
duration of a sequence of task activities
directly affect the completion date of a
project.

FIGURE 3-19
A screen from Microsoft Project for
Windows summarizes all project
activities, their durations in weeks, and
their scheduled starting and ending dates
(Source: Microsoft Corporation.)

 Chapter 3 Managing the inforMation SySteMS Project 65

A network diagram is one of the most widely used and best-known scheduling meth-
ods. You would use a network diagram when tasks

•	 are well defined and have a clear beginning and end point,
•	 can be worked on independently of other tasks,
•	 are ordered, and
•	 serve the purpose of the project

A major strength of network diagramming is its ability to represent how comple-
tion times vary for activities. Because of this, it is more often used than Gantt charts
to manage projects such as information systems development, where variability in the
duration of activities is the norm. Network diagrams are composed of circles or rect-
angles representing activities and connecting arrows showing required work flows, as
illustrated in Figure 3-20.

Calculating expected time durations using Pert
One of the most difficult and most error-prone activities when constructing a project
schedule is the determination of the time duration for each task within a work break-
down structure. It is particularly problematic to make these estimates when there is a
high degree of complexity and uncertainty about a task. PERT (Program Evaluation
Review Technique) is a technique that uses optimistic, pessimistic, and realistic time
estimates to calculate the expected time for a particular task. This technique can
help you to obtain a better time estimate when there is some uncertainty as to how
much time a task will require to be completed.

The optimistic (o) and pessimistic (p) times reflect the minimum and maximum
possible periods of time for an activity to be completed. The realistic (r) time, or most
likely time, reflects the project manager’s “best guess” of the amount of time the activ-
ity actually will require for completion. Once each of these estimates is made for an ac-
tivity, an expected time (ET) can be calculated. Because the expected completion time
should be closest to the realistic (r) time, it is typically weighted four times more than
the optimistic (o) and pessimistic (p) times. Once you add these values together, it must
be divided by six to determine the ET. This equation is shown in the following formula:

ET =
o + 4r + p

6

where

ET = expected time for the completion for an activity
o = optimistic completion time for an activity
r = realistic completion time for an activity
p = pessimistic completion time for an activity

For example, suppose that your instructor asked you to calculate an expected
time for the completion of an upcoming programming assignment. For this assign-
ment, you estimate an optimistic time of two hours, a pessimistic time of eight hours,

PERT (Program Evaluation
Review Technique)
A technique that uses optimistic,
pessimistic, and realistic time estimates to
calculate the expected time for a particular
task.

Design
System

Write
Programs

Test
Programs

Write
Documentation

Install
System

EA

B C

D

FIGURE 3-20
A network diagram showing activities
(represented by circles) and sequence of
those activities (represented by arrows)

66 part I foundationS for SySteMS develoPMent

and a most likely time of six hours. Using PERT, the expected time for complet-
ing this assignment is 5.67 hours. Commercial project management software such
as Microsoft Project assists you in using PERT to make expected time calculations.
Additionally, many commercial tools allow you to customize the weighting of optimis-
tic, pessimistic, and realistic completion times.

Constructing a gantt Chart and network diagram
at Pine Valley Furniture
Although PVF has historically been a manufacturing company, it has recently en-
tered the direct sales market for selected target markets. One of the fastest grow-
ing of these markets is economically priced furniture suitable for college students.
Management has requested that a new Sales Promotion Tracking System (SPTS) be
developed. This project has already successfully moved through project initiation and
is currently in the detailed project planning stage, which corresponds to the SDLC
phase of project initiation and planning. The SPTS will be used to track purchases
by college students for the next fall semester. Students typically purchase low-priced
beds, bookcases, desks, tables, chairs, and dressers. Because PVF does not normally
stock a large quantity of lower-priced items, management feels that a tracking system
will help provide information about the college-student market that can be used for
follow-up sales promotions (e.g., a midterm futon sale).

The project is to design, develop, and implement this information system be-
fore the start of the fall term in order to collect sales data at the next major buying
period. This deadline gives the project team 24 weeks to develop and implement the
system. The Systems Priority Board at PVF wants to make a decision this week based
on the feasibility of completing the project within the 24-week deadline. Using PVF’s
project planning methodology, the project manager, Jim Woo, knows that the next
step is to construct a Gantt chart and network diagram of the project to represent
the Baseline Project Plan so that he can use these charts to estimate the likelihood of
completing the project within 24 weeks. A major activity of project planning focuses
on dividing the project into manageable activities, estimating times for each, and
sequencing their order. Here are the steps Jim followed to do this:

1. Identify each activity to be completed in the project. After discussing the new SPTS
with PVF’s management, sales, and development staff, Jim identified the follow-
ing major activities for the project:

•	 Requirements collection
•	 Screen design
•	 Report design
•	 Database construction
•	 User documentation creation
•	 Software programming
•	 System testing
•	 System installation

2. Determine time estimates and calculate the expected completion time for each activity. After
identifying the major project activities, Jim established optimistic, realistic, and
pessimistic time estimates for each activity. These numbers were then used to cal-
culate the expected completion times for all project activities, as described pre-
viously using PERT. Figure 3-21 shows the estimated time calculations for each
activity of the SPTS project.

3. Determine the sequence of the activities and precedence relationships among all activities by
constructing a Gantt chart and network diagram. This step helps you to understand
how various activities are related. Jim starts by determining the order in which
activities should take place. The results of this analysis for the SPTS project are
shown in Figure 3-22. The first row of this figure shows that no activities precede

 Chapter 3 Managing the inforMation SySteMS Project 67

requirements collection. Row 2 shows that screen design must be preceded by
requirements collection. Row 4 shows that both screen and report design must
precede database construction. Thus, activities may be preceded by zero, one, or
more activities.

Using the estimated time and activity sequencing information from
Figures 3-21 and 3-22, Jim can now construct a Gantt chart and network diagram
of the project’s activities. To construct the Gantt chart, a horizontal bar is drawn
for each activity that reflects its sequence and duration, as shown in Figure 3-23.
The Gantt chart may not, however, show direct interrelationships between activi-
ties. For example, the fact that the database design activity begins right after the
screen design and report design bars finish does not imply that these two activi-
ties must finish before database design can begin. To show such precedence rela-
tionships, a network diagram must be used. The Gantt chart in Figure 3-23 does,
however, show precedence relationships.

Network diagrams have two major components: arrows and nodes. Arrows
reflect the sequence of activities, whereas nodes reflect activities that con-
sume time and resources. A network diagram for the SPTS project is shown
in Figure 3-24. This diagram has eight nodes labeled 1 through 8.

4. Determine the critical path. The critical path of a network diagram is represented
by the sequence of connected activities that produce the longest overall time
period. All nodes and activities within this sequence are referred to as being “on”
the critical path. The critical path represents the shortest time in which a project
can be completed. In other words, any activity on the critical path that is delayed
in completion delays the entire project. Nodes not on the critical path, however,
can be delayed (for some amount of time) without delaying the final completion
of the project. Nodes not on the critical path contain slack time and allow the
project manager some flexibility in scheduling.

Slack time
The amount of time that an activity can be
delayed without delaying the project.

Critical path
The shortest time in which a project can be
completed.

ACTIVITY

1. Requirements Collection

2. Screen Design

3. Report Design

4. Database Design

5. User Documentation

6. Programming

7. Testing

8. Installation

TIME ESTIMATE
(in weeks)

EXPECTED TIME (ET)
o + 4r + p

6o

1

5

3

1

2

4

1

1

r

5

6

6

2

6

5

3

1

p

9

7

9

3

7

6

5

1

5

6

6

2

5.5

5

3

1

FIGURE 3-21
Estimated time calculations for the SPTS
project

ACTIVITY
1. Requirements Collection
2. Screen Design
3. Report Design
4. Database Design
5. User Documentation
6. Programming
7. Testing
8. Installation

PRECEDING
ACTIVITY

—
1
1

2,3
4
4
6

5,7
FIGURE 3-22
Sequence of activities within the SPTS
project

68 part I foundationS for SySteMS develoPMent

Figure 3-25 shows the network diagram that Jim constructed to determine the
critical path and expected completion time for the SPTS project. To determine the
critical path, Jim calculated the earliest and latest expected completion time for each
activity. He found each activity’s earliest expected completion time (TE) by summing
the estimated time (ET) for each activity from left to right (i.e., in precedence order),
starting at activity 1 and working toward activity 8. In this case, TE for activity 8 is equal to
22 weeks. If two or more activities precede an activity, the largest expected completion
time of these activities is used in calculating the new activity’s expected completion
time. For example, because activity 8 is preceded by both activities 5 and 7, the largest
expected completion time between 5 and 7 is 21, so TE for activity 8 is 21 + 1, or 22.
The earliest expected completion time for the last activity of the project represents the
amount of time the project should take to complete. Because the time of each activ-
ity can vary, however, the projected completion time represents only an estimate. The
project may in fact require more or less time for completion.

The latest expected completion time (TL) refers to the time in which an activ-
ity can be completed without delaying the project. To find the values for each activ-
ity’s TL, Jim started at activity 8 and set TL equal to the final TE (22 weeks). Next,
he worked right to left toward activity 1 and subtracted the expected time for each
activity. The slack time for each activity is equal to the difference between its latest
and earliest expected completion times (TL – TE). Figure 3-26 shows the slack time
calculations for all activities of the SPTS project. All activities with a slack time equal
to zero are on the critical path. Thus, all activities except activity 5 are on the critical
path. Part of the diagram in Figure 3-25 shows two critical paths, between activities
1-2-4 and 1-3-4, because both of these parallel activities have zero slack.

In addition to the possibility of having multiple critical paths, there are actu-
ally two possible types of slack. Free slack refers to the amount of time a task can be

Requirements
Collection

Database
Design

Screen
Design Installation

User
Documentation

Report Design Programming Testing

76

82

3

41

5

FIGURE 3-24
A network diagram that illustrates the
activities (circles) and the sequence
(arrows) of those activities

FIGURE 3-23
Gantt chart that illustrates the sequence
and duration of each activity of the
SPTS project
(Source: Microsoft Corporation.)

 Chapter 3 Managing the inforMation SySteMS Project 69

delayed without delaying the early start of any immediately following tasks. Total slack
refers to the amount of time a task can be delayed without delaying the completion
of the project. Understanding free and total slack allows the project manager to bet-
ter identify where trade-offs can be made if changes to the project schedule need
to be made. For more information on understanding slack and how it can be used
to manage tasks see Project Management: Process, Technology and Practice, by Ganesh
Vaidyanathan (2013).

uSIng ProjeCt ManageMent SoFtware
A wide variety of automated project management tools is available to help you man-
age a development project. New versions of these tools are continuously being de-
veloped and released by software vendors. Most of the available tools have a set of
common features that include the ability to define and order tasks, assign resources
to tasks, and easily modify tasks and resources. Project management tools are available
to run on IBM-compatible personal computers, the Macintosh, and larger mainframe
and workstation-based systems. These systems vary in the number of task activities sup-
ported, the complexity of relationships, system processing and storage requirements,
and, of course, cost. Prices for these systems can range from a few hundred dollars
for personal computer–based systems to more than $100,000 for large-scale, multi-
project systems. Yet a lot can be done with systems such as Microsoft Project as well
as public domain and shareware systems. For example, numerous shareware project
management programs (e.g., OpenProj, Bugzilla, and eGroupWare) can be down-
loaded from the web (e.g., at www.download.com). Because these systems are continu-
ously changing, you should comparison shop before choosing a particular package.

We now illustrate the types of activities you would perform when using project
management software. Microsoft Project for Windows is a project management sys-
tem that has received consistently high marks in computer publication reviews (see
www.microsoft.com and search for “project”—also, if you search the web, there are

TEACTIVITY

1
2
3
4
5
6
7
8

5
11
11
13

18.5
18
21
22

TL

5
11
11
13
21
18
21
22

TL – TE

SLACK

0
0
0
0

2.5
0
0
0

ON CRITICAL PATH

FIGURE 3-26
Activity slack time calculations for the
SPTS project; all activities except number
5 are on the critical path

TE = 11
TL = 11

TE = 11
TL = 11

TE = 5
TL = 5

ET = 6 ET = 5 ET = 3

ET = 2

ET = 6 ET = 5.5 ET = 1

ET = 5

TE = 18.5
TL = 21

TE = 22
TL = 22

TE = 21
TL = 21

TE = 18
TL = 18

TE = 13
TL = 13

Critical Path Noncritical Path

7

41

5 82

3 6

FIGURE 3-25
A network diagram for the SPTS project
showing estimated times for each activity
and the earliest and latest expected
completion time for each activity

http://www.download.com
http://www.microsoft.com

70 part I foundationS for SySteMS develoPMent

many very useful tutorials for improving your Microsoft Project skills). When using
this system to manage a project, you need to perform at least the following activities:

•	 Establish a project starting or ending date.
•	 Enter tasks and assign task relationships.
•	 Select a scheduling method to review project reports.

establishing a Project Start date
Defining the general project information includes obtaining the name of the project
and the project manager, and the starting or ending date of the project. Starting
and ending dates are used to schedule future activities or backdate others (see the
following) based on their duration and relationships with other activities. An ex-
ample from Microsoft Project for Windows of the data entry screen for establishing
a project starting or ending date is shown in Figure 3-27. This screen shows PVF’s
Purchasing Fulfillment System project. Here, the starting date for the project is
Monday, November 6, 2017.

entering tasks and assigning task relationships
The next step in defining a project is to define project tasks and their relation-
ships. For the Purchasing Fulfillment System project, Chris defined 11 tasks to be
completed when he performed the initial system analysis activities for the project
(task 1—Start Analysis Phase—is a summary task that is used to group related tasks).
The task entry screen, shown in Figure 3-28, is similar to a financial spreadsheet
program. The user moves the cursor to a cell with arrow keys or the mouse and then
simply enters a textual Name and a numeric Duration for each activity. Scheduled
Start and Scheduled Finish are automatically entered based on the project start date
and duration. To set an activity relationship, the ID number (or numbers) of the
activity that must be completed before the start of the current activity is entered into
the Predecessors column. Additional codes under this column make the precedence
relationships more precise. For example, consider the Predecessor column for ID 6.
The entry in this cell says that activity 6 cannot start until one day before the finish of
activity 5. (Microsoft Project provides many different options for precedence and de-
lays, as demonstrated in this example, but discussion of these is beyond the scope of
our coverage.) The project management software uses this information to construct
Gantt charts, network diagrams, and other project-related reports.

FIGURE 3-27
Establishing a project starting date in
Microsoft Project for Windows
(Source: Microsoft Corporation.)

 Chapter 3 Managing the inforMation SySteMS Project 71

Selecting a Scheduling Method to review Project reports
Once information about all the activities for a project has been entered, it is very
easy to review the information in a variety of graphical and textual formats using dis-
plays or printed reports. For example, Figure 3-28 shows the project information in a
Gantt chart screen, whereas Figure 3-29 shows the project information in a network
diagram. You can easily change how you view the information by making a selection
from the View menu shown in Figure 3-29.

As mentioned earlier, interim project reports to management will often compare
actual progress with plans. Figure 3-30 illustrates how Microsoft Project shows progress
with a solid line within the activity bar. In this figure, task 2 has been completed and task
3 is almost completed (at 75 percent completed), but there remains a small percentage
of work, as shown by the incomplete solid lines within the bar for this task. Assuming
that this screen represents the status of the project on Thursday, November 11, 2016,
the third activity is approximately on schedule, but the second activity is behind its ex-
pected completion date. Tabular reports can summarize the same information.

FIGURE 3-28
Entering tasks and assigning task
relationships in Microsoft project for
Windows
(Source: Microsoft Corporation.)

FIGURE 3-29
Viewing project information as a
network diagram in Microsoft Project for
Windows
(Source: Microsoft Corporation.)

72 part I foundationS for SySteMS develoPMent

This brief introduction to project management software has only scratched the
surface to show you the power and the features of these systems. Other features that
are widely available and especially useful for multiperson projects relate to resource
usage and utilization. Resource-related features enable you to define characteristics
such as standard costing rates and daily availability via a calendar that records holi-
days, working hours, and vacations. These features are particularly useful for billing
and estimating project costs. Often, resources are shared across multiple projects,
which could significantly affect a project’s schedule.

Depending on how projects are billed within an organization, assigning and bill-
ing resources to tasks can be a very time-consuming activity for most project managers.
The features provided in these powerful tools can greatly ease the planning and man-
aging of projects so that project and management resources are effectively utilized.

FIGURE 3-30
Gantt chart showing progress of activities
(right frame) versus planned activities (left
frame)
(Source: Microsoft Corporation.)

Summary

The focus of this chapter was on managing information
systems projects and the role of the project manager in
this process. A project manager has both technical and
managerial skills and is ultimately responsible for deter-
mining the size, scope, and resource requirements for
a project. Once a project is deemed feasible by an orga-
nization, the project manager ensures that the project
meets the customer’s needs and is delivered within budget
and time constraints. To manage the project, the project
manager must execute four primary activities: project ini-
tiation, project planning, project execution, and project
closedown. The focus of project initiation is on assessing
the size, scope, and complexity of a project and on estab-
lishing procedures to support later project activities. The
focus of project planning is on defining clear, discrete
activities and the work needed to complete each activity.
The focus of project execution is on putting the plans

developed in project initiation and planning into action.
Project closedown focuses on bringing the project to an
end.

Gantt charts and network diagrams are powerful
graphical techniques used in planning and controlling
projects. Both Gantt charts and network diagram schedul-
ing techniques require that a project have activities that
can be defined as having a clear beginning and end, can
be worked on independently of other activities, are or-
dered, and are such that their completion signifies the
end of the project. Gantt charts use horizontal bars to
represent the beginning, duration, and ending of an ac-
tivity. Network diagramming is a critical path scheduling
method that shows the interrelationships among activi-
ties. Critical path scheduling refers to planning methods
whereby the order and duration of the project’s activities
directly affect the completion date of the project. These

 Chapter 3 Managing the inforMation SySteMS Project 73

Key TermS

 3.1 COCOMO
 3.2 Critical path
 3.3 Critical path scheduling
 3.4 Deliverable
 3.5 Feasibility study
 3.6 Gantt chart
 3.7 Network diagram

 3.8 PERT (Program Evaluation Review
Technique)

 3.9 Project
 3.10 Project charter
 3.11 Project closedown
 3.12 Project execution
 3.13 Project initiation

 3.14 Project management
 3.15 Project manager
 3.16 Project planning
 3.17 Project workbook
 3.18 Resources
 3.19 Slack time
 3.20 Work breakdown structure

charts show when activities can begin and end, which
activities cannot be delayed without delaying the whole
project, how much slack time each activity has, and prog-
ress against planned activities. A network diagram’s ability
to use probability estimates in determining critical paths
and deadlines makes it a widely used technique for very
complex projects.

A wide variety of automated tools for assisting the
project manager is available. Most tools have a set of com-
mon features, including the ability to define and order
tasks, assign resources to tasks, and modify tasks and re-
sources. Systems vary regarding the number of activities
supported, the complexity of relationships, processing
and storage requirements, and cost.

Match each of the key terms above with the definition that best
fits it.

____ A systems analyst with a diverse set of skills—management,
leadership, technical, conflict management, and customer
relationship—who is responsible for initiating, planning,
executing, and closing down a project.

____ A planned undertaking of related activities to reach an ob-
jective that has a beginning and an end.

____ An end product of an SDLC phase.

____ A study that determines if the proposed information sys-
tem makes sense for the organization from an economic
and operational standpoint.

____ A controlled process of initiating, planning, executing,
and closing down a project.

____ The first phase of the project management process in
which activities are performed to assess the size, scope, and
complexity of the project and to establish procedures to
support later project activities.

____ An online or hard-copy repository for all project corre-
spondence, inputs, outputs, deliverables, procedures, and
standards.

____ The second phase of the project management process that
focuses on defining clear, discrete activities and the work
needed to complete each activity within a single project.

____ The process of dividing the project into manageable tasks
and logically ordering them to ensure a smooth evolution
between tasks.

____ A graphical representation of a project that shows each
task as a horizontal bar whose length is proportional to its
time for completion.

____ A diagram that depicts project tasks and their inter-
relationships.

____ The third phase of the project management process in
which the plans created in the prior phases are put into
action.

____ The final phase of the project management process that
focuses on bringing a project to an end.

____ Any person, group of people, piece of equipment, or mate-
rial used in accomplishing an activity.

____ A scheduling technique whose order and duration of a se-
quence of task activities directly affect the completion date
of a project.

____ The shortest time in which a project can be completed.

____ The amount of time that an activity can be delayed without
delaying the entire project.

____ A technique that uses optimistic, pessimistic, and realistic
time estimates to calculate the expected completion time
for a particular task.

____ An automated software estimation model that uses histori-
cal project data and current as well as future project char-
acteristics to estimate project costs.

____ A short document prepared for the customer during proj-
ect initiation that describes what the project will deliver
and outlines, generally at a high level, all work required to
complete the project.

74 part I foundationS for SySteMS develoPMent

revIew QueSTIonS
 3.21 Contrast the following terms:

a. Critical path scheduling, Gantt, network diagramming,
slack time

b. Project, project management, project manager
c. Project initiation, project planning, project execution,

project closedown
d. Project workbook, resources, work breakdown structure

 3.22 Discuss the reasons why organizations undertake informa-
tion systems projects.

 3.23 List and describe the common skills and activities of a proj-
ect manager. Which skill do you think is most important?
Why?

 3.24 Describe the activities performed by the project manager
during project initiation.

 3.25 Describe the activities performed by the project manager
during project planning.

 3.26 Describe the activities performed by the project manager
during project execution.

 3.27 List various project team communication methods and de-
scribe an example of the type of information that might be
shared among team members using each method.

 3.28 Describe the activities performed by the project manager
during project closedown.

 3.29 What characteristics must a project have in order for criti-
cal path scheduling to be applicable?

 3.30 Describe the steps involved in making a Gantt chart.

 3.31 Describe the steps involved in making a network diagram.

 3.32 In which phase of the SDLC does project planning typically
occur? In which phase does project management occur?

 3.33 What are some reasons why one activity may have to pre-
cede another activity before the second activity can begin?
In other words, what causes precedence relationships be-
tween project activities?

ProblemS and exercISeS
 3.34 Which of the four phases of the project management pro-

cess do you feel is most challenging? Why?

 3.35 What are some sources of risk in a systems analysis and
 design project and how does a project manager cope with
risk during the stages of project management?

 3.36 Search computer magazines or the web for recent reviews
of project management software. Which packages seem
to be most popular? What are the relative strengths and
weaknesses of each software package? What advice would
you give to someone intending to buy project management
software for his or her PC? Why?

 3.37 Suppose that you have been contracted by a jewelry store
to manage a project to create a new inventory tracking sys-
tem. Describe your initial approach to the project. What
should your first activity be? What information would you
need? To whom might you need to speak?

 3.38 Can a project have two critical paths? Why or why not? Give
a brief example to illustrate your point.

 3.39 Calculate the expected time for the following activities.

Activity
Optimistic

Time
Most Likely

Time
Pessimistic

Time
Expected

Time
A 3 7 11
B 5 9 13
C 1 2 9
D 2 3 16
E 2 4 18
F 3 4 11
G 1 4 7
H 3 4 5
I 2 4 12
J 4 7 9

 3.40 A project has been defined to contain the following list of
activities along with their required times for completion.

Activity No. Immediate Activity Time (weeks) Predecessors
1 Collect requirements 3
2 Analyze processes 2 1
3 Analyze data 2 2
4 Design processes 6 2
5 Design data 3 3
6 Design screens 2 3,4
7 Design reports 4 4,5
8 Program 5 6,7
9 Test and document 7 7
10 Install 2 8,9

a. Draw a network diagram for the activities.
b. Calculate the earliest expected completion time.
c. Show the critical path.
d. What would happen if activity 6 were revised to take six

weeks instead of two weeks?

 3.41 Construct a Gantt chart for the project defined in Problem
and Exercise 3-40.

 3.42 Look again at the activities outlined in Problem and Exer-
cise 3-40. Assume that your team is in its first week of the
project and has discovered that each of the activity dura-
tion estimates is wrong. Activity 2 will take only two weeks
to complete. Activities 4 and 7 will each take three times
longer than anticipated. All other activities will take twice
as long to complete as previously estimated. In addition, a
new activity, number 11, has been added. It will take one
week to complete, and its immediate predecessors are
 activities 10 and 9. Adjust the network diagram and recal-
culate the earliest expected completion times.

 Chapter 3 Managing the inforMation SySteMS Project 75

 3.43 Construct a Gantt chart and network diagram for a
 project you are or will be involved in. Choose a project
of sufficient depth from work, home, or school. Identify
the activities to be completed, determine the sequence
of the activities, and construct a diagram reflecting
the starting times, ending times, durations, and prece-
dence (network diagram only) relationships among all
activities. For your network diagram, use the procedure
in this chapter to determine time estimates for each
 activity and calculate the expected time for each activity.
Now determine the critical path and the early and late
starting and finishing times for each activity. Which
 activities have slack time?

 3.44 For the project you described in Problem and Exercise
 3-43, assume that the worst has happened. A key team
member has dropped out of the project and has been
assigned to another project in another part of the coun-
try. The remaining team members are having personal-
ity clashes. Key deliverables for the project are now due
much earlier than expected. In addition, you have just
determined that a key phase in the early life of the proj-
ect will now take much longer than you had originally
expected. To make matters worse, your boss absolutely
will not accept that this project cannot be completed by
this new deadline. What will you do to account for these
project changes and problems? Begin by reconstructing
your Gantt chart and network diagram and determining
a strategy for dealing with the specific changes and prob-
lems just described. If new resources are needed to meet
the new deadline, outline the rationale that you will use
to convince your boss that these additional resources are
critical to the success of the project.

 3.45 Assume that you have a project with seven activities labeled
A–G (below). Derive the earliest completion time (or early
finish—EF), latest completion time (or late finish—LF),
and slack for each of the following tasks (begin at time =
0). Which tasks are on the critical path? Draw a Gantt chart
for these tasks.

Activity
Preceding

Event
Expected
Duration EF LF Slack

Critical
Path?

A — 5
B A 3
C A 4
D C 6
E B, C 4
F D 1
G D, E, F 5

 3.46 Draw a network diagram for the tasks shown in Problem
and Exercise 3-45. Highlight the critical path.

 3.47 Assume you have a project with ten activities labeled A–J,
as shown. Derive the earliest completion time (or early fin-
ish—EF), latest completion time (or late finish—LF), and
slack for each of the following tasks (begin at time = 0).
Which tasks are on the critical path? Highlight the critical
path on your network diagram.

Activity
Preceding

Event
Expected
Duration EF LF Slack

Critical
Path?

A — 4
B A 5
C A 6
D A 7
E A, D 6
F C, E 5
G D, E 4
H E 3
I F, G 4
J H, I 5

 3.48 Draw a Gantt chart for the tasks shown in Problem and
Exercise 3-47.

 3.49 Assume you have a project with 10 activities labeled A–J.
Derive the earliest completion time (or early finish—EF),
latest completion time (or late finish—LF), and slack for
each of the following tasks (begin at time = 0). Which tasks
are on the critical path? Draw both a Gantt chart and a net-
work diagram for these tasks, and make sure you highlight
the critical path on your network diagram.

Activity

Preced-
ing

Event
Expected
Duration EF LF Slack

Critical
Path?

A — 3
B A 1
C A 2
D B, C 5
E C 3
F D 2
G E, F 3
H F, G 5
I G, H 5
J I 2

 3.50 Make a list of the tasks that you performed when design-
ing your schedule of classes for this term. Develop a table
showing each task, its duration, preceding event(s), and
expected duration. Develop a network diagram for these
tasks. Highlight the critical path on your network diagram.

 3.51 Fully decompose a project you’ve done in another course
(e.g., a semester project or term paper). Discuss the level
of detail where you stopped decomposing and explain why.

 3.52 Create a work breakdown structure based on the decompo-
sition you carried out for Problem and Exercise 3-51.

 3.53 Working in a small group, pick a project (it could be any-
thing, such as planning a party, writing a group term pa-
per, developing a database application, etc.) and then write
the various tasks that need to be done to accomplish the
project on Post-it Notes (one task per Post-it Note). Then
use the Post-it Notes to create a work breakdown structure
(WBS) for the project. Was it complete? Add missing tasks
if necessary. Were some tasks at a lower level in the WBS
than others? What was the most difficult part of doing this?

76 part I foundationS for SySteMS develoPMent

FIeld exercISeS
 3.54 Identify someone who manages an information systems

project in an organization. Describe to him or her each of
the skills and activities listed in Table 3-1. Determine which
items he or she is responsible for on the project. Of those
he or she is responsible for, determine which are more
challenging and why. Of those he or she is not responsible
for, determine why not and identify who is responsible for
these activities. What other skills and activities, not listed in
Table 3-1, is this person responsible for in managing this
project?

 3.55 Identify someone who manages an information systems
project in an organization. Describe to him or her each
of the project planning elements in Figure 3-9. Determine
the extent to which each of these elements is part of that
person’s project planning process. If that person is not able
to perform some of these planning activities, or if he or she
cannot spend as much time on any of these activities as he
or she would like, determine what barriers are prohibitive
for proper project planning.

 3.56 Identify someone who manages an information systems
project (or other team-based project) in an organization.
Describe to him or her each of the project team communi-
cation methods listed in Table 3-2. Determine which types
of communication methods are used for team communica-
tion and describe which he or she feels are best for com-
municating various types of information.

 3.57 Identify someone who manages an information systems
project in an organization. Describe to him or her each of
the project execution elements in Figure 3-13. Determine

the extent to which each of these elements is part of that
person’s project execution process. If that person does not
perform some of these activities, or if he or she cannot
spend much time on any of these activities, determine what
barriers or reasons prevent performing all project execu-
tion activities.

 3.58 Interview a sample of project managers. Divide your sam-
ple into two small subsamples: one for managers of infor-
mation systems projects and one for managers of other
types of projects. Ask each respondent to identify personal
leadership attributes that contribute to successful project
management and explain why these are important. Sum-
marize your results. What seem to be the attributes most
often cited as leading to successful project management,
regardless of the type of project? Are there any consistent
differences between the responses in the two subsamples?
If so, what are these differences? Do they make sense to
you? If there are no apparent differences between the
responses of the two subsamples, why not? Are there no
differences in the skill sets necessary for managing infor-
mation systems projects versus managing other types of
projects?

 3.59 Observe a real information systems project team in action
for an extended period of time. Keep a notebook as you
watch individual members performing their individual tasks,
as you review the project management techniques used by
the team’s leader, and as you sit in on some of their meet-
ings. What seem to be the team’s strengths and weaknesses?
What are some areas in which the team can improve?

reFerenceS
Abdel-Hamid, T. K., K. Sengupta, and C. Swett. 1999. “The

Impact of Goals on Software Project Management: An Ex-
perimental Investigation.” MIS Quarterly 23(4): 531–55.

Boehm, B. W., and R. Turner. 2000. Software Cost Estimation with
COCOMO II. Upper Saddle River, NJ: Prentice Hall.

Chua, C., W. K. Lim, C. Soh, and S. K. Sia. 2012. “Enacting Clan
Control in Complex IT Projects: A Social Capital Perspec-
tive.” MIS Quarterly 35(2): 577–600.

Dinsmore, P. C., and J. Cabanis-Brewin. 2006. The AMA Handbook
of Project Management: Vol. 1. New York: AMACOM. Ameri-
can Management Association.

Florentine, S. 2015. “8 Skills to Look for in IT Project Manag-
ers.” CIO.com. http://www.cio.com/article/2866081/
careers-staffing/8-skills-to-look-for-in-it-project-managers.
html. Accessed February 14, 2015.

Florentine, S. 2014. “How to Create High-Performing Project
Management Teams.” CIO.com. http://www.cio.com/
article/2375821/project-management/how-to-create-high-
performing-project-management-teams.html. Access Febru-
ary 14, 2015.

Fuller, M. A., J. S. Valacich, and J. F. George. 2008. Information
Systems Project Management. Upper Saddle River, NJ: Prentice
Hall.

George, J. F., D. Batra, J. S. Valacich, and J. A. Hoffer. 2007.
Object-Oriented Analysis and Design, 2nd ed. Upper Saddle
River, NJ: Prentice Hall.

Guinan, P. J., J. G. Cooprider, and S. Faraj. 1998. “Enabling Soft-
ware Development Team Performance During Require-
ments Definition: A Behavioral Versus Technical Approach.”
Information Systems Research 9(2): 101–25.

Keil, M., B. C. Y. Tan, K. K. Wei, T. Saarinen, V. Tuunainen, and
A. Wassenaar, 2000. “A Cross-Cultural Study on Escalation
of Commitment Behavior in Software Projects.” MIS Quar-
terly 24(2): 631–64.

Kettelhut, M. C. 1991. “Avoiding Group-Induced Errors in Systems
Development.” Journal of Systems Management 42(12): 13–17.

Kirsch, L. J. 2000. “Software Project Management: An Integrated
Perspective for an Emerging Paradigm.” In R. W. Zmud
(ed.), Framing the Domains of IT Management: Projecting the
Future from the Past, 285–304. Cincinnati, OH: Pinnaflex Ed-
ucational Resources.

Overby, S. 2013. “Does a Hybrid Offshore IT Outsourcing Model
Make Sense for Your Company?”. CIO.com. http://www.cio.
com/article/2380395/outsourcing/does-a-hybrid-offshore-it-
outsourcing-model-make-sense-for-your-company-.html. Ac-
cessed February 14, 2015.

http://www.cio.com/article/2866081/careers-staffing/8-skills-to-look-for-in-it-project-managers.html
http://www.cio.com/article/2375821/project-management/how-to-create-highperforming-project-management-teams.html
http://www.cio.com/article/2380395/outsourcing/does-a-hybrid-offshore-itoutsourcing-model-make-sense-for-your-company-.html
http://www.cio.com/article/2866081/careers-staffing/8-skills-to-look-for-in-it-project-managers.html
http://www.cio.com/article/2866081/careers-staffing/8-skills-to-look-for-in-it-project-managers.html
http://www.cio.com/article/2375821/project-management/how-to-create-highperforming-project-management-teams.html
http://www.cio.com/article/2380395/outsourcing/does-a-hybrid-offshore-itoutsourcing-model-make-sense-for-your-company-.html

 Chapter 3 Managing the inforMation SySteMS Project 77

PMBOK. 2013. A Guide to the Project Management Body of Knowl-
edge, 5th. ed. Newtown Square, PA: Project Management
Institute.

Project Management Institute. 2002. Work Breakdown Structures.
Newton Square, PA: Project Management Institute.

Rettig, M. 1990. “Software Teams.” Communications of the ACM
33(10): 23–27.

Royce, W. 1998. Software Project Management. Boston:
Addison-Wesley.

Schiff, J. L. 2014a. “9 Secrets to Project Management Success.”
CIO.com. http://www.cio.com/article/2599794/project-
management/9-secrets-to-project-management-success.
html. Accessed February 14, 2015.

Schiff. J. L. 2014b. “11 Project Management Tips for Setting and
Managing Expectations.” CIO.com. http://www.cio.com/
article/2378680/project-management/11-project-man-
agement-tips-for-setting-and-managing-expectations.html.
Accessed February 14, 2015.

Vaidyanathan, G. 2013. Project Management: Process, Technology
and Practice. Upper Saddle River, NJ: Prentice Hall.

Verma, V. K. 1996. Human Resource Skills for the Project Manager.
Newton Square, PA: Project Management Institute.

Verma, V. K. 1997. Managing the Project Team. Newton Square, PA:
Project Management Institute.

Wideman, R. M. 1992. Project and Program Risk Management. New-
ton Square, PA: Project Management Institute.

http://www.cio.com/article/2599794/projectmanagement/9-secrets-to-project-management-success.html
http://www.cio.com/article/2378680/project-management/11-project-management-tips-for-setting-and-managing-expectations.html
http://www.cio.com/article/2378680/project-management/11-project-management-tips-for-setting-and-managing-expectations.html

78

In this chapter, we have described how projects are man-
aged when using a structured development approach. These
concepts and techniques are very robust to a broad range of
projects and development approaches. However, when de-
veloping a system using a more iterative design approach—
such as prototyping or object-oriented analysis and design—
there are some additional issues to consider. In this section,
we will discuss some unique characteristics of these types of
projects (see Fuller et al., 2008; George et al., 2007).

When a system is developed using an iterative
 approach, it means that, over the duration of the project,
a portion of the final system is constructed during each it-
eration phase. In this way, the system evolves incrementally
so that by the last iteration of the project, the entire system
is completed (see Figure 3-31). In order for the system to
evolve in this manner, the project manager must under-
stand several unique characteristics of an OOSAD project.

deFIne the SySteM aS a Set
oF CoMPonentS
In order to manage the project as a series of iterations, the
project manager must subdivide the overall system into a
set of components; when combined, this set will yield the
entire system (see Figure 3-32). Each of these separate sys-
tem components is often referred to as a “vertical slice” of
the overall system; this is a key feature of the system that can
be demonstrated to users. Alternatively, each slice should
not be a subsystem that spans “horizontally” throughout
the entire system because these horizontal slices typically

Learning Objectives

After studying this section, you should be able to

3a.1 describe the unique characteristics of an OOSAD
project.

do not focus on a specific system feature, nor are they typi-
cally good for demonstration to users. Basically, each verti-
cal slice represents a use case of the system (see Chapter 7
for more information on use case diagrams). Also, note in
Figure 3-32 that project management and planning is an
activity that continues throughout the life of the project.

One outcome of defining the overall system as a collec-
tion of components is the likelihood that the components
constructed earlier in the project will require greater rework
than those developed later in the project. For example, dur-
ing the early stages of the project, missing components or
a lack of understanding of key architectural features will
require that components developed early in the project be
modified substantially as the project moves forward in order
to integrate these components into a single comprehensive
system successfully. This means that rework is a natural part
of an OOSAD project and that one should not be overly con-
cerned when this occurs. It is simply a characteristic of the
iterative and incremental development process of OOSAD.

Complete hard Problems First
Another characteristic of the OOSAD approach is that it
tackles the hard problems first. In classic structured systems
development, a hard problem, such as choosing the physi-
cal implementation environment, is addressed late in the
development process. As a result, following a classic systems
development approach tends to result in putting off making
some of the key systems architectural decisions until late in
the project. This approach is sometimes problematic because
such decisions often determine whether a project is a success

appendix

object-oriented
analysis and design
Project Management

unique characteristics of an ooSad Project

 Chapter 3 Managing the inforMation SySteMS Project 79

or a failure. On the other hand, addressing hard problems as early as possible allows
the difficult problems to be examined before substantial resources have been expended.
This mitigates project risk.

In addition, completing the harder problems associated with the systems archi-
tecture as early as possible helps in completing all subsequent components because
most will build upon these basic architectural capabilities. (With some projects, the
hardest components depend upon simpler components. In these cases, one must
complete the simpler slices first before moving to the harder ones. Nonetheless, focus
should be placed on the hard problems as soon as possible.) From a project planning
perspective, this means that there is a natural progression and ordering of compo-
nents over the life of the project. The initial iteration or two must focus on the system
architecture such as the database or networking infrastructure. Once the architec-
ture is completed, core system capabilities, such as creating and deleting records, are
implemented. After the core system components are completed, detailed system fea-
tures are implemented that help to fine-tune key system capabilities. During the final
iteration phases, the primary focus is on activities that bring the project to a close
(e.g., interface refinement, user manuals, and training; see Figure 3-33).

Evolving Prototypes

Start of Project End of Project

Completed System

Iteration 1 Iteration 2 Iteration FIGURE 3-31
During the OOSAD process, the system
evolves incrementally over the life of the
project

Iterations

S
lic

es

Start of Project End of Project

1 2 3 4 5 6

C
om

ponent 1

C
om

ponent 2

C
om

ponent 3

C
om

ponent 4

C
om

ponent 5

C
om

ponent 6

C
om

ponent 7

C
om

ponent 8

C
om

ponent 9

C
om

ponent 10

C
om

ponent 11

C
om

ponent 12

C
om

ponent -1

C
om

ponent

Ongoing Project Management and Planning

FIGURE 3-32
Object-oriented development
projects are developed using
ongoing management and
evolving system functionality

80 part I foundationS for SySteMS develoPMent

using Iterations to Manage the Project
During each project iteration, all systems development life cycle activities are per-
formed (see Figure 3-34). This means that each project iteration has management
and planning, analysis, design, and implementation and operation activities. For
each iteration, the inputs to the process are the allocated project components—verti-
cal slices or use cases—to perform during this iteration and the results from the prior
iteration. The results of this iteration are then used as inputs to the next iteration.
For example, as components are designed and implemented, much is learned about
how subsequent components will need to be implemented. The learning that occurs
during each iteration helps the project manager gain a better understanding about
how subsequent components will be designed, what problems might occur, what re-
sources are needed, and how long and complex a component will be to complete.
As a result, most experienced project managers believe that it is a mistake to make
project plans too detailed early in the project when much is still unknown.

don’t Plan too Much up Front
During each iteration, more and more will be learned about how subsequent com-
ponents will need to be designed, how long each might take to complete, and so on.
Therefore, it is a mistake to make highly detailed plans far into the future because it
is likely that these plans will be wrong. In OOSAD, as each iteration is completed, the
goal is to learn more about the system being constructed, the capabilities of the de-
velopment team, the complexity of the development environment, and so on. As this
understanding is gained over the course of the project, the project manager is able
to make better and better predictions and plans. As a result, making highly detailed
plans for all project iterations is likely to result in a big waste of time. The project
manager should be concerned only with making highly detailed plans for the next
iteration or two. As the project manager learns over the course of the project, he or
she will be able to continually refine schedules, time estimates, and resource require-
ments with better and better estimates (see Figure 3-35).

Start of Project

Focus

End of Project

1 2 3 4 5 6

C
om

ponent 1

C
om

ponent 2

C
om

ponent 3

C
om

ponent 4

C
om

ponent 5

C
om

ponent 6

C
om

ponent 7

C
om

ponent 8

C
om

ponent 9

C
om

ponent 10

C
om

ponent 11

C
om

ponent 12

Architecture Core Features Detailed Features Completion

Iterations

Ongoing Project Management and Planning

C
om

ponent -1

C
om

ponent

FIGURE 3-33
The focus and ordering of
system components change
over the life of the project

 Chapter 3 Managing the inforMation SySteMS Project 81

how Many and how long are Iterations?
One question that many people have when first experiencing OOSAD has to do
with the number and duration of iterations. Iterations are designed to be a fixed
length of time, typically from two to eight weeks, but they can be as short as one week
(especially for smaller projects). During a single iteration, multiple components (use
cases) can be completed. However, it is important not to try to pack the develop-
ment of too many components into a single iteration. Experience has shown that
having more iterations with fewer components to be completed is better than hav-
ing only a few iterations with many components needing to be completed. It is only

Results
Supplied to

Next Iteration

Allocated Project
Activities

(Components)

Management and
Planning

Analysis

Design

Implementations and
Operations

Results
from Prior
Iteration

FIGURE 3-34
The workflow of an iteration
(Source: Based on Royce, 1998; George
et al., 2007.)

TransitionConstructionElaborationInception

4X

0

E
st

im
at

io
n

E
rr

or
s

O
ve

r
Ti

m
e

Time

Underestimated

Overestimated

X/4 FIGURE 3-35
Planning estimation improves over time
(Source: Based on Royce, 1998; George
et al., 2007.)

82 part I foundationS for SySteMS develoPMent

by iterating—completing a full systems development cycle—that significant learning
can occur to help the project manager better plan subsequent iterations.

The inception phase generally will entail one iteration, but it is not uncommon
for this to require two or more iterations in large, complex projects. Likewise, elabora-
tion often is completed in one or two iterations, but again system complexity and size
can influence this. Construction can range from two to several iterations, and transi-
tion typically occurs over one or two iterations. Thus, experienced OOSAD project
managers typically use from six to nine iterations when designing and constructing a
system (see Figure 3-36). Note that all completed components are integrated into a
comprehensive system at the conclusion of each iteration. During the first iteration, it
is likely that simple component prototypes, such as file opening, closing, and saving,
will be created. However, as the project progresses, the prototypes become increas-
ingly sophisticated until the entire system is completed (see Figure 3-37).

Inception
(1–2 iterations)

6–9 Iterations

Elaboration
(2–3 iterations)

Construction
(3–5 iterations)

Transition
(1–2 iterations)

Management and
Planning

Analysis

Design

Implementation

Operation

FIGURE 3-36
An OOSAD project typically has six to
nine iterations

Component
Prototypes

Integrated
Component Alpha Release Beta Release

Iterations

Start of Project End of Project

1 2 3 4 5 6 7 8

100

Inception Elaboration Construction Transition

50

P
er

ce
nt

 C
om

pl
et

e

0FIGURE 3-37
As the project evolves, system
functionality evolves
(Source: Based on Royce, 1998; George
et al., 2007.)

 Chapter 3 Managing the inforMation SySteMS Project 83

Project activity Focus Changes over the life of a Project
Over the life of a project, the project manager moves from iteration to iteration,
beginning with inception and ending with the transition phase. Additionally, during
all project iterations, the manager engages in all phases of the systems development
cycle. However, the level of activity in each phase changes over the life of the project
(see Figure 3-38). For example, throughout the life of the project, management and
planning are an ongoing and important part of the project. Additionally, during in-
ception the primary focus is analysis, during elaboration the primary focus is design,
during construction the primary focus is implementation, and during transition the
primary focus is making the system operational. In sum, although all project life
cycle activities are employed during every project iteration, the mix and focus of
these activities change over time.

Inception
(1–2 iterations)

Elaboration
(2–3 iterations)

Construction
(3–5 iterations)

Transition
(1–2 iterations)

Management and
Planning

Analysis

Design

Implementation

Operation

Start of Project End of Project

FIGURE 3-38
The level and focus of activity across the
systems development process change
from the start to the end of the project

Summary

When managing an OOSAD project, the project manager
must define the project as a set of components. Once de-
fined, these components can be analyzed and ordered so
that the most difficult components are implemented first.
An OOSAD project is managed by a series of iterations,
and each iteration contains all phases of the systems de-
velopment cycle. Over each iteration, more and more of
the system is created (component by component), and
more and more is learned about the system being con-
structed, the capabilities of the development team, and

the complexity of the development environment. As this
learning increases over time, the project manager is better
able to plan project activities more accurately. Therefore,
it is not good practice to plan long-range activities in great
detail; detailed planning should occur only for the current
and subsequent iteration. Most projects have six to nine
iterations, but large projects could have several more. An
iteration is a fixed time period, usually about two weeks,
but it can be shorter or longer depending upon the char-
acteristics of the project.

revIew QueSTIon
 3.60 Describe the unique characteristics of OOSAD projects that

have ramifications for how these projects are managed.

ProblemS and exercISeS
 3.61 Why should project managers complete hard problems

first in an OOSAD project?
 3.62 Why is planning too much up front a mistake in an OOSAD

project?

84 part I foundationS for SySteMS develoPMent

Chapter 3: Managing the Information Systems
Project

Jim Watanabe, assistant director of information technol-
ogy at Petrie Electronics, a Southern California–based
electronics retail store, walked into his building’s confer-
ence room. It was early in the morning for Jim, but the
meeting was important. Ella Whinston, the COO, had
called the meeting. On the agenda was the proposed cus-
tomer relationship project Ella told Jim about earlier in
the week. She had asked Jim to be the project manager. If
the project was approved by Petrie IS steering committee,
it would be Jim’s first big project to manage at Petrie. He
was excited about getting started.

“Hi Jim,” said Ella Whinston. With Ella was a man Jim
did not know. “Jim, this is Bob Petroski. I know that the
customer loyalty project has not been officially approved
yet, but I am certain it will be. I’d like for Bob to be on
your team, to represent me.”

Jim and Bob shook hands. “Nice to meet you, Jim. I’m
looking forward to working with you.”

“And Bob knows how important this project is to me,”
Ella said, “so I expect him to keep me informed about
your progress.” Ella smiled.

Great, Jim thought, more pressure. That’s all I need.
Just then, John Smith, the head of marketing, walked

into the conference room. With him was a young woman
Jim recognized, but he wasn’t sure from where.

“Jim,” John said, “Let me introduce you to Sally
 Fukuyama. She is the assistant director of marketing.
She will be representing marketing, and me, on your ‘No
Employee Escapes’ project. Assuming it gets official ap-
proval, of course.”

petrIe eLeCtrOnICs

“Hi, Jim,” Sally said, “I have a lot of ideas about what we
can do. Even though I still have my regular job to worry
about, I’m excited about working on this project.”

“Who else do you think should be on your team?” Ella
asked.

“I’d like to bring in Sanjay Agarwal from IT,” Jim said.
“He is in charge of systems integration in the IT depart-
ment and reports to me. In addition to me and Sanjay and
Sally and Bob, I think we should also have a store man-
ager on the team. I’d like to suggest Juanita Lopez, the
manager of the store in Irvine, California. She is really
busy, but I think we have to have a store manager on the
team.”

“Irvine?” Ella asked. “That’s one of our top stores.
 Juanita should have a lot of insight into the issues related
to keeping customers, if she is managing the Irvine store.
And you are right, she is going to be very busy.”

Case Questions

 3.63 What qualities might Jim possess that would make
him a successful project manager?

 3.64 How do you think Jim should respond to Ella’s im-
plied pressure about the importance of the project
to her?

 3.65 What strategies might Jim employ to deal with a very
busy team member such as Juanita Lopez?

 3.66 What should Jim do next to complete the project
initiation?

 3.67 List five team communication methods that Jim
might use throughout this project. What are some
pros and cons of each?

85

Part two

Planning

Chapter 4
Identifying and Selecting Systems
Development Projects

Chapter 5
Initiating and Planning Systems Development
Projects

86

Overview

The demand for new or replacement systems exceeds
the ability and resources of most organizations to con-
duct systems development projects either by themselves
or with consultants. This means that organizations must
set priorities and a direction for systems development
that will yield development projects with the greatest net
benefits. As a systems analyst, you must analyze user in-
formation requirements, and you must also help make
the business case—or justify why the system should be
built and the development project conducted.

The reason for any new or improved information
system (IS) is to add value to the organization. As systems
analysts, we must choose to use systems development re-
sources to build the mix of systems that add the greatest
value to the organization. How can we determine the busi-
ness value of systems and identify those applications that
provide the most critical gains? Part Two addresses this
topic, the first phase of the systems development life cycle
(SDLC), which we call planning. Business value comes
from supporting the most critical business goals and help-
ing the organization deliver on its business strategy. All
systems, whether supporting operational or strategic func-
tions, must be linked to business goals. The two chapters
in this part of the book show how to make this linkage.

The source of systems projects is either initiatives
from IS planning (proactive identification of systems)
or requests from users or IS professionals (reactions to
problems or opportunities) for new or enhanced systems.
In Chapter 4, we outline the linkages among corporate
planning, IS planning, and the identification and selec-
tion of projects. We do not include IS planning as part
of the SDLC, but the results of IS planning greatly influ-
ence the birth and conduct of systems projects. Chapter
4 makes a strong argument that IS planning provides not
only insights into choosing which systems an organiza-
tion needs, but also describes the strategies necessary for
evaluating the viability of any potential systems project.

A more frequent source of project identification
originates from system service requests (SSRs) from
business managers and IS professionals, usually for
very focused systems or incremental improvements in
existing systems. Business managers request a new or

replacement system when they believe that improved in-
formation services will help them do their jobs. IS profes-
sionals may request system updates when technological
changes make current system implementations obsolete
or when the performance of an existing system needs im-
provement. In either case, the request for service must
be understood by management, and a justification for
the system and associated project must be developed.

We continue with the Petrie Electronics case fol-
lowing Chapter 4. In this case, we show how an idea for a
new IS project was stimulated by a synergy between cor-
porate strategic planning and the creativity of an indi-
vidual business manager.

Chapter 5 focuses on what happens after a project
has been identified and selected: the next step in mak-
ing the business case, initiating and planning the pro-
posed system request. This plan develops a better under-
standing of the scope of the potential system change and
the nature of the needed system features. From this pre-
liminary understanding of system requirements, a proj-
ect plan is developed that shows both the detailed steps
and resources needed in order to conduct the analysis
phase of the life cycle and the more general steps for
subsequent phases. The feasibility and potential risks of
the requested system are also outlined, and an economic
cost–benefit analysis is conducted to show the potential
impact of the system change. In addition to the economic
feasibility or justification of the system, technical, organi-
zational, political, legal, schedule, and other feasibilities
are assessed. Potential risks—unwanted outcomes—are
identified, and plans for dealing with these possibilities
are identified. Project initiation and planning end when
a formal proposal for the systems development project
is completed and submitted for approval to the person
who must commit the resources to systems development.
If approved, the project moves into the analysis phase of
the SDLC.

We illustrate a typical project initiation and plan-
ning phase in a Petrie Electronics case following Chapter
5. In this case, we show how the company developed its
project scope statement and addressed various aspects of
the project’s initiation and planning stage.

Part two

Planning

87

The scope of information systems today is the whole
enterprise. Managers, knowledge workers, and all
other organizational members expect to easily access
and retrieve information, regardless of its location.
Nonintegrated systems used in the past—often referred
to as “islands of information”—are being replaced with
cooperative, integrated enterprise systems that can eas-
ily support information sharing. Although the goal of
building bridges between these “islands” will take some
time to achieve, it represents a clear direction for infor-
mation systems development. The use of enterprise re-
source planning (ERP) systems from companies such as
SAP (www.sap.com) and Oracle (www.oracle.com), has
enabled the linking of these “islands” in many organiza-
tions. Additionally, as the use of the Internet continues
to evolve to support business activities, systems integra-
tion has become a paramount concern of organizations
(Fox, 2013; Luftman, 2004; Overby, 2006; Wailgum, 2010;
Westerman et al., 2014; Weill and Ross, 2009).

Obtaining integrated, enterprise-wide computing
presents significant challenges for both corporate and
information systems management. For example, given
the proliferation of personal and departmental comput-
ing wherein disparate systems and databases have been
created, how can the organization possibly control and
maintain all of these systems and data? In many cases they
simply cannot; it is nearly impossible to track who has
which systems and what data, where there are overlaps

or inconsistencies, and the accuracy of the information.
The reason that personal and departmental systems and
databases abound is that users are either unaware of the
information that exists in corporate databases or they can-
not easily get at it, so they create and maintain their own
information and systems. Intelligent identification and
selection of system projects, for both new and replace-
ment systems, is a critical step in gaining control of sys-
tems and data. It is the hope of many chief information
officers (CIOs) that with the advent of ERP systems, im-
proved system integration, and the rapid deployment of
corporate Internet solutions, these islands will be reduced
or eliminated (Fox, 2013; Harvard Business Review, 2011;
Luftman, 2004; Newbold and Azua, 2007; Olavsrud, 2014;
Weill and Ross, 2009; Wailgum, 2010).

The acquisition, development, and maintenance
of information systems consume substantial resources
for most organizations. This suggests that organizations
can benefit from following a formal process for identify-
ing and selecting projects. The first phase of the systems
development life cycle—project identification and selec-
tion—deals with this issue. In the next section, you will
learn about a general method for identifying and select-
ing projects and the deliverables and outcomes from this
process. This is followed by brief descriptions of corporate
strategic planning and information systems planning, two
activities that can greatly improve the project identifica-
tion and selection process.

4.3 describe the three classes of Internet
electronic commerce applications: business-
to-consumer, business-to-employee, and
business-to-business.

Learning objectives

After studying this chapter, you should be able to

4.1 describe the project identification and selection
process,

4.2 describe the corporate strategic planning and
information systems planning process, and

Identifying and Selecting
Systems Development
Projects4

Chapter

Introduction

http://www.sap.com
http://www.oracle.com

88 Part II Planning

IDentIfyIng anD SeleCtIng SyStemS
DeveloPment ProjeCtS
The first phase of the SDLC is planning, consisting of project identification and se-
lection, and project initiation and planning (see Figure 4-1). During project iden-
tification and selection, a senior manager, a business group, an IS manager, or a
steering committee identifies and assesses all possible systems development projects
that an organization unit could undertake. Next, those projects deemed most likely
to yield significant organizational benefits, given available resources, are selected for
subsequent development activities. Organizations vary in their approach to identify-
ing and selecting projects. In some organizations, project identification and selection
is a very formal process in which projects are outcomes of a larger overall planning
process. For example, a large organization may follow a formal project identifica-
tion process whereby a proposed project is rigorously compared with all competing
projects. Alternatively, a small organization may use informal project selection pro-
cesses that allow the highest-ranking IS manager to independently select projects or
allow individual business units to decide on projects after agreeing to provide project
funding.

Information systems development requests come from a variety of sources.
One source is requests by managers and business units for replacing or extending
an existing system to gain needed information or to provide a new service to cus-
tomers. Another source for requests is IS managers who want to make a system more
efficient and less costly to operate, or want to move it to a new operating environ-
ment. A final source of projects is a formal planning group that identifies projects
for improvement to help the organization meet its corporate objectives (e.g., a new
system to provide better customer service). Regardless of how a given organization
actually executes the project identification and selection process, a common se-
quence of activities occurs. In the following sections, we describe a general process
for identifying and selecting projects and producing the deliverables and outcomes
of this process.

DesignImplementation

Maintenance Analysis

Planning

Project Identification and Selection
Project Initiation and Planning

Figure 4-1
Systems development life cycle with
project identification and selection
highlighted

 ChaPter 4 identifying and Selecting SyStemS develoPment ProjectS 89

the Process of Identifying and Selecting IS Development Projects
Project identification and selection consists of three primary activities:

1. Identifying potential development projects
2. Classifying and ranking IS development projects
3. Selecting IS development projects

Each of these steps is described below:

1. Identifying potential development projects. Organizations vary as to how they identify
projects. This process can be performed by

•	 a key member of top management, either the CEO of a small- or medium-
sized organization or a senior executive in a larger organization;

•	 a steering committee, composed of a cross section of managers with an inter-
est in systems;

•	 user departments, in which either the head of the requesting unit or a com-
mittee from the requesting department decides which projects to submit
 (often you, as a systems analyst, will help users prepare such requests); or

•	 the development group or a senior IS manager.

All methods of identification have been found to have strengths and weak-
nesses. Research has found, for example, that projects identified by top man-
agement more often have a strategic organizational focus. Alternatively, projects
identified by steering committees more often reflect the diversity of the commit-
tee and therefore have a cross-functional focus. Projects identified by individual
departments or business units most often have a narrow, tactical focus. Finally, a
dominant characteristic of projects identified by the development group is the
ease with which existing hardware and systems will integrate with the proposed
project. Other factors, such as project cost, duration, complexity, and risk, are
also influenced by the source of a given project. Characteristics of each selection
method are briefly summarized in Table 4-1. In addition to who makes the deci-
sion, characteristics specific to the organization—such as the level of firm diversi-
fication, level of vertical integration, or extent of growth opportunities—can also
influence any investment or project selection decision (Dewan et al., 1998; Fox,
2013; Harvard Business Review, 2009; Luftman, 2004; Yoo et al., 2006; Thomas
and Fernandez, 2008; Weill and Ross, 2009).

Table 4-1 Characteristics of alternative Methods for Making Information Systems
Identification and Selection Decisions

Selection Method Characteristics
Top Management Greater strategic focus

Largest project size
Longest project duration
Enterprise-wide consideration

Steering Committee Cross-functional focus
Greater organizational change
Formal cost–benefit analysis
Larger and riskier projects

Functional Area Narrow, nonstrategic focus
Faster development
Fewer users, management layers, and business

functions involved
Development Group Integration with existing systems focus

Fewer development delays
Less concern with cost–benefit analysis

(Source: Based on McKeen, Guimaraes, and Wetherbe, 1994; GAO, 2000.)

90 Part II Planning

Of all the possible project sources, those identified by top management
and steering committees most often reflect the broader needs of the organiza-
tion. This occurs because top management and steering committees are likely
to have a broader understanding of overall business objectives and constraints.
Projects identified by top management or by a diverse steering committee are
therefore referred to as coming from a top-down source.

Projects identified by a functional manager, business unit, or by the infor-
mation systems development group are often designed for a particular business
need within a given business unit. In other words, these projects may not reflect
the overall objectives of the organization. This does not mean that projects iden-
tified by individual managers, business units, or the IS development group are
deficient, only that they may not consider broader organizational issues. Project
initiatives stemming from managers, business units, or the development group
are generally referred to as coming from a bottom-up source. These are the types
of projects in which you, as a systems analyst, will have the earliest role in the life
cycle as part of your ongoing support of users. You will help user managers pro-
vide the description of information needs and the reasons for doing the project
that will be evaluated in selecting, among all submitted projects, which ones will
be approved to move into the project initiation and planning phase of the SDLC.

In sum, projects are identified by both top-down and bottom-up initiatives.
The formality of the process of identifying and selecting projects can vary substan-
tially across organizations. Also, because limited resources preclude the develop-
ment of all proposed systems, most organizations have a process of classifying and
ranking the merit of each project. Those projects deemed inconsistent with overall
organizational objectives, redundant in functionality to some existing system, or
unnecessary will thus be removed from consideration. This topic is discussed next.

2. Classifying and ranking IS development projects. The second major activity in the
project identification and selection process focuses on assessing the relative
merit of potential projects. As with the project identification process, classifying
and ranking projects can be performed by top managers, a steering committee,
business units, or the IS development group. Additionally, the criteria used when
assigning the relative merit of a given project can vary. Commonly used criteria
for assessing projects are summarized in Table 4-2. In any given organization,
one or several criteria might be used during the classifying and ranking process.

As with the project identification and selection process, the actual criteria
used to assess projects will vary by organization. If, for example, an organization
uses a steering committee, it may choose to meet monthly or quarterly to review

Table 4-2 Possible evaluation Criteria When Classifying and Ranking Projects
Evaluation Criteria Description
Value Chain Analysis Extent to which activities add value and costs

when developing products and/or services
Strategic Alignment Extent to which the project is viewed as

helping the organization achieve its strategic
objectives and long-term goals

Potential Benefits Extent to which the project is viewed as
improving profits, customer service, and so
forth, and the duration of these benefits

Resource Availability Amount and type of resources the project
requires and their availability

Project Size/Duration Number of individuals and the length of time
needed to complete the project

Technical Difficulty/Risks Level of technical difficulty to successfully
complete the project within given time and
resource constraints

 ChaPter 4 identifying and Selecting SyStemS develoPment ProjectS 91

projects and use a wide variety of evaluation criteria. At these meetings, new proj-
ect requests will be reviewed relative to projects already identified, and ongoing
projects are monitored. The relative ratings of projects are used to guide the
final activity of this identification process—project selection.

An important project evaluation method that is widely used for assessing
information systems development projects is called value chain analysis (Foss and
Saebi, 2015; Porter, 1985; Van den Berg and Pietersma, 2015). Value chain analy-
sis is the process of analyzing an organization’s activities for making products
and/or services to determine where value is added and costs are incurred. Once
an organization gains a clear understanding of its value chain, improvements in
the organization’s operations and performance can be achieved. Information sys-
tems projects providing the greatest benefit to the value chain will be given prior-
ity over those with fewer benefits.

As you might have guessed, information systems have become one of the
primary ways for organizations to make changes and improvements in their value
chains. Many organizations, for example, are using the Internet to exchange
 important business information with suppliers and customers, such as orders,
 invoices, and receipts. To conduct a value chain analysis for an organization,
think about an organization as a big input/output process (see Figure 4-2). At
one end are the inputs to the organization, for example, supplies that are pur-
chased. Within the organizations, those supplies and resources are integrated in
some way to produce products and services. At the other end are the outputs,
which represent the products and services that are marketed, sold, and then dis-
tributed to customers. In value chain analysis, you must first understand each ac-
tivity, function, and process where value is or should be added. Next, determine
the costs (and the factors that drive costs or cause them to fluctuate) within each
of the areas. After understanding your value chain and costs, you can benchmark
(compare) your value chain and associated costs with those of other organiza-
tions, preferably your competitors. By making these comparisons, you can iden-
tify priorities for applying information systems projects.

3. Selecting IS development projects. The final activity in the project identification and
selection process is the actual selection of projects for further development. Proj-
ect selection is a process of considering both short- and long-term projects and
selecting those most likely to achieve business objectives. Additionally, as busi-
ness conditions change over time, the relative importance of any single project
may substantially change. Thus, the identification and selection of projects is a
very important and ongoing activity.

Numerous factors must be considered when making project selection de-
cisions. Figure 4-3 shows that a selection decision requires that the perceived
needs of the organization, existing systems and ongoing projects, resource avail-
ability, evaluation criteria, current business conditions, and the perspectives of
the decision makers will all play a role in project selection decisions. Numerous
outcomes can occur from this decision process. Of course, projects can be ac-
cepted or rejected. Acceptance of a project usually means that funding to con-
duct the next phase of the SDLC has been approved. Rejection means that the
project will no longer be considered for development. However, projects may
also be conditionally accepted; they may be accepted pending the approval or

Value chain analysis
Analyzing an organization’s activities
to determine where value is added to
products and/or services and the costs
incurred for doing so; usually also includes
a comparison with the activities, added
value, and costs of other organizations
for the purpose of making improvements
in the organization’s operations and
performance.

Figure 4-2
Organizations can be thought of as a
value chain, transforming raw materials
into products for customers

Transform Raw
Materials into

Products

Storage and
Distribution
of Products

Marketing,
Sales, and

Customer Support

Sources: Left to right: Bram van
 Broekhoven/Shutterstock; Alexey
 Fursov/Shutterstock; TTstudio/Fotolia;
Kadmy/Fotolia

92 Part II Planning

availability of needed resources or the demonstration that a particularly difficult
aspect of the system can be developed. Projects may also be returned to the origi-
nal requesters, who are told to develop or purchase the requested system. Finally,
the requesters of a project may be asked to modify and resubmit their request
after making suggested changes or clarifications.

One method for deciding among different projects, or when considering alter-
native designs for a given system, is illustrated in Figure 4-4. For example, suppose
that, for a given system that has been identified and selected, there are three alterna-
tive designs that could be pursued—A, B, or C. Let’s also suppose that early planning
meetings identified three key system requirements and four key constraints that could
be used to help make a decision on which alternative to pursue. In the left column
of Figure 4-4, three system requirements and four constraints are listed. Because not
all requirements and constraints are of equal importance, they are weighted based
on their relative importance. In other words, you do not have to weight requirements
and constraints equally; it is certainly possible to make requirements more or less
important than constraints. Weights are arrived at in discussions among the analysis
team, users, and sometimes managers. Weights tend to be fairly subjective and, for

Criteria Weight Alternative A Alternative B Alternative C

Rating Score Rating Score Rating Score

Requirements

Real-time data entry 18 5 90 5 90 5 90

Automatic reorder 18 1 18 5 90 5 90

Real-time data query 4 1 14 5 70 5 70

50 122 250 250

Constraints

Developer costs 15 4 60 5 75 3 45

Hardware costs 15 4 60 4 60 3 45

Operating costs 15 5 75 1 15 5 75

Ease of training 5 5 25 3 15 3 15

50 220 165 180

Total 100 342 415 430

1

Figure 4-4
Alternative projects and system design
decisions can be assisted using weighted
multicriteria analysis

Existing and
Available

Resources

Perceived and
Real Needs

List of Potential
and Ongoing

Projects

Current
Organizational
Environment

Evaluation
Criteria

Project
Selection
Decision

Decision Outcome

• Accept Project
• Reject Project
• Delay Project
• Refocus Project
• End-User Development
• Proof of Concept

Figure 4-3
Project selection decisions must consider
numerous factors and can have numerous
outcomes

 ChaPter 4 identifying and Selecting SyStemS develoPment ProjectS 93

that reason, should be determined through a process of open discussion to reveal un-
derlying assumptions, followed by an attempt to reach consensus among stakehold-
ers. Notice that the total of the weights for both the requirements and constraints is
100 percent.

Next, each requirement and constraint is rated on a scale of 1 to 5. A rating of
1 indicates that the alternative does not meet the requirement very well or that the
alternative violates the constraint. A rating of 5 indicates that the alternative meets or
exceeds the requirement or clearly abides by the constraint. Ratings are even more
subjective than weights and should also be determined through open discussion
among users, analysts, and managers. For each requirement and constraint, a score is
calculated by multiplying the rating for each requirement and each constraint by its
weight. The final step is to add the weighted scores for each alternative. Notice that
we have included three sets of totals: for requirements, for constraints, and overall to-
tals. If you look at the totals for requirements, alternative B or C is the best choice be-
cause both meet or exceed all requirements. However, if you look only at constraints,
alternative A is the best choice because it does not violate any constraints. When we
combine the totals for requirements and constraints, we see that the best choice is
alternative C. Whether alternative C is actually chosen for development, however, is
another issue. The decision makers may choose alternative A, knowing that it does
not meet two key requirements, because it has the lowest cost. In short, what may ap-
pear to be the best choice for a systems development project may not always be the
one that ends up being developed. By conducting a thorough analysis, organizations
can greatly improve their decision-making performance.

Deliverables and outcomes
The primary deliverable from the first part of the planning phase is a schedule of spe-
cific IS development projects, coming from both top-down and bottom-up sources,
to move into the next part of the planning phase—project initiation and planning
(see Figure 4-5). An outcome of this phase is the assurance that careful consideration
was given to project selection, with a clear understanding of how each project can
help the organization reach its objectives. Due to the principle of incremental com-
mitment, a selected project does not necessarily result in a working system. After each
subsequent SDLC phase, you, other members of the project team, and organizational
officials will reassess your project to determine whether the business conditions have
changed or whether a more detailed understanding of a system’s costs, benefits, and
risks would suggest that the project is not as worthy as previously thought.

Top Down

Bottom Up

Schedule of Projects
1. ...
2. ...
3. ...

Evaluate,
Prioritize, and

Schedule
Projects

Sources of
Potential Projects

Project Identification
and Selection

Project Initiation
and Planning

• Top Management
• Steering Committee

• User Departments
• Development Group

Figure 4-5
Information systems development projects
come from both top-down and bottom-up
initiatives

incremental commitment
A strategy in systems analysis and design
in which the project is reviewed after each
phase and continuation of the project is
rejustified.

94 Part II Planning

Many organizations have found that in order to make good project selection
decisions, a clear understanding of overall organizational business strategy and ob-
jectives is required. This means that a clear understanding of the business and the
desired role of information systems in achieving organizational goals is a precondi-
tion to improving the identification and selection process. In the next section, we
provide a brief overview of the process many organizations follow—involving corpo-
rate strategic planning and information systems planning—when setting their busi-
ness strategy and objectives and when defining the role of information systems in
their plans.

CorPorate anD InformatIon
SyStemS PlannIng
Although there are numerous motivations for carefully planning the identification
and selection of projects (see Atkinson, 1990; Dyche, 2015; Harvard Business Review,
2009; Kelly, 2006; Luftman, 2004; Weill and Ross, 2009), organizations have not tra-
ditionally used a systematic planning process when determining how to allocate IS
resources. Instead, projects have often resulted from attempts to solve isolated orga-
nizational problems. In effect, organizations have asked the question: “What proce-
dure (application program) is required to solve this particular problem as it exists
today?” The difficulty with this approach is that the required organizational proce-
dures are likely to change over time as the environment changes. For example, a
company may decide to change its method of billing customers or a university may
change its procedure for registering students. When such changes occur, it is usually
necessary to again modify existing information systems.

In contrast, planning-based approaches essentially ask the question: “What in-
formation (or data) requirements will satisfy the decision-making needs or business
processes of the enterprise today and well into the future?” A major advantage of this
approach is that an organization’s informational needs are less likely to change (or
will change more slowly) than its business processes. For example, unless an organi-
zation fundamentally changes its business, its underlying data structures may remain
reasonably stable for more than 10 years. However, the procedures used to access
and process the data may change many times during that period. Thus, the challenge
of most organizations is to design comprehensive information models containing
data that are relatively independent from the languages and programs used to ac-
cess, create, and update them.

To benefit from a planning-based approach for identifying and selecting proj-
ects, an organization must analyze its information needs and plan its projects care-
fully. Without careful planning, organizations may construct databases and systems
that support individual processes but do not provide a resource that can be easily
shared throughout the organization. Further, as business processes change, lack of
data and systems integration will hamper the speed at which the organization can ef-
fectively make business strategy or process changes.

The need for improved information systems project identification and selec-
tion is readily apparent when we consider factors such as the following:

1. The cost of information systems has risen steadily and approaches 40 percent of
total expenses in some organizations.

2. Many systems cannot handle applications that cross organizational boundaries.
3. Many systems often do not address the critical problems of the business as a

whole or support strategic applications.
4. Data redundancy is often out of control, and users may have little confidence in

the quality of data.
5. Systems maintenance costs are out of control as old, poorly planned systems must

constantly be revised.

 ChaPter 4 identifying and Selecting SyStemS develoPment ProjectS 95

6. Application backlogs often extend three years or more, and frustrated end users
are forced to create (or purchase) their own systems, often creating redundant
databases and incompatible systems in the process.

Careful planning and selection of projects alone will certainly not solve all of these
problems. We believe, however, that a disciplined approach, driven by top management
commitment, is a prerequisite for most effectively applying information systems in order
to reach organizational objectives. The focus of this section is to provide you with a clear
understanding of how specific development projects with a broader organizational
focus can be identified and selected. Specifically, we describe corporate strategic plan-
ning and information systems planning, two processes that can significantly improve
the quality of project identification and selection decisions. This section also outlines
the types of information about business direction and general systems requirements
that can influence selection decisions and guide the direction of approved projects.

Corporate Strategic Planning
A prerequisite for making effective project selection decisions is to gain a clear idea
of where an organization is, its vision of where it wants to be in the future, and how to
make the transition to its desired future state. Figure 4-6 represents this as a three-step
process. The first step focuses on gaining an understanding of the current enterprise.
In other words, if you don’t know where you are, it is impossible to tell where you are
going. Next, top management must determine where it wants the enterprise to be in
the future. Finally, after gaining an understanding of the current and future enter-
prise, a strategic plan can be developed to guide this transition. The process of devel-
oping and refining models of the current and future enterprise as well as a transition
strategy is often referred to as corporate strategic planning. During corporate strategic
planning, executives typically develop a mission statement, statements of future cor-
porate objectives, and strategies designed to help the organization reach its objectives.

All successful organizations have a mission. The mission statement of a com-
pany typically states in very simple terms what business the company is in. For ex-
ample, the mission statement for Pine Valley Furniture (PVF) is shown in Figure 4-7.
After reviewing PVF’s mission statement, it becomes clear that it is in the business
of constructing and selling high-quality wood furniture to the general public, busi-
nesses, and institutions such as universities and hospitals. It is also clear that PVF is
not in the business of fabricating steel file cabinets or selling its products through
wholesale distributors. Based on this mission statement, you could conclude that
PVF does not need a retail sales information system; instead, a high-quality human
 resource information system would be consistent with its goal.

Current
Enterprise

Future
Enterprise

Strategic
Plan

Step 1

Step 2

Step 3

Figure 4-6
Corporate strategic planning
is a three-step process

Corporate strategic planning
An ongoing process that defines the
mission, objectives, and strategies of an
organization.

Mission statement
A statement that makes it clear what
business a company is in.

Pine Valley Furniture
Corporate Mission Statement

We are in the business of designing,
fabricating, and selling to retail stores
high-quality wood furniture for
household, o�ce, and institutional use.
We value quality in our products and in
our relationships with customers and
suppliers. We consider our employees
our most critical resource.

Figure 4-7
Mission statement (Pine Valley Furniture)

96 Part II Planning

After defining its mission, an organization can then define its objectives.
Objective statements refer to “broad and timeless” goals for the organization. These
goals can be expressed as a series of statements that are either qualitative or quantita-
tive but that typically do not contain details likely to change substantially over time.
Objectives are often referred to as critical success factors. Here, we will simply use the
term objectives. The objectives for PVF are shown in Figure 4-8, with most relating to
some aspect of the organizational mission. For example, the second objective relates
to how PVF views its relationships with customers. This goal would suggest that PVF
might want to invest in a web-based order tracking system that would contribute to
high-quality customer service. Once a company has defined its mission and objec-
tives, a competitive strategy can be formulated.

A competitive strategy is the method by which an organization attempts to
achieve its mission and objectives. In essence, the strategy is an organization’s game
plan for playing in the competitive business world. In his classic book on competitive
strategy, Michael Porter (1980) defined three generic strategies—low-cost producer,
product differentiation, and product focus or niche—for reaching corporate objec-
tives (see Table 4-3). These generic strategies allow you to more easily compare two
companies in the same industry that may not employ the same competitive strategy.

Objective statements
A series of statements that express an
organization’s qualitative and quantitative
goals for reaching a desired future position.

Competitive strategy
The method by which an organization
attempts to achieve its mission and
objectives.

Pine Valley Furniture
Statement of Objectives

PVF will strive to increase market share and profitability (prime objective).

PVF will be considered a market leader in customer service.

PVF will be innovative in the use of technology to help bring new products
to market faster than our competition.

PVF will employ the fewest number of the highest-quality people
necessary to accomplish our prime objective.

PVF will create an environment that values diversity in gender, race,
values, and culture among employees, suppliers, and customers.

1.

2.

3.

4.

5.

Figure 4-8
Statement of corporate objectives
(Pine Valley Furniture)

Table 4-3 Generic Competitive Strategies
Strategy Description
Low-Cost Producer This strategy reflects competing in an industry on the basis of product or service cost to the consumer.

For example, in the automobile industry, the South Korean–produced Hyundai is a product line that
competes on the basis of low cost.

Product Differentiation This competitive strategy reflects capitalizing on a key product criterion requested by the market (for
example, high quality, style, performance, roominess). In the automobile industry, many manufacturers
are trying to differentiate their products on the basis of quality (e.g., “At Ford, quality is job one.”).

Product Focus or Niche This strategy is similar to both the low-cost and differentiation strategies but with a much narrower
market focus. For example, a niche market in the automobile industry is the convertible sports car
market. Within this market, some manufacturers may employ a low-cost strategy and others may
employ a differentiation strategy based on performance or style.

(Source: Based on The Free Press, a Division of Simon & Schuster Adult Publishing Group, from Porter, 1980. Copyright © 1980, 1998 by
The Free Press. All rights reserved.)

 ChaPter 4 identifying and Selecting SyStemS develoPment ProjectS 97

In addition, organizations employing different competitive strategies often have dif-
ferent informational needs to aid decision making. For example, Rolls-Royce and
Kia Motors are two car lines with different strategies: One is a high-prestige line in
the ultra-luxury niche, whereas the other is a relatively low-priced line for the general
automobile market. Rolls-Royce may build information systems to collect and ana-
lyze information on customer satisfaction to help manage a key company objective.
Alternatively, Kia may build systems to track plant and material utilization in order to
manage activities related to its low-cost strategy.

To effectively deploy resources such as the creation of a marketing and sales or-
ganization or to build the most effective information systems, an organization must
clearly understand its mission, objectives, and strategy. A lack of understanding will
make it impossible to know which activities are essential to achieving business ob-
jectives. From an information systems development perspective, by understanding
which activities are most critical for achieving business objectives, an organization
has a much greater chance to identify those activities that need to be supported by
information systems. In other words, it is only through the clear understanding of the or-
ganizational mission, objectives, and strategies that IS development projects should be identi-
fied and selected. The process of planning how information systems can be employed
to assist organizations to reach their objectives is the focus of the next section.

Information Systems Planning
The second planning process that can play a significant role in the quality of project
identification and selection decisions is called information systems planning (ISP).
ISP is an orderly means of assessing the information needs of an organization and
defining the information systems, databases, and technologies that will best satisfy
those needs (Amrollahi et al., 2014; Carlson et al., 1989; Cassidy, 2005; Luftman,
2004; Overby, 2008; Parker and Benson, 1989; Segars and Grover, 1999; Weill and
Ross, 2009). This means that during ISP you (or, more likely, senior IS managers
responsible for the IS plan) must model current and future organization informa-
tional needs and develop strategies and project plans to migrate the current infor-
mation systems and technologies to their desired future state. ISP is a top-down
process that takes into account the outside forces—industry, economic, relative
size, geographic region, and so on—that are critical to the success of the firm. This
means that ISP must look at information systems and technologies in terms of how
they help the business achieve its objectives as defined during corporate strategic
planning.

The three key activities of this modeling process are represented in Figure 4-9.
Like corporate strategic planning, ISP is a three-step process in which the first step
is to assess current IS-related assets—human resources, data, processes, and tech-
nologies. Next, target blueprints of these resources are developed. These blueprints
reflect the desired future state of resources needed by the organization to reach its
objectives as defined during strategic planning. Finally, a series of scheduled projects
is defined to help move the organization from its current to its future desired state.
(Of course, scheduled projects from the ISP process are just one source for projects.
Others include bottom-up requests from managers and business units, such as the
SSR in Figure 3-2.)

For example, a project may focus on reconfiguration of a telecommunica-
tions network to speed data communications or it may restructure work and data
flows between business areas. Projects can include not only the development of new
information systems or the modification of existing ones, but also the acquisition
and management of new systems, technologies, and platforms. These three activi-
ties parallel those of corporate strategic planning, and this relationship is shown in
Figure 4-10. Numerous methodologies such as Business Systems Planning (BSP) and
Information Engineering (IE) have been developed to support the ISP process (see

information systems
planning (iSP)
An orderly means of assessing the
information needs of an organization and
defining the systems, databases, and
technologies that will best satisfy those
needs.

98 Part II Planning

Amrollahi et al., 2014; Segars and Grover, 1999); most contain the following three
key activities:

1. Describe the current situation. The most widely used approach for describing the
current organizational situation is generically referred to as top-down planning.
Top-down planning attempts to gain a broad understanding of the informational
needs of the entire organization. The approach begins by conducting an exten-
sive analysis of the organization’s mission, objectives, and strategy and determin-
ing the information requirements needed to meet each objective. This approach
to ISP implies by its name a high-level organizational perspective with active in-
volvement of top-level management. The top-down approach to ISP has several
advantages over other planning approaches, which are summarized in Table 4-4.

Top-down planning
A generic ISP methodology that attempts
to gain a broad understanding of the
information systems needs of the entire
organization.

Current Situation:
• listing of manual and automated processes
• listing of manual and automated data
• technology inventory
• human resources inventory

Future Situation:
• blueprints of manual and automated processes
• blueprints of manual and automated data
• technology blueprints
• human resources blueprints

Schedule of Projects:

Step 1

Step 2

Step 3

Figure 4-9
Information systems planning is a three-
step process

Current Situation:
• listing of manual and automated processes
• listing of manual and automated data
• technology inventory
• human resources inventory

Future Situation:
• blueprints of manual and automated processes
• blueprints of manual and automated data
• technology blueprints
• human resources blueprints

Schedule of Projects:

Corporate Strategic Planning Information Systems Planning

Current
Enterprise

Future
Enterprise

Strategic
PlanFigure 4-10

Parallel activities of corporate strategic
planning and information systems
planning

 ChaPter 4 identifying and Selecting SyStemS develoPment ProjectS 99

In contrast to the top-down planning approach, a bottom-up planning ap-
proach requires the identification of business problems and opportunities that
are used to define projects. Using the bottom-up approach for creating IS plans
can be faster and less costly than using the top-down approach; it also has the
 advantage of identifying pressing organizational problems. Yet, the bottom-up
approach often fails to view the informational needs of the entire organization.
This can result in the creation of disparate information systems and databases
that are redundant or not easily integrated without substantial rework.

The process of describing the current situation begins by selecting a planning
team that includes executives chartered to model the existing situation. To gain
this understanding, the team will need to review corporate documents; interview
managers, executives, and customers; and conduct detailed reviews of competitors,
markets, products, and finances. The type of information that must be collected to
represent the current situation includes the identification of all organizational loca-
tions, units, functions, processes, data (or data entities), and information systems.

Within PVF, for example, organizational locations would consist of a list of all
geographic areas in which the organization operates (e.g., the locations of the home
and branch offices). Organizational units represent a list of people or business units
that operate within the organization. Thus, organizational units would include vice
president of manufacturing, sales manager, salesperson, and clerk. Functions are
cross-organizational collections of activities used to perform day-to-day business
operations. Examples of business functions might include research and develop-
ment, employee development, purchasing, and sales. Processes represent a list of
manual or automated procedures designed to support business functions. Exam-
ples of business processes might include payroll processing, customer billing, and
product shipping. Data entities represent a list of the information items generated,
updated, deleted, or used within business processes. Information systems represent
automated and nonautomated systems used to transform data into information to
support business processes. For example, Figure 4-11 shows portions of the business

Bottom-up planning
A generic information systems planning
methodology that identifies and defines IS
development projects based upon solving
operational business problems or taking
advantage of some business opportunities.

Table 4-4 advantages to the Top-Down Planning approach Over Other Planning approaches
Advantage Description
Broader Perspective If not viewed from the top, information systems may be

implemented without first understanding the business from
general management’s viewpoint.

Improved Integration If not viewed from the top, totally new management information
systems may be implemented rather than planning how to
evolve existing systems.

Improved Management
Support

If not viewed from the top, planners may lack sufficient
management acceptance of the role of information systems in
helping them achieve business objectives.

Better Understanding If not viewed from the top, planners may lack the understanding
necessary to implement information systems across the entire
business rather than simply to individual operating units.

(Source: Based on IBM, 1982; Slater, 2002; Overby, 2008).

FUNCTIONS: DATA ENTITIES: INFORMATION SYSTEMS:
business planning customer payroll processing
product development product accounts payable
marketing and sales vendor accounts receivable
production operations raw material time card processing
finance and accounting order inventory management
human resources invoice …

… equipment
… Figure 4-11

Information systems planning
information (Pine Valley Furniture)

100 Part II Planning

functions, data entities, and information systems of PVF. Once high-level informa-
tion is collected, each item can typically be decomposed into smaller units as more
detailed planning is performed. Figure 4-12 shows the decomposition of several of
PVF’s high-level business functions into more detailed supporting functions.

After creating these lists, a series of matrices can be developed to cross
 reference various elements of the organization. The types of matrices typically
developed include the following:

•	 Location-to-Function: This matrix identifies which business functions are
 being performed at various organizational locations.

•	 Location-to-Unit: This matrix identifies which organizational units are located
in or interact with a specific business location.

•	 Unit-to-Function: This matrix identifies the relationships between
 organizational entities and each business function.

•	 Function-to-Objective: This matrix identifies which functions are essential or
desirable in achieving each organizational objective.

•	 Function-to-Process: This matrix identifies which processes are used to
 support each business function.

•	 Function-to-Data Entity: This matrix identifies which business functions
 utilize which data entities.

•	 Process-to-Data Entity: This matrix identifies which data are captured, used,
updated, or deleted within each process.

•	 Process-to-Information System: This matrix identifies which information
 systems are used to support each process.

•	 Data Entity-to-Information System: This matrix identifies which data are
 created, updated, accessed, or deleted in each system.

•	 Information System-to-Objective: This matrix identifies which information
systems support each business objective as identified during organizational
planning.

Figure 4-12
Functional decomposition of information
systems planning information (Pine Valley
Furniture)
(Source: Microsoft Corporation.)

 ChaPter 4 identifying and Selecting SyStemS develoPment ProjectS 101

Different matrices will have different relationships depending on what is
being represented. For example, Figure 4-13 shows a portion of the Data Entity-
to-Function matrix for PVF. The “X” in various cells of the matrix represents
which business functions utilize which data entities. A more detailed picture of
data utilization would be shown in the Process-to-Data Entity matrix (not shown
here), in which the cells would be coded as “C” for the associated process that
creates or captures data for the associated data entity, “R” for retrieve (or used),
“U” for update, and “D” for delete. This means that different matrices can have
different relationships depending on what is being represented. Because of this
flexibility and ease of representing information, analysts use a broad range of
matrices to gain a clear understanding of an organization’s current situation and
to plan for its future (Kerr, 1990). A primer on using matrices for ISP is provided
in Figure 4-14.

2. Describing the target situation, trends, and constraints. After describing the cur-
rent situation, the next step in the ISP process is to define the target situ-
ation that reflects the desired future state of the organization. This means
that the target situation consists of the desired state of the locations, units,
functions, processes, data, and IS (see Figure 4-9). For example, if a de-
sired future state of the organization is to have several new branch offices
or a new product line that requires several new employee positions, func-
tions, processes, and data, then most lists and matrices will need to be up-
dated to reflect this vision. The target situation must be developed in light
of technology and business trends, in addition to organizational constraints.
This means that lists of business trends and constraints should also be con-
structed in order to help ensure that the target situation reflects these
issues.

In summary, to create the target situation, planners must first edit their
initial lists and record the desired locations, units, functions, processes, data,
and information systems within the constraints and trends of the organization
environment (e.g., time, resources, technological evolution, competition, and
so on). Next, matrices are updated to relate information in a manner consistent
with the desired future state. Planners then focus on the differences between
the current and future lists and matrices to identify projects and transition
strategies.

Marketing and Sales

 Marketing Research

 Order Fulfillment

 Distribution

Production Operation

 Production Scheduling

 Fabrication

 Assembly

 Finishing

Finance and Accounting

 Capital Budgeting

 Accounts Receivable

 Accounts Payable

...

Customer Product Vendor Raw
Material

Order Work
Center

Equipment Employees Invoice Work
Order

...

Figure 4-13
Data Entity-to-Function matrix
(Pine Valley Furniture)

102 Part II Planning

3. Developing a transition strategy and plans. Once the creation of the current and
target situations is complete, a detailed transition strategy and plan are devel-
oped by the IS planning team. This plan should be very comprehensive, reflect-
ing broad, long-range issues in addition to providing sufficient detail to guide
all levels of management concerning what needs to be done, how, when, and
by whom in the organization. The components of a typical information systems
plan are outlined in Figure 4-15.

The IS plan is typically a very comprehensive document that looks at both
short- and long-term organizational development needs. The short- and long-term
developmental needs identified in the plan are typically expressed as a series of
projects (see Figure 4-16). Projects from the long-term plan tend to build a foun-
dation for later projects (such as transforming databases from old technology into
newer technology). Projects from the short-term plan consist of specific steps to
fill the gap between current and desired systems or respond to dynamic business
conditions. The top-down (or plan-driven) projects join a set of bottom-up or needs-
driven projects submitted as system service requests from managers to form the

Affinity clustering
The process of arranging planning matrix
information so that clusters of information
with a predetermined level or type of
affinity are placed next to each other on a
matrix report.

During the information systems planning process, before individual projects are
identified and selected, a great deal of “behind the scenes” analysis takes place.
During this planning period, which can span from six months to a year, IS planning
team members develop and analyze numerous matrices like those described in the
associated text. Matrices are developed to represent the current and the future views
of the organization. Matrices of the “current” situation are called “as is” matrices. In
other words, they describe the world “as” it currently “is.” Matrices of the target or
“future” situation are called “to be” matrices. Contrasting the current and future views
provides insights into the relationships existing in important business information, and
most important, forms the basis for the identification and selection of specific
development projects. Many CASE tools provide features that will help you make
sense out of these matrices in at least three ways:

1.

2.

3.

Management of Information. A big part of working with complex matrices is
managing the information. Using the dictionary features of the CASE tool
repository, terms (such as business functions and process and data entities) can be
defined or modified in a single location. All planners will therefore have the most
recent information.
Matrix Construction. The reporting system within the CASE repository allows
matrix reports to be easily produced. Because planning information can be
changed at any time by many team members, an easy method to record changes
and produce the most up-to-date reports is invaluable to the planning process.
Matrix Analysis. Possibly the most important feature CASE tools provide to
planners is the ability to perform complex analyses within and across matrices. This
analysis is often referred to as a	nity clustering. A�nity refers to the extent to
which information holds things in common. Thus, a�nity clustering is the process
of arranging matrix information so that clusters of information with some
predetermined level or type of a�nity are placed next to each other on a matrix
report. For example, an a�nity clustering of a Process-to-Data Entity matrix would
create roughly a block diagonal matrix with processes that use similar data entities
appearing in adjacent rows and data entities used in common by the same
processes grouped into adjacent columns. This general form of analysis can be
used by planners to identify items that often appear together (or should!). Such
information can be used by planners to most e�ectively group and relate
information (e.g., data to processes, functions to locations, and so on). For
example, those data entities used by a common set of processes are candidates
for a specific database. And those business processes that relate to a strategically
important objective will likely receive more attention when managers from those
areas request system changes.

Figure 4-14
Making sense out of planning matrices

 ChaPter 4 identifying and Selecting SyStemS develoPment ProjectS 103

short-term systems development plan. Collectively, the short- and long-term projects
set clear directions for the project selection process. The short-term plan includes
not only those projects identified from the planning process but also those selected
from among bottom-up requests. The overall IS plan may also influence all develop-
ment projects. For example, the IS mission and IS constraints may cause projects to
choose certain technologies or emphasize certain application features as systems are
designed.

In this section, we outlined a general process for developing an IS plan. ISP is
a detailed process and an integral part of deciding how to best deploy information
systems and technologies to help reach organizational goals. It is beyond the scope
of this chapter, however, to extensively discuss ISP, yet it should be clear from our dis-
cussion that planning-based project identification and selection will yield substantial
benefits to an organization. It is probably also clear to you that, as a systems analyst,
you are not usually involved in IS planning because this process requires senior IS

I.

II.

III.

IV.

V.

VI.

VII.

Organizational Mission, Objectives, and Strategy
Briefly describes the mission, objectives, and strategy of the organization. The current and future views of the
company are also briefly presented (i.e., where we are, where we want to be).
Informational Inventory
This section provides a summary of the various business processes, functions, data entities, and information
needs of the enterprise. This inventory will view both current and future needs.
Mission and Objectives of IS
Description of the primary role IS will play in the organization to transform the enterprise from its current to
future state. While it may later be revised, it represents the current best estimate of the overall role for IS within
the organization. This role may be as a necessary cost, an investment, or a strategic advantage, for example.
Constraints on IS Development
Briefly describes limitations imposed by technology and current level of resources within the
company—financial, technological, and personnel.
Overall Systems Needs and Long-Range IS Strategies
Presents a summary of the overall systems needed within the company and the set of long-range (2–5 years)
strategies chosen by the IS department to fill the needs.
The Short-Term Plan
Shows a detailed inventory of present projects and systems and a detailed plan of projects to be developed or
advanced during the current year. These projects may be the result of the long-range IS strategies or of
requests from managers that have already been approved and are in some stage of the life cycle.
Conclusions
Contains likely but not-yet-certain events that may a�ect the plan, an inventory of business change elements
as presently known, and a description of their estimated impact on the plan.

Figure 4-15
Outline of an information systems plan

Information Systems Plan:
Organizational Mission
Informational Inventory
Mission and Objectives of IS
Constraints
Long-Range IS Strategies
Short-Term Plan
Conclusions

Project 5
Project 4

Project 3
Project 2

Project 1
I.
II.
III.
IV.
V.
VI.
VII.

Figure 4-16
Systems development projects flow from
the information systems plan

104 Part II Planning

and corporate management participation. On the other hand, the results of IS plan-
ning, such as planning matrices like that in Figure 4-13, can be a source of very valu-
able information as you identify and justify projects.

eleCtronIC CommerCe aPPlICatIonS:
IDentIfyIng anD SeleCtIng SyStemS
DeveloPment ProjeCtS
Identifying and selecting systems development projects for an Internet-based elec-
tronic commerce application is no different from the process followed for more
traditional applications. Nonetheless, there are some special considerations when
developing an Internet-based application. In this section, we highlight some of those
issues that relate directly to the process of identifying and selecting Internet-related
systems development projects.

Internet Basics
The name Internet is derived from the concept of “internetworking”; that is, con-
necting host computers and their networks to form an even larger, global network.
And that is essentially what the Internet is—a large, worldwide network of networks
that use a common protocol to communicate with each other. The interconnected
networks include computers running Windows, Linux, IOS, and many other net-
work and computer types. The Internet stands as the most prominent representation
of global networking. Using the Internet to support day-to-day business activities is
broadly referred to as electronic commerce (EC). However, not all Internet EC ap-
plications are the same. For example, there are three general classes of Internet EC
applications: business-to-consumer (B2C), business-to-business (B2B), and business-
to-employee (B2E). Figure 4-17 shows three possible modes of EC using the Internet.
B2C refers to business transactions between individual consumers and businesses.
B2B refers to business transactions between business partners, such as suppliers and
intermediaries. B2E refers to the use of the Internet within the same business to
support employee development and internal business processes. B2E is sometimes
referred to as an Intranet.

B2E and B2B electronic commerce are examples of two ways organizations
have been communicating via technology for years. For example, B2E is a lot like
having a “global” local area network (LAN). Organizations utilizing B2E capabilities
will select various applications or resources that are located on the Intranet—such
as a customer contact database or an inventory-control system—that only members
of the organization can access. Likewise, B2Bs use the Internet to provide similar
capabilities to an established computing model, electronic data interchange (EDI).
EDI refers to the use of telecommunications technologies to directly transfer busi-
ness documents between organizations. Using EDI, trading partners (suppliers,

internet
A large, worldwide network of
networks that use a common protocol to
communicate with each other.

electronic commerce (eC)
Internet-based communication to support
day-to-day business activities.

Business-to-consumer (B2C)
Electronic commerce between businesses
and consumers.

Business-to-business (B2B)
Electronic commerce between business
partners, such as suppliers and
intermediaries.

Business-to-employee (B2e)
Electronic commerce between businesses
and their employees.

electronic data interchange
(eDi)
The use of telecommunications technologies
to directly transfer business documents
between organizations.

Individual

Business-to-Business (B2B)

Business-to-Employee (B2E)
Business-to-Consumer (B2C)

Business Business

Figure 4-17
Three possible modes of electronic
commerce

 ChaPter 4 identifying and Selecting SyStemS develoPment ProjectS 105

manufacturers, customers, etc.) establish computer-to-computer links that allow
them to exchange data electronically. For example, a company using EDI may send
an electronic purchase order instead of a paper request to a supplier. The paper
order may take several days to arrive at the supplier, whereas an EDI purchase order
will only take a few seconds. EDI-type data transfers over the Internet, generally re-
ferred to as B2B transactions, have become the standard by which organizations com-
municate with each other in the world of electronic commerce.

When developing either a B2E or B2B application, developers know who the
users are, what applications will be used, the speed of the network connection, and
the type of communication devices supported (e.g., web browsers such as Firefox or
web-enabled smart phones such as the iPhone). On the other hand, when develop-
ing an Internet EC application (hereafter, simply EC), there are countless unknowns
that developers have to discern in order to build a useful system. Table 4-5 lists a
sample of the numerous unknowns to be dealt with when designing and building an
EC application. These unknowns may result in making trade-offs based on a careful
analysis of who the users are likely to be, where they are likely to be located, and how
they are likely to be connected to the Internet. Even with all these difficulties to con-
tend with, there is no shortage of Internet EC applications springing up all across the
world. One company that has decided to get onto the web with its own EC site is PVF.

Pine valley furniture WebStore
The board of directors of PVF has requested that a project team be created to explore
the opportunity to develop an EC system. Specifically, market research has found
that there is a good opportunity for online furniture purchases, especially in the fol-
lowing areas:

•	 Corporate furniture
•	 Home office furniture
•	 Student furniture

The board wants to incorporate all three target markets into its long-term EC
plan, but wants to initially focus on the corporate furniture buying system. Board
members feel that this segment has the greatest potential to provide an adequate
return on investment and would be a good building block for moving into the
customer-based markets. Because the corporate furniture buying system will be spe-
cifically targeted to the business furniture market, it will be easier to define the sys-
tem’s operational requirements. Additionally, this EC system should integrate nicely
with two currently existing systems: Purchasing Fulfillment and Customer Tracking.
Together, these attributes make it an ideal candidate for initiating PVF’s web strategy.
Throughout the remainder of the book, we will follow the evolution of the WebStore
project until it becomes operational for PVF.

Table 4-5 Unknowns That Must be Dealt with When Designing and building Internet
applications

User • Concern: Who is the user?
• Example: Where is the user located? What is the user’s expertise

or education? What are the user’s expectations?
Connection Speed • Concern: What is the speed of the connection and what

information can be effectively displayed?
• Example: Modem, Cable Modem, DSL, Satellite, Broadband,

Cellular
Access Method • Concern: What is the method of accessing the net?

• Example: Web Browser, Personal Digital Assistant (PDA), Web-
enabled Cellular Phone, Tablet, Web-enabled Television

106 Part II Planning

Summary

In this chapter, we described the first major activity of the
planning phase of the SDLC—project identification and
selection. Project identification and selection consists of
three primary activities: identifying potential develop-
ment projects, classifying and ranking projects, and select-
ing projects for development. A variety of organizational
members or units can be assigned to perform this process,
including top management, a diverse steering committee,
business units and functional managers, the development
group, or the most senior IS executive. Potential projects
can be evaluated and selected using a broad range of
 criteria such as value chain analysis, alignment with busi-
ness strategy, potential benefits, resource availability and
 requirements, and risks.

The quality of the project identification and selec-
tion process can be improved if decisions are guided by
corporate strategic planning and ISP. Corporate strategic
planning is the process of identifying the mission, objec-
tives, and strategies of an organization. Crucial in this pro-
cess is selecting a competitive strategy that states how the
organization plans to achieve its objectives.

ISP is an orderly means for assessing the information
needs of an organization and defining the systems and da-
tabases that will best satisfy those needs. ISP is a top-down
process that takes into account outside forces that drive
the business and the factors critical to the success of the
firm. ISP evaluates the current inventory of systems and
the desired future state of the organization and its system

and then determines which projects are needed to trans-
form systems to meet the future needs of the organization.

Corporate and IS planning are highly interrelated.
Conceptually, these relationships can be viewed via various
matrices that show how organizational objectives, locations,
units, functions, processes, data entities, and systems relate
to one another. Selected projects will be those viewed to be
most important in supporting the organizational strategy.

The Internet is a global network consisting of thou-
sands of interconnected individual networks that communi-
cate with each other using a common protocol. Electronic
commerce (EC) refers to the use of the Internet to sup-
port day-to-day business activities. Business-to-consumer
EC refers to transactions between individual consumers
and businesses. Business-to-employee EC refers to the use
of the Internet within the same organization. Business-to-
business EC refers to the use of the Internet between firms.

The focus of this chapter was to provide you with
a clearer understanding of how organizations identify
and select projects. Improved project identification and
selection is needed for the following reasons: the cost
of information systems is rising rapidly, systems cannot
handle applications that cross organizational boundaries,
systems often do not address critical organizational objec-
tives, data redundancy is often out of control, and system
maintenance costs continue to rise. Thus, effective project
identification and selection is essential if organizations are
to realize the greatest benefits from information systems.

Key TermS

 4.1 Affinity clustering
 4.2 Bottom-up planning
 4.3 Business-to-business (B2B)
 4.4 Business-to-consumer (B2C)
 4.5 Business-to-employee (B2E)
 4.6 Competitive strategy

 4.7 Corporate strategic planning
 4.8 Electronic commerce (EC)
 4.9 Electronic data interchange (EDI)
 4.10 Incremental commitment
 4.11 Information systems planning (ISP)
 4.12 Internet

 4.13 Mission statement
 4.14 Objective statements
 4.15 Top-down planning
 4.16 Value chain analysis

Match each of the key terms above with the definition that best
fits it.

____ Analyzing an organization’s activities to determine where
value is added to products and/or services and the costs
incurred for doing so.

____ A strategy in systems analysis and design in which the proj-
ect is reviewed after each phase and continuation of the
project is rejustified.

____ An ongoing process that defines the mission, objectives,
and strategies of an organization.

____ A statement that makes it clear what business a company is in.

____ A series of statements that express an organization’s quali-
tative and quantitative goals for reaching a desired future
position.

____ The method by which an organization attempts to achieve
its mission and objectives.

____ An orderly means of assessing the information needs of
an organization and defining the systems, databases, and
technologies that will best satisfy those needs.

____ A generic ISP methodology that attempts to gain a broad
understanding of the information system needs of the en-
tire organization.

 ChaPter 4 identifying and Selecting SyStemS develoPment ProjectS 107

____ A generic ISP methodology that identifies and defines
IS development projects based upon solving operational
business problems or taking advantage of some business
opportunities.

____ The process of arranging planning matrix information so
the clusters of information with a predetermined level or
type of affinity are placed next to each other on a matrix
report.

____ A large, worldwide network of networks that use a com-
mon protocol to communicate with each other.

____ Internet-based communication to support day-to-day busi-
ness activities.

____ Electronic commerce between businesses and consumers.

____ Electronic commerce between business partners, such as
suppliers and intermediaries.

____ Electronic commerce between businesses and their
employees.

____ The use of telecommunications technologies to directly
transfer business documents between organizations.

revIew QueSTIonS
 4.17 Contrast the following terms:

a. Mission; objective statements; competitive strategy
b. Corporate strategic planning; ISP
c. Top-down planning; bottom-up planning
d. Low-cost producer; product differentiation; product

focus or niche

 4.18 Describe the project identification and selection process.

 4.19 Describe several project evaluation criteria.

 4.20 Describe value chain analysis and how organizations use
this technique to evaluate and compare projects.

 4.21 Discuss several factors that provide evidence for the need
for improved ISP today.

 4.22 Describe the steps involved in corporate strategic
planning.

 4.23 What are three generic competitive strategies?

 4.24 Describe what is meant by ISP and the steps involved in the
process.

 4.25 List and describe the advantages of top-down planning
over other planning approaches.

 4.26 Briefly describe nine planning matrices that are used in
ISP and project identification and selection.

 4.27 Discuss some of the factors that must be considered when
designing and building Internet applications.

ProblemS and exercISeS
 4.28 Write a mission statement for a business that you would

like to start. The mission statement should state the area of
business you will be in and what aspect of the business you
value highly.

 4.29 When you are happy with the mission statement you have
developed in response to the prior question, describe the ob-
jectives and competitive strategy for achieving that mission.

 4.30 Consider an organization that you believe does not conduct
adequate strategic IS planning. List at least six reasons why
this type of planning is not done appropriately (or is not
done at all). Are these reasons justifiable? What are the im-
plications of this inadequate strategic IS planning? What lim-
its, problems, weaknesses, and barriers might this present?

 4.31 IS planning, as depicted in this chapter, is highly related
to corporate strategic planning. What might those respon-
sible for IS planning have to do if they operate in an orga-
nization without a formal corporate planning process?

 4.32 The economic analysis carried out during the project iden-
tification and selection phase of the systems development
life cycle is rather cursory. Why is this? Consequently, what
factors do you think tend to be most important for a poten-
tial project to survive this first phase of the life cycle?

 4.33 In those organizations that do an excellent job of IS plan-
ning, why might projects identified from a bottom-up

process still find their way into the project initiation and
planning phase of the life cycle?

 4.34 Figure 4-14 introduces the concept of affinity clustering.
Suppose that through affinity clustering it was found that
three business functions provided the bulk of the use of
five data entities. What implications might this have for
project identification and subsequent steps in the systems
development life cycle?

 4.35 Timberline Technology manufactures membrane circuits
in its Northern California plant. In addition, all circuit de-
sign and research and development work occur at this site.
All finance, accounting, and human resource functions
are headquartered at the parent company in the upper
Midwest. Sales take place through six sales representatives
located in various cities across the country. Information
systems for payroll processing, accounts payable, and ac-
counts receivable are located at the parent office while sys-
tems for inventory management and computer-integrated
manufacturing are at the California plant. As best you can,
list the locations, units, functions, processes, data entities,
and information systems for this company.

 4.36 For each of the following categories, create the most
plausible planning matrices for Timberline Technology,
described in Problem and Exercise 4-35: function-to-data
entity, process-to-data entity, process-to-information system,

108 Part II Planning

data entity-to-information system. What other information
systems not listed is Timberline likely to need?

 4.37 The owners of Timberline Technology (described in Prob-
lem and Exercise 4-35) are considering adding a plant in

Montana and one in Arizona and six more sales represen-
tatives at various sites across the country. Update the ma-
trices from Problem and Exercise 4-36 so that the matrices
account for these changes.

FIeld exercISeS
 4.38 Obtain a copy of an organization’s mission statement.

(One can typically be found in an organization’s annual re-
port. Such reports are often available in university libraries
or in corporate marketing brochures. If you are finding it
difficult to locate this material, write or call the organiza-
tion directly and ask for a copy of the mission statement.)
What is this organization’s area of business? What does the
organization value highly (e.g., high-quality products and
services, low cost to consumers, employee growth and de-
velopment, etc.)? If the mission statement is well written,
these concepts should be clear. Do you know anything
about the information systems in this company that would
demonstrate that the types of systems in place reflect the
organization’s mission? Explain.

 4.39 Interview the managers of the information systems depart-
ment of an organization to determine the level and nature
of their strategic ISP. Does it appear to be adequate? Why
or why not? Obtain a copy of that organization’s mission
statement. To what degree do the strategic IS plan and
the organizational strategic plan fit together? What are
the areas where the two plans fit and do not fit? If there is
not a good fit, what are the implications for the success of
the organization? For the usefulness of their information
systems?

 4.40 Choose an organization that you have contact with, per-
haps your employer or university. Follow the “Outline of
an information systems plan” shown in Figure 4-15 and

complete a short information systems plan for the organi-
zation you chose. Write at least a brief paragraph for each
of the seven categories in the outline. If IS personnel and
managers are available, interview them to obtain informa-
tion you need. Present your mock plan to the organiza-
tion’s IS manager and ask for feedback on whether or not
your plan fits the IS reality for that organization.

 4.41 Choose an organization that you have contact with, per-
haps your employer or university. List significant examples
for each of the items used to create planning matrices.
Next, list possible relationships among various items and
display these relationships in a series of planning matrices.

4.42 Write separate mission statements that you believe would
describe Microsoft, IBM, and AT&T. Compare your mission
statements with the real mission statements of these com-
panies. Their mission statements can typically be found in
their annual reports. Were your mission statements com-
parable to the real mission statements? Why or why not?
What differences and similarities are there among these
three mission statements? What information systems are
necessary to help these companies deliver on their mission
statements?

 4.43 Choose an organization that you have contact with, per-
haps your employer or university. Determine how informa-
tion systems projects are identified. Are projects identified
adequately? Are they identified as part of the ISP or the
corporate strategic planning process? Why or why not?

reFerenceS
Amrollahi, A., A. H. Ghapanchi, and A. Talaei-Khoei. 2014.

“Three Decades of Research on Strategic Information
System Plan Development.” Communications of the As-
sociation for Information Systems 34(84). Available at:
http://aisel.aisnet.org/cais/vol34/iss1/84. Accessed on
February 23, 2015.

Atkinson, R. A. 1990. “The Motivations for Strategic Planning.”
Journal of Information Systems Management 7(4): 53–56.

Carlson, C. K., E. P. Gardner, and S. R. Ruth. 1989. “Technol-
ogy-Driven Long-Range Planning.” Journal of Information
Systems Management 6(3): 24–29.

Cassidy, A. 2005. A Practical Guide to Information Systems
Strategic Planning. London: CRC Press.

Dewan, S., S. C. Michael, and C. K. Min. 1998. “Firm Charac-
teristics and Investments in Information Technology:
Scale and Scope Effects.” Information Systems Research 9(3):
219–232.

Dyche, J. 2015. The New IT: How Technology Leaders are Enabling
Business Strategy in the Digital Age. NY: McGraw Hill.

Foss, N.J., and T. Saebi (eds). 2015. Business Model Innovation:
The Organizational Dimension. Oxford, UK: Oxford Univer-
sity Press.

Fox, R. 2013. “A Strategic Approach to Cloud Integration.”
Available at: http://www.cio.com/article/2383589/cloud-
computing/a-strategic-approach-to-cloud-integration.html.
Accessed February 23, 2015.

GAO. 2000. Information Technology Investment Management:
A Framework for Assessing and Improving Process Maturity.
U.S. Government Accountability Office. Available at
www.gao.gov/special.pubs/ai10123.pdf. Accessed February
23, 2015.

Harvard Business Review. 2011. Aligning Technology with Strategy.
Boston, MA: Harvard Business Review Press.

IBM. 1982. “Business Systems Planning.” In J. D. Couger,
M. A. Colter, and R. W. Knapp (eds.), Advanced System Develop-
ment/ Feasibility Techniques, 236–314. New York: Wiley.

Kelly, R. T. 2006. “Adaptive and Aware: Strategy, Architecture,
and IT Leadership in an Age of Commoditization.” In

http://aisel.aisnet.org/cais/vol34/iss1/84
http://www.cio.com/article/2383589/cloud-computing/a-strategic-approach-to-cloud-integration.html
http://www.cio.com/article/2383589/cloud-computing/a-strategic-approach-to-cloud-integration.html
http://www.gao.gov/special.pubs/ai10123.pdf

 ChaPter 4 identifying and Selecting SyStemS develoPment ProjectS 109

P. A. Laplante and T. Costello (eds.), CIO Wisdom II, 249–69.
Upper Saddle River, NJ: Prentice Hall.

Kerr, J. 1990. “The Power of Information Systems Planning.”
Database Programming & Design 3(12): 60–66.

Laplante, P. A. 2006. “Software Return on Investment (ROI).”
In P. A. Laplante and T. Costello (eds.), CIO Wisdom II,
163–76. Upper Saddle River, NJ: Prentice Hall.

Luftman, J. N. 2004. Managing the Information Technol-
ogy Resource. With C. V. Bullen, D. Liao, E. Nash, and
C. Neumann. Upper Saddle River, NJ: Prentice Hall.

McKeen, J. D., T. Guimaraes, and J. C. Wetherbe. 1994. “A Com-
parative Analysis of MIS Project Selection Mechanisms.”
Data Base 25(2): 43–59.

Newbold, D. L., and M. C. Azua. 2007. “A Model for CIO-Led
Innovation.” IBM Systems Journal 46(4), 629–37.

Olavsrud, T. 2014. “Agile Comes to Data Integration.” Available at:
http://www.cio.com/article/2378615/data-management/
agile-comes-to-data-integration.html. Accessed on February
23, 2015.

Overby, S. 2006. “Big Deals, Big Savings, Big Problems.” CIO.
com. Available at http://www.cio.com/article/2447687/
outsourcing/outsourcing-can-mean-big-deals–big-savings-
and-big-problems.html. Accessed February 23, 2015.

Overby, S. 2008. “Tales from the Darkside: 8 IT Strategic Plan-
ning Mistakes to Avoid.” CIO.com. Available at http://www.
cio.com/article/2437287/strategy/tales-from-the-darkside–
8-it-strategic-planning-mistakes-to-avoid.html. Accessed
February 23, 2015.

Overby, S. 2008. “How to Get Real about Strategic Planning.” CIO.
com. Available at: http://www.cio.com/article/2437070/
leadership-management/how-to-get-real-about-strategic-
planning.html. Accessed on February 23, 2015.

Parker, M. M., and R. J. Benson. 1989. “Enterprisewide Informa-
tion Management: State-of-the-Art Strategic Planning.” Jour-
nal of Information Systems Management 6 (Summer): 14–23.

Porter, M. 1980. Competitive Strategy: Techniques for Analyzing In-
dustries and Competitors. New York: Free Press.

Porter, M. 1985. Competitive Advantage. New York: Free Press.
Segars, A. H., and V. Grover. 1999. “Profiles of Strategic Informa-

tion Systems Planning.” Information Systems Planning 10(3):
199–232.

Slater, D. 2002. “Mistakes: Strategic Planning Don’ts (and
Dos).” CIO.com. Available at: http://www.cio.com/article/
2440785/project-management/mistakes–strategic-
planning-don-ts–and-dos-.html. Accessed February 23, 2015.

Thomas, G., and W. Fernandez. 2008. “Success in IT Projects: A
Matter of Definition?” International Journal of Project Manage-
ment October: 733–42.

Van den Berg, G., and P. Pietersma. 2015. 25 Need-to-Know Man-
agement Models. Upper Saddle River, NJ: FT Press.

Wailgum, T. 2010. “Taming the ERP Integration Beast: A Work
in Progress.” Available at: http://www.cio.com/article/
2417576/enterprise-software/taming-the-erp-integration-
beast–a-work-in-progress.html. Accessed February 23, 2015.

Weill, P., and J. W. Ross. 2009. IT Savvy: What Top Executives Must
Know to Go from Pain to Gain. Boston, MA: Harvard Business
Review Press.

Westerman, G., D. Bonnet, and A. McAfee. 2014. Leading
Digital: Turning Technology into Business Transformation.
Boston, MA: Harvard Business Review Press.

Yoo, M. J., R. S. Sangwan, and R. G. Qiu. 2006. “Enterprise In-
tegration: Methods and Technologies.” In P. A. Laplante
and T. Costello (eds.), CIO Wisdom II, 107–26. Upper Saddle
River, NJ: Prentice Hall.

http://www.cio.com/article/2378615/data-management/agile-comes-to-data-integration.html
http://www.cio.com/article/2447687/outsourcing/outsourcing-can-mean-big-deals%E2%80%93big-savingsand-big-problems.html
http://www.cio.com/article/2437287/strategy/tales-from-the-darkside%E2%80%938-it-strategic-planning-mistakes-to-avoid.html
http://www.cio.com/article/2437070/leadership-management/how-to-get-real-about-strategicplanning.html
http://www.cio.com/article/2440785/project-management/mistakes%E2%80%93strategicplanning-don-ts%E2%80%93and-dos-.html
http://www.cio.com/article/2417576/enterprise-software/taming-the-erp-integrationbeast%E2%80%93a-work-in-progress.html
http://www.cio.com/article/2447687/outsourcing/outsourcing-can-mean-big-deals%E2%80%93big-savingsand-big-problems.html
http://www.cio.com/article/2447687/outsourcing/outsourcing-can-mean-big-deals%E2%80%93big-savingsand-big-problems.html
http://www.cio.com/article/2437287/strategy/tales-from-the-darkside%E2%80%938-it-strategic-planning-mistakes-to-avoid.html
http://www.cio.com/article/2437070/leadership-management/how-to-get-real-about-strategicplanning.html
http://www.cio.com/article/2437070/leadership-management/how-to-get-real-about-strategicplanning.html
http://www.cio.com/article/2440785/project-management/mistakes%E2%80%93strategicplanning-don-ts%E2%80%93and-dos-.html
http://www.cio.com/article/2440785/project-management/mistakes%E2%80%93strategicplanning-don-ts%E2%80%93and-dos-.html
http://www.cio.com/article/2417576/enterprise-software/taming-the-erp-integrationbeast%E2%80%93a-work-in-progress.html
http://www.cio.com/article/2417576/enterprise-software/taming-the-erp-integrationbeast%E2%80%93a-work-in-progress.html

110 Part II Planning

PetrIe eLeCtronICs

Chapter 4: identifying and Selecting Systems
Development Projects

J. K. Choi, chief financial officer for Petrie Electronics,
came early to the quarterly IS Steering Committee meet-
ing. Choi, who was the chair of the committee, took his
seat at the head of the big table in the corporate confer-
ence room. He opened the cover on his tablet PC and
looked at the agenda for the day’s meeting. There were
only a few proposed systems projects to consider to-
day. He was familiar with the details of most of them. He
briefly looked over the paperwork for each request. He
didn’t really think there was anything too controversial
to be considered today. Most of the requests were pretty
routine and involved upgrades to existing systems. The
one totally new system being proposed for development
was a customer loyalty system, referred to internally as
“No Customer Escapes.”

Choi chuckled at the name as he read through the pro-
posal documents. “This is something we have needed for
some time,” he thought.

After about 15 minutes, his administrative assistant,
Julie, came in. “Am I late or are you early?” she asked.

“No, you’re not late,” Choi said. “I wanted to come in a
little early and look over the proposals. I wasn’t able to
spend as much time on these yesterday as I wanted.”

As Julie was about to respond, the other members of
the committee started to arrive. First was Ella Whinston,
the chief operating officer. Choi knew that Ella was the
champion for the customer loyalty project. She had talked
about it for years now, it seemed to Choi. One of her peo-
ple would make the presentation in support of the system.
Choi knew she had buy-in on the project from most of
the other members of the c-suite. He also knew that Joe
Swanson, Petrie director of IT, supported the project.
Joe was away, but his assistant director, Jim Watanabe,
would attend the meeting in his place. Ella had already let
it be known that she expected Jim to be the project man-
ager for the customer loyalty system project. Jim had just
joined the company, but he had five years of experience
at Broadway Entertainment Company before its spectacu-
lar collapse. “Good thing I unloaded all that BEC stock I
owned before the company went under,” Choi thought.
That reminded him of the meeting he had later today to

plan the annual stockholders’ meeting. “Better not let the
steering committee meeting run too long,” he thought.
“I’ve got more important things to do today.”

Next to arrive was John Smith, the head of marketing.
John, who was also a member of the steering committee,
had been with Petrie for most of his career. He had been
with the company longer than anyone else on the steering
committee.

Just then, Jim Watanabe came speeding into the con-
ference room. He almost ran into John Smith as he sailed
into the room. It looked like he was about to drop his tab-
let and spill his coffee on Smith. Choi chuckled again.

“Welcome, everyone,” Choi said. “I think we are all here.
You all have copies of the agenda for this morning’s meet-
ing. Let’s get started.”

“Sorry to interrupt, JK,” Ella said. “Bob Petroski is not
here yet. He will be presenting the proposal on the cus-
tomer loyalty system project. I don’t know where he is.
Maybe he got held up in traffic.”

“The customer loyalty system discussion is the last item
we will discuss today, so we can go ahead with the rest
of the agenda. Bob does not need to be here for anything
except that discussion,” Choi explained.

Choi looked around the table once more. “OK, then,
let’s get started. Let’s try to keep to the agenda as much
as possible. And let’s watch the clock. I know we are all
busy, but I have a very important meeting this afternoon.
Julie, see if you can locate Bob.”

Case Questions

 4.44 What is an IS steering committee? What are its major
functions? Typically, who serves on such a commit-
tee? Why do these committees exist?

 4.45 Where do ideas for new information systems origi-
nate in organizations?

 4.46 What criteria are typically used to determine which
new information systems projects to develop? What
arguments might Bob Petroski make for developing
the proposed customer loyalty system?

 4.47 Look at Figure 4-4. What kind of information would
you need to put together a table like Figure 4-4 to pres-
ent to the steering committee? How much of that infor-
mation is objective? Subjective? Justify your answer.

111

During the first phase of the systems development
life cycle (SDLC) planning, two primary activities are
 performed. The first, project identification and selec-
tion, focuses on the activities during which the need for a
new or enhanced system is recognized. This activity does
not deal with a specific project but rather identifies the
portfolio of projects to be undertaken by the organiza-
tion. Thus, project identification and selection is often
thought of as a “preproject” step in the life cycle. This
recognition of potential projects may come as part of a
larger planning process, information systems planning,
or from requests from managers and business units.
Regardless of how a project is identified and selected, the
next step is to conduct a more detailed assessment during
project initiating and planning. This assessment does not
focus on how the proposed system will operate but rather
on understanding the scope of a proposed project and
its feasibility of completion given the available resources.
It is crucial that organizations understand whether re-
sources should be devoted to a project; otherwise, very
expensive mistakes can be made (Laplante, 2006; Nash,
2008). Thus, the focus of this chapter is on this process.
Project initiation and planning is where projects are ac-
cepted for development, rejected, or redirected. This is
also where you, as a systems analyst, begin to play a major
role in the systems development process.

In the next section, the project initiation and plan-
ning process is briefly reviewed. Numerous techniques for
assessing project feasibility are then described. We then
discuss the process of building the Baseline Project Plan,

which organizes the information uncovered during feasi-
bility analysis. Once this plan is developed, a formal review
of the project can be conducted. Yet, before the project
can evolve to the next phase of the systems development
life cycle—analysis—the project plan must be reviewed
and accepted. In the final major section of the chapter, we
provide an overview of the project review process.

InItIatIng and PlannIng
SyStemS develoPment ProjectS
A key consideration when conducting project initiation
and planning (PIP) is deciding when PIP ends and when
analysis, the next phase of the SDLC, begins. This is a
concern because many activities performed during PIP
could also be completed during analysis. Pressman (2014)
speaks of three important questions that must be consid-
ered when making this decision on the division between
PIP and analysis:

1. How much effort should be expended on the project
initiation and planning process?

2. Who is responsible for performing the project initia-
tion and planning process?

3. Why is project initiation and planning such a challeng-
ing activity?

Finding an answer to the first question, how much
effort should be expended on the PIP process, is often diffi-
cult. Practical experience has found, however, that the time

5.3 describe the activities needed to build and review
the baseline project plan, and

5.4 describe the activities and participant roles within a
structured walk-through.

Learning Objectives

After studying this chapter, you should be able to

5.1 describe the steps involved in the project initiation
and planning process,

5.2 list and describe various methods for assessing
project feasibility,

Initiating and Planning
Systems development
Projects5

chapter

Introduction

112 Part II Planning

and effort spent on initiation and planning activities easily pay for themselves later in the
project. Proper and insightful project planning, including determining project scope as
well as identifying project activities, can easily reduce time in later project phases. For
example, a careful feasibility analysis that leads to deciding that a project is not worth
pursuing can save a considerable expenditure of resources. The actual amount of time
expended will be affected by the size and complexity of the project as well as by the
experience of your organization in building similar systems. A rule of thumb is that
between 10 and 20 percent of the entire development effort should be expended on
the PIP study. Thus, you should not be reluctant to spend considerable time in PIP in
order to fully understand the motivation for the requested system.

For the second question, who is responsible for performing PIP, most organiza-
tions assign an experienced systems analyst, or a team of analysts for large projects,
to perform PIP. The analyst will work with the proposed customers (managers and
users) of the system and other technical development staff in preparing the final
plan. Experienced analysts working with customers who fully understand their infor-
mation services needs should be able to perform PIP without the detailed analysis
typical of the analysis phase of the life cycle. Less-experienced analysts with custom-
ers who only vaguely understand their needs will likely expend more effort during
PIP in order to be certain that the project scope and work plan are feasible.

As to the third question, PIP is viewed as a challenging activity because the
objective of the PIP study is to transform a vague system request document into a
tangible project description. This is an open-ended process. The analyst must clearly
understand the motivation for and objectives of the proposed system. Therefore,
effective communication among the systems analyst, users, and management is cru-
cial to the creation of a meaningful project plan. Getting all parties to agree on the
direction of a project may be difficult for cross-department projects where different
parties have different business objectives. Thus, more complex organizational set-
tings for projects will result in more time required for analysis of the current and
proposed systems during PIP.

In the remainder of this chapter, we will describe the necessary activities used to
answer these questions. In the next section, we will revisit the project initiation and
planning activities originally outlined in Chapter 3 in the section on “Managing the
Information Systems Project.” This is followed by a brief description of the deliver-
ables and outcomes from this process.

the ProceSS of InItIatIng and PlannIng
IS develoPment ProjectS
As its name implies, two major activities occur during project initiation and planning
(Figure 5-1). Because the steps of the project initiation and planning process were
explained in Chapter 3, our primary focus in this chapter is to describe several tech-
niques that are used when performing this process. Therefore, we will only briefly
review the PIP process.

Project initiation focuses on activities designed to assist in organizing a team to
conduct project planning. During initiation, one or more analysts are assigned to work
with a customer—that is, a member of the business group that requested or will be
affected by the project—to establish work standards and communication procedures.
Examples of the types of activities performed are shown in Table 5-1. Depending upon
the size, scope, and complexity of the project, some project initiation activities may
be unnecessary or may be very involved. Also, many organizations have established
procedures for assisting with common initiation activities. One key activity of project
initiation is the development of the project charter (defined in Chapter 3).

Project planning, the second activity within PIP, is distinct from general
information systems planning, which focuses on assessing the information systems

 ChaPter 5 initiating and Planning SyStemS develoPment ProjectS 113

needs of the entire organization (discussed in Chapter 4). Project planning is
the process of defining clear, discrete activities and the work needed to complete
each activity within a single project. The objective of the project planning pro-
cess is the development of a Baseline Project Plan (BPP) and the Project Scope
Statement (PSS) (Morris and Sember, 2008). The BPP becomes the foundation for
the remainder of the development project. The PSS produced by the team clearly
outlines the objectives and constraints of the project for the customer. As with the
project initiation process, the size, scope, and complexity of a project will dictate
the comprehensiveness of the project planning process and resulting documents.
Further, numerous assumptions about resource availability and potential problems
will have to be made. Analysis of these assumptions and system costs and benefits
forms a business case. The range of activities performed during project planning
is listed in Table 5-2.

deliverables and outcomes
The major outcomes and deliverables from the project initiation and planning phase
are the Baseline Project Plan and the Project Scope Statement. The Baseline Project
Plan (BPP) contains all information collected and analyzed during project initiation

Business case
The justification for an information system,
presented in terms of the tangible and
intangible economic benefits and costs and
the technical and organizational feasibility
of the proposed system.

Baseline Project Plan (BPP)
A major outcome and deliverable from the
project initiation and planning phase that
contains the best estimate of a project’s
scope, benefits, costs, risks, and resource
requirements.

Table 5-1 elements of Project Initiation
• Establishing the Project Initiation Team
• Establishing a Relationship with the Customer
• Establishing the Project Initiation Plan
• Establishing Management Procedures
• Establishing the Project Management Environment and Project Workbook
• Developing the Project Charter

DesignImplementation

Maintenance Analysis

Project Identification and Selection
Project Initiation and Planning

Planning

Figure 5-1
Systems development life
cycle with project initiation
and planning highlighted

114 Part II Planning

and planning. The plan reflects the best estimate of the project’s scope, benefits,
costs, risks, and resource requirements given the current understanding of the
project. The BPP specifies detailed project activities for the next life cycle phase—
analysis—and less detail for subsequent project phases (because these depend on the
results of the analysis phase). Similarly, benefits, costs, risks, and resource require-
ments will become more specific and quantifiable as the project progresses. The BPP
is used by the project selection committee to help decide whether the project should
be accepted, redirected, or canceled. If selected, the BPP becomes the foundation
document for all subsequent SDLC activities; however, it is also expected to evolve as
the project evolves. That is, as new information is learned during subsequent SDLC
phases, the baseline plan will be updated. Later in this chapter we describe how to
construct the BPP.

The Project Scope Statement (PSS) is a short document prepared for the cus-
tomer that describes what the project will deliver and outlines all work required to
complete the project. The PSS ensures that both you and your customer gain a com-
mon understanding of the project. It is also a very useful communication tool. The
PSS is a very easy document to create because it typically consists of a high-level sum-
mary of the BPP information (described later). Depending upon your relationship
with your customer, the role of the PSS may vary. At one extreme, the PSS can be used
as the basis of a formal contractual agreement outlining firm deadlines, costs, and
specifications. At the other extreme, the PSS can simply be used as a communication
vehicle to outline the current best estimates of what the project will deliver, when it
will be completed, and the resources it may consume. A contract programming or
consulting firm, for example, may establish a very formal relationship with a cus-
tomer and use a PSS that is extensive and formal. Alternatively, an internal develop-
ment group may develop a PSS that is only one to two pages in length and is intended
to inform customers rather than to set contractual obligations and deadlines.

aSSeSSIng Project feaSIbIlIty
All projects are feasible given unlimited resources and infinite time (Pressman,
2014). Unfortunately, most projects must be developed within tight budgetary and
time constraints. This means that assessing project feasibility is a required activity for
all information systems projects and is a potentially large undertaking. It requires
that you, as a systems analyst, evaluate a wide range of factors. Typically, the relative
importance of these factors will vary from project to project. Although the specifics
of a given project will dictate which factors are most important, most feasibility fac-
tors are represented by the following categories:

•	 Economic
•	 Technical
•	 Operational

Project Scope Statement (PSS)
A document prepared for the customer that
describes what the project will deliver and
outlines generally at a high level all work
required to complete the project.

Table 5-2 elements of Project Planning
• Describing the Project Scope, Alternatives, and Feasibility
• Dividing the Project into Manageable Tasks
• Estimating Resources and Creating a Resource Plan
• Developing a Preliminary Schedule
• Developing a Communication Plan
• Determining Project Standards and Procedures
• Identifying and Assessing Risk
• Creating a Preliminary Budget
• Developing the Project Scope Statement
• Setting a Baseline Project Plan

 ChaPter 5 initiating and Planning SyStemS develoPment ProjectS 115

•	 Scheduling
•	 Legal and contractual
•	 Political

Together, the culmination of these feasibility analyses forms the business case
that justifies the expenditure of resources on the project. In the remainder of this
section, we will examine various feasibility issues. We begin by looking at issues
related to economic feasibility and then demonstrate techniques for conducting this
analysis. This is followed by a discussion of techniques for assessing technical project
risk. Finally, issues not directly associated with economic and technical feasibility, but
no less important to ensuring project success, are discussed.

To help you better understand the feasibility assessment process, we will exam-
ine a project at Pine Valley Furniture (PVF). For this project, a System Service Request
(SSR) was submitted by PVF’s Vice President of Marketing Jackie Judson to develop
a Customer Tracking System (CTS) (Figure 5-2). Jackie feels that this system would
allow PVF’s marketing group to better track customer purchase activity and sales
trends. She also feels that, if constructed, the CTS would provide many tangible and
intangible benefits to PVF. This project was selected by PVF’s Systems Priority Board
for a project initiation and planning study. During project initiation, Senior Systems
Analyst Jim Woo was assigned to work with Jackie to initiate and plan the project. At
this point in the project, all project initiation activities have been completed. Jackie
and Jim are now focusing on project planning activities in order to complete the BPP.

assessing economic feasibility
The purpose of assessing economic feasibility is to identify the financial benefits and
costs associated with the development project (Laplante, 2006). Economic feasibility
is often referred to as cost–benefit analysis. During project initiation and planning, it
will be impossible for you to precisely define all benefits and costs related to a partic-
ular project. Yet it is important that you spend adequate time identifying and quan-
tifying these items or it will be impossible for you to conduct an adequate economic
analysis and make meaningful comparisons between rival projects. Here we will
describe typical benefits and costs resulting from the development of an informa-
tion system and provide several useful worksheets for recording costs and benefits.
Additionally, several common techniques for making cost–benefit calculations are
presented. These worksheets and techniques are used after each SDLC phase as the
project is reviewed in order to decide whether to continue, redirect, or kill a project.

Determining Project Benefits An information system can provide many benefits to
an organization. For example, a new or renovated information system can automate
monotonous jobs and reduce errors; provide innovative services to customers and
suppliers; and improve organizational efficiency, speed, flexibility, and morale. In
general, the benefits can be viewed as being both tangible and intangible. Tangible
benefits refer to items that can be measured in dollars and with certainty. Examples
of tangible benefits might include reduced personnel expenses, lower transaction
costs, or higher profit margins. It is important to note that not all tangible benefits
can be easily quantified. For example, a tangible benefit that allows a company to
perform a task in 50 percent of the time may be difficult to quantify in terms of hard
dollar savings. Most tangible benefits will fit within the following categories:

•	 Cost reduction and avoidance
•	 Error reduction
•	 Increased flexibility
•	 Increased speed of activity
•	 Improvement of management planning and control
•	 Opening new markets and increasing sales opportunities

economic feasibility
A process of identifying the financial
benefits and costs associated with a
development project.

Tangible benefit
A benefit derived from the creation of an
information system that can be measured in
dollars and with certainty.

116 Part II Planning

Sales growth at PVF has caused a greater volume of work for the marketing department. This volume
of work has greatly increased the volume and complexity of the data we need to deal with and
understand. We are currently using manual methods and a complex PC-based electronic spreadsheet
to track and forecast customer buying patterns. This method of analysis has many problems: (1) we are
slow to catch buying trends as there is often a week or more delay before data can be taken from the
point-of-sales system and manually enter it into our spreadsheet; (2) the process of manual data entry is
prone to errors (which makes the results of our subsequent analysis suspect); and (3) the volume of
data and the complexity of analyses conducted in the system seem to be overwhelming our current
system—sometimes the program starts recalculating and never returns, while for others it returns
information that we know cannot be correct.

SERVICE REQUEST

I request a thorough analysis of our current method of tracking and analysis of customer purchasing
activity with the intent to design and build a completely new information system. This system should
handle all customer purchasing activity, support display and reporting of critical sales information, and
assist marketing personnel in understanding the increasingly complex and competitive business
environment. I feel that such a system will improve the competitiveness of PVF, particularly in our
ability to better serve our customers.

IS LIAISON

SPONSOR

Pine Valley Furniture
System Service Request

REQUESTED BY

DEPARTMENT

LOCATION

CONTACT

TYPE OF REQUEST

PROBLEM STATEMENT

URGENCY

DATE:Jackie Judson

Marketing

Headquarters, 570c

Tel: 4-3290 FAX: 4-3270 E-Mail: jjudson

August 20, 2017

[
[
[

]
]
]

[
[
[

]
]
]

New System
System Enhancement
System Error Correction

Immediate: Operations are impaired or opportunity lost
Problems exist, but can be worked around
Business losses can be tolerated until new system installed

X

X

Jim Woo, 4-6207 FAX: 4-6200 E-Mail: jwoo

Jackie Judson, Vice President, Marketing

TO BE COMPLETED BY SYSTEMS PRIORITY BOARD
[

[
[
[

]

]
]
]

Request approved

Recommend revision
Suggest user development
Reject for reason

Assigned to
Start date

Figure 5-2
System Service Request for Customer Tracking System (Pine Valley Furniture)

 ChaPter 5 initiating and Planning SyStemS develoPment ProjectS 117

Within the CTS at PVF, Jim and Jackie identified several tangible benefits, which
are summarized on the tangible benefits worksheet shown in Figure 5-3. Jackie and
Jim had to establish the values in Figure 5-3 after collecting information from users
of the current customer tracking system. They first interviewed the person respon-
sible for collecting, entering, and analyzing the accuracy of the current customer
tracking data. This person estimated that 10 percent of her time was spent correcting
data entry errors. Given that this person’s salary is $25,000, Jackie and Jim estimated
an error-reduction benefit of $2,500. Jackie and Jim also interviewed managers who
used the current customer tracking reports. Using this information they were able
to estimate other tangible benefits. They learned that cost-reduction or avoidance
benefits could be gained due to better inventory management. Also, increased flex-
ibility would likely occur from a reduction in the time normally taken to manually
reorganize data for different purposes. Further, improvements in management plan-
ning or control should result from a broader range of analyses in the new system.
Overall, this analysis forecasts that benefits from the system would be approximately
$50,000 per year.

Jim and Jackie also identified several intangible benefits of the system. Although
these benefits could not be quantified, they will still be described in the final BPP.
Intangible benefits refer to items that cannot be easily measured in dollars or with
certainty. Intangible benefits may have direct organizational benefits, such as the
improvement of employee morale, or they may have broader societal implications,
such as the reduction of waste creation or resource consumption. Potential tangible
benefits may have to be considered intangible during project initiation and planning
because you may not be able to quantify them in dollars or with certainty at this stage
in the life cycle. During later stages, such intangibles can become tangible benefits as
you better understand the ramifications of the system you are designing. In this case,
the BPP is updated and the business case revised to justify continuation of the project
to the next phase. Table 5-3 lists numerous intangible benefits often associated with
the development of an information system. Actual benefits will vary from system to
system. After determining project benefits, project costs must be identified.

Determining Project Costs Similar to benefits, an information system can have both
tangible and intangible costs. Tangible costs refer to items that you can easily mea-
sure in dollars and with certainty. From an IS development perspective, tangible costs
include items such as hardware costs, labor costs, and operational costs including
employee training and building renovations. Alternatively, intangible costs are items
that you cannot easily measure in terms of dollars or with certainty. Intangible costs
can include loss of customer goodwill, employee morale, or operational inefficiency.

intangible benefit
A benefit derived from the creation of an
information system that cannot be easily
measured in dollars or with certainty.

Tangible cost
A cost associated with an information
system that can be measured in dollars and
with certainty.

intangible cost
A cost associated with an information
system that cannot be easily measured in
terms of dollars or with certainty.

TANGIBLE BENEFITS WORKSHEET
Customer TrackingSystem Project

Year 1 through 5

A. Cost reduction or avoidance $ 4,500

B. Error reduction 2,500

C. Increased flexibility 7,500

D. Increased speed of activity 10,500

E. Improvement in management
planning or control 25,000

F. Other

TOTAL tangible benefits

0

$50,000

Figure 5-3
Tangible benefits for Customer Tracking
System (Pine Valley Furniture)

118 Part II Planning

Table 5-4 provides a summary of common costs associated with the development
and operation of an information system. Predicting the costs associated with the
 development of an information system is an inexact science. IS researchers, how-
ever, have identified several guidelines for improving the cost-estimating process (see
Table 5-5). Both underestimating and overestimating costs are problems you must
avoid (Laplante, 2006; Lederer and Prasad, 1992; Nash, 2008; White and Lui, 2005).
Underestimation results in cost overruns, whereas overestimation results in unneces-
sary allocation of resources that might be better utilized.

Table 5-4 Possible Information Systems Costs
Type of Cost Examples Type of Cost Examples

Procurement Hardware, software,
facilities infrastructure

Management and staff
Consulting and services

Project Infrastructure replacement/
improvements

Project personnel
Training
Development activities
Services and procurement
Organizational disruptions
Management and staff

Start-Up Initial operating costs
Management and staff
Personnel recruiting

Operating Infrastructure replacement/
improvements

System maintenance
Management and staff
User training and support

(Source: Based on King and Schrems, 1978; Sonje, 2008.)

Table 5-3 Intangible benefits from the Development of an Information System
• Competitive necessity
• More timely information
• Improved organizational planning
• Increased organizational flexibility
• Promotion of organizational learning and

understanding
• Availability of new, better, or more

information
• Ability to investigate more alternatives
• Faster decision making

• More confidence in decision quality
• Improved processing efficiency
• Improved asset utilization
• Improved resource control
• Increased accuracy in clerical operations
• Improved work process that can improve

employee morale or customer satisfaction
• Positive impacts on society
• Improved social responsibility
• Better usage of resources (“greener”)

(Source: Based on Parker and Benson, 1988; Brynjolfsson and Yang, 1997; Keen, 2003;
Cresswell, 2004.)

Table 5-5 Guidelines for better Cost estimating
1. Have clear guidelines for creating estimates.
2. Use experienced developers and/or project managers for making estimates.
3. Develop a culture where all project participants are responsible for defining accurate

estimates.
4. Use historical data to help in establishing better estimates of costs, risks, schedules, and

resources.
5. Update estimates as the project progresses.
6. Monitor progress and record discrepancies to improve future estimates.

(Source: Based on Lederer and Prasad, 1992; Hubbard, 2007; Sonje, 2008.)

 ChaPter 5 initiating and Planning SyStemS develoPment ProjectS 119

One goal of a cost–benefit analysis is to accurately determine the total cost of
ownership (TCO) for an investment (Nash, 2008). TCO is focused on understand-
ing not only the total cost of acquisition but also all costs associated with ongoing use
and maintenance of a system. Consequently, besides tangible and intangible costs, you
can distinguish IS-related development costs as either one-time or recurring (the
same is true for benefits, although we do not discuss this difference for benefits).
One-time costs refer to those associated with project initiation and development and
the start-up of the system. These costs typically encompass activities such as systems
development, new hardware and software purchases, user training, site preparation,
and data or system conversion. When conducting an economic cost–benefit analysis,
a worksheet should be created for capturing these expenses. For very large projects,
one-time costs may be staged over one or more years. In these cases, a separate one-
time cost worksheet should be created for each year. This separation will make it
easier to perform present value calculations (described later). Recurring costs refer
to those costs resulting from the ongoing evolution and use of the system. Examples
of these costs typically include the following:

•	 Application software maintenance
•	 Incremental data storage expenses
•	 Incremental communications
•	 New software and hardware leases
•	 Supplies and other expenses (e.g., paper, forms, data center personnel)

Both one-time and recurring costs can consist of items that are fixed or variable
in nature. Fixed costs are costs that are billed or incurred at a regular interval and
usually at a fixed rate (a facility lease payment). Variable costs are items that vary in
relation to usage (long-distance phone charges).

During the process of determining project costs, Jim and Jackie identified
both one-time and recurring costs for the project. These costs are summarized in
Figures 5-4 and 5-5. These figures show that this project will incur a one-time cost of
$42,500 and a recurring cost of $28,500 per year. One-time costs were established by
discussing the system with Jim’s boss, who felt that the system would require approxi-
mately four months to develop (at $5000 per month). To effectively run the new
system, the marketing department would need to upgrade at least five of its current
workstations (at $3000 each). Additionally, software licenses for each workstation
(at $1000 each) and modest user training fees (ten users at $250 each) would be
necessary.

total cost of ownership (TCO)
The cost of owning and operating
a system, including the total cost of
acquisition, as well as all costs associated
with its ongoing use and maintenance.

One-time cost
A cost associated with project start-up and
development or system start-up.

recurring cost
A cost resulting from the ongoing evolution
and use of a system.

ONE-TIME COSTS WORKSHEET
Customer Tracking System Project

Year 0

A. Development costs $20 ,000

B. New hardware 15,000

C. New (purchased) software, if any
1. Packaged applications software 5,000
2. Other 0

D. User training 2,500

E. Site preparation 0

F. Other 0

TOTAL one-time costs $42,500 Figure 5-4
One-time costs for Customer Tracking
System (Pine Valley Furniture)

120 Part II Planning

As you can see from Figure 5-5, Jim and Jackie believe the proposed system will
be highly dynamic and will require, on average, five months of annual maintenance,
primarily for enhancements as users expect more from the system. Other ongoing
expenses such as increased data storage, communications equipment, and supplies
should also be expected. You should now have an understanding of the types of ben-
efit and cost categories associated with an information systems project. It should be
clear that there are many potential benefits and costs associated with a given project.
Additionally, because the development and useful life of a system may span several
years, these benefits and costs must be normalized into present-day values in order
to perform meaningful cost–benefit comparisons. In the next section, we address the
relationship between time and money.

The Time Value of Money Most techniques used to determine economic feasibility
encompass the concept of the time value of money (TVM), which reflects the notion
that money available today is worth more than the same amount tomorrow. As previ-
ously discussed, the development of an information system has both one-time and
recurring costs. Furthermore, benefits from systems development will likely occur
sometime in the future. Because many projects may be competing for the same in-
vestment dollars and may have different useful life expectancies, all costs and ben-
efits must be viewed in relation to their present value when comparing investment
options.

A simple example will help in understanding the TVM. Suppose you want to buy
a used car from an acquaintance and she asks that you make three payments of $1500
for three years, beginning next year, for a total of $4500. If she would agree to a single
lump-sum payment at the time of sale (and if you had the money!), what amount
do you think she would agree to? Should the single payment be $4500? Should it be
more or less? To answer this question, we must consider the time value of money.
Most of us would gladly accept $4500 today rather than three payments of $1500,
because a dollar today (or $4500 for that matter) is worth more than a dollar tomor-
row or next year, given that money can be invested. The rate at which money can be
borrowed or invested is referred to as the cost of capital, and is called the discount rate
for TVM calculations. Let’s suppose that the seller could put the money received for
the sale of the car in the bank and receive a 10 percent return on her investment. A
simple formula can be used when figuring out the present value of the three $1500
payments:

PVn = Y *
1

(1 + i)n

Time value of money (TVM)
The concept that money available today
is worth more than the same amount
tomorrow.

Discount rate
The rate of return used to compute the
present value of future cash flows.

Present value
The current value of a future cash flow.

RECURRING COSTS WORKSHEET
Customer Tracking System Project

Year 1 through 5

$25,000

1000

2000
0

500

0

$28,500

A. Application software maintenance

B. Incremental data storage required: 20 GB $50
(estimated cost/GB = $50)

C. Incremental communications (lines, messages, . . .)

D. New software or hardware leases

E. Supplies

F. Other

TOTAL recurring costs

Figure 5-5
Recurring costs for Customer Tracking
System (Pine Valley Furniture)

 ChaPter 5 initiating and Planning SyStemS develoPment ProjectS 121

where PVn is the present value of Y dollars n years from now when i is the discount
rate.

From our example, the present value of the three payments of $1500 can be
calculated as

PV1 = 1500 *
1

(1 + .10)1 = 1500 * .9091 = 1363.65

PV2 = 1500 *
1

(1 + .10)2 = 1500 * .8264 = 1239.60

PV3 = 1500 *
1

(1 + .10)3 = 1500 * .7513 = 1126.95

where PV1, PV2, and PV3 reflect the present value of each $1500 payment in years 1,
2, and 3, respectively.

To calculate the net present value (NPV) of the three $1500 payments, simply add
the present values calculated previously (NPV = PV1 = PV2 = PV3 = 1363.65 = 1239.60
= 1126.95 = $3730.20). In other words, the seller could accept a lump-sum payment
of $3730.20 as equivalent to the three payments of $1500, given a discount rate of
10 percent.

Given that we now know the relationship between time and money, the next
step in performing the economic analysis is to create a summary worksheet reflecting
the present values of all benefits and costs as well as all pertinent analyses. Due to the
fast pace of the business world, PVF’s System Priority Board feels that the useful life
of many information systems may not exceed five years. Therefore, all cost–benefit
analysis calculations will be made using a five-year time horizon as the upper bound-
ary on all time-related analyses. In addition, the management of PVF has set its cost
of capital to be 12 percent (i.e., PVF’s discount rate). The worksheet constructed by
Jim is shown in Figure 5-6.

Figure 5-6
Summary spreadsheet reflecting the
present value calculations of all benefits
and costs for the Customer Tracking
System (Pine Valley Furniture)
(Source: Microsoft Corporation.)

122 Part II Planning

Cell H11 of the worksheet displayed in Figure 5-6 summarizes the NPV of the
total tangible benefits from the project. Cell H19 summarizes the NPV of the total
costs from the project. The NPV for the project ($35,003) shows that, overall, ben-
efits from the project exceed costs (see cell H22).

The overall return on investment (ROI) for the project is also shown on the work-
sheet in cell H25. Because alternative projects will likely have different benefit and cost
values and, possibly, different life expectancies, the overall ROI value is very useful for
making project comparisons on an economic basis. Of course, this example shows ROI
for the overall project; an ROI analysis could be calculated for each year of the project.

The last analysis shown in Figure 5-6 is a break-even analysis. The objective of
the break-even analysis is to discover at what point (if ever) benefits equal costs (i.e.,
when breakeven occurs). To conduct this analysis, the NPV of the yearly cash flows
are determined. Here, the yearly cash flows are calculated by subtracting both the
one-time cost and the present values of the recurring costs from the present value of
the yearly benefits. The overall NPV of the cash flow reflects the total cash flows for
all preceding years. Examination of line 30 of the worksheet shows that breakeven
occurs between years 2 and 3. Because year 3 is the first in which the overall NPV cash
flow figure is nonnegative, the identification of what point during the year breakeven
occurs can be derived as follows:

Break @ Even Ratio =
Yearly NPV Cash Flow - Overall NPV Cash Flow

Yearly NPV Cash Flow

Using data from Figure 5-6,

Break @ Even Ratio =
15,303 - 9139

15,303
= .403

Therefore, project breakeven occurs at approximately 2.4 years. A graphical
representation of this analysis is shown in Figure 5-7. Using the information from the
economic analysis, PVF’s Systems Priority Board will be in a much better position to
understand the potential economic impact of the CTS. It should be clear from this
analysis that, without such information, it would be virtually impossible to know the
cost–benefits of a proposed system and impossible to make an informed decision
regarding approval or rejection of the service request.

You can use many techniques to compute a project’s economic feasibility.
Because most information systems have a useful life of more than one year and will

Break-even analysis
A type of cost–benefit analysis to identify at
what point (if ever) benefits equal costs.

200

150

100

50

0

Year

Project break-even point

0 1 2 3 4 5

Benefits

Costs

D
ol

la
rs

 (i
n

th
ou

sa
nd

s)

Figure 5-7
Break-even analysis for Customer
Tracking System (Pine Valley Furniture)

 ChaPter 5 initiating and Planning SyStemS develoPment ProjectS 123

provide benefits and incur expenses for more than one year, most techniques for
analyzing economic feasibility employ the concept of the TVM. Some of these cost–
benefit analysis techniques are quite simple, whereas others are more sophisticated.
Table 5-6 describes three commonly used techniques for conducting economic
feasibility analysis. For a more detailed discussion of TVM or cost–benefit analysis
techniques in general, the interested reader is encouraged to review an introductory
finance or managerial accounting textbook.

A systems project, to be approved for continuation, may not have to achieve
breakeven or have an ROI above some organizational threshold, as estimated dur-
ing project initiation and planning. Because you may not be able to quantify many
benefits or costs at this point in a project, such financial hurdles for a project may
be unattainable. In this case, simply doing as thorough an economic analysis as pos-
sible, including producing a long list of intangibles, may be sufficient for the proj-
ect to progress. One other option is to run the type of economic analysis shown in
Figure 5-7 using pessimistic, optimistic, and expected benefit and cost estimates dur-
ing project initiation and planning. This range of possible outcomes, along with the
list of intangible benefits and the support of the requesting business unit, will often
be enough to allow the project to continue to the analysis phase. You must, however,
be as precise as you can with the economic analysis, especially when investment capi-
tal is scarce. In this case, it may be necessary to conduct some typical analysis phase
activities during project initiation and planning in order to clearly identify inefficien-
cies and shortcomings with the existing system and to explain how a new system will
overcome these problems. Thus, building the economic case for a systems project
is an open-ended activity; how much analysis is needed depends on the particular
project, stakeholders, and business conditions. Also, conducting economic feasibility
analyses for new types of information systems is often very difficult.

assessing technical feasibility
The purpose of assessing technical feasibility is to gain an understanding of the orga-
nization’s ability to construct the proposed system. This analysis should include an as-
sessment of the development group’s understanding of the possible target hardware,
software, and operating environments to be used, as well as system size, complexity,
and the group’s experience with similar systems. In this section, we will discuss a
framework you can use for assessing the technical feasibility of a project in which a
level of project risk can be determined after answering a few fundamental questions.

It is important to note that all projects have risk and that risk is not necessarily
something to avoid. Yet it is also true that, because organizations typically expect a
greater return on their investment for riskier projects, understanding the sources
and types of technical risks proves to be a valuable tool when you assess a project.
Also, risks need to be managed in order to be minimized; you should, therefore,

Technical feasibility
A process of assessing the development
organization’s ability to construct a
proposed system.

Table 5-6 Commonly Used economic Cost–benefit analysis Techniques
Analysis Technique Description

Net Present Value (NPV) NPV uses a discount rate determined from the company’s cost of
capital to establish the present value of a project. The discount
rate is used to determine the present value of both cash receipts
and outlays.

Return on Investment (ROI) ROI is the ratio of the net cash receipts of the project divided by
the cash outlays of the project. Trade-off analysis can be made
among projects competing for investment by comparing their
representative ROI ratios.

Break-Even Analysis (BEA) BEA finds the amount of time required for the cumulative cash flow
from a project to equal its initial and ongoing investment.

124 Part II Planning

identify potential risks as early as possible in a project. The potential consequences of
not assessing and managing risks can include the following:

•	 Failure to attain expected benefits from the project
•	 Inaccurate project cost estimates
•	 Inaccurate project duration estimates
•	 Failure to achieve adequate system performance levels
•	 Failure to adequately integrate the new system with existing hardware, software,

or organizational procedures

You can manage risk on a project by changing the project plan to avoid risky fac-
tors, assigning project team members to carefully manage the risky aspects, and set-
ting up monitoring methods to determine whether or not potential risk is, in fact,
materializing.

The amount of technical risk associated with a given project is contingent on
four primary factors: project size, project structure, the development group’s expe-
rience with the application and technology area, and the user group’s experience
with systems development projects and the application area (see also Kirsch, 2000).
Aspects of each of these risk areas are summarized in Table 5-7. When using these
factors for conducting a technical risk assessment, four general rules emerge:

1. Large projects are riskier than small projects. Project size, of course, relates to the
relative project size with which the development group typically works. A “small”
project for one development group may be relatively “large” for another. The
types of factors that influence project size are listed in Table 5-7.

2. A system in which the requirements are easily obtained and highly structured will be less
risky than one in which requirements are messy, ill-structured, ill-defined, or subject to the
judgment of an individual. For example, the development of a payroll system has
requirements that may be easy to obtain due to legal reporting requirements
and standard accounting procedures. On the other hand, the development of an
executive support system would need to be customized to the particular execu-
tive decision style and critical success factors of the organization, thus making its
development more risky (see Table 5-7).

Table 5-7 Project Risk assessment Factors
Risk Factor Examples

Project Size Number of members on the project team
Project duration time
Number of organizational departments involved in project
Size of programming effort (e.g., hours, function points)
Number of outsourcing partners

Project Structure New system or renovation of existing system(s)
Organizational, procedural, structural, or personnel changes

resulting from system
User perceptions and willingness to participate in effort
Management commitment to system
Amount of user information in system development effort

Development Group Familiarity with target hardware, software development
environment, tools, and operating system

Familiarity with proposed application area
Familiarity with building similar systems of similar size

User Group Familiarity with information systems development process
Familiarity with proposed application area
Familiarity with using similar systems

(Source: Based on Applegate, Austin, and Soule, 2009; Tech Republic, 2005.)

 ChaPter 5 initiating and Planning SyStemS develoPment ProjectS 125

3. The development of a system employing commonly used or standard technology will be less
risky than one employing novel or nonstandard technology. A project has a greater like-
lihood of experiencing unforeseen technical problems when the development
group lacks knowledge related to an aspect of the technology environment. A less
risky approach is to use standard development tools and hardware environments.
It is not uncommon for experienced system developers to talk of the difficulty of
using leading-edge (or in their words, bleeding-edge) technology (see Table 5-7).

4. A project is less risky when the user group is familiar with the systems development pro-
cess and application area than if the user group is unfamiliar with them. Successful IS
projects require active involvement and cooperation between the user and devel-
opment groups. Users familiar with the application area and the systems develop-
ment process are more likely to understand the need for their involvement and
how this involvement can influence the success of the project (see Table 5-7).

A project with high risk may still be conducted. Many organizations look at risk
as a portfolio issue: Considering all projects, it is okay to have a reasonable percent-
age of high-, medium-, and low-risk projects. Given that some high-risk projects will
get into trouble, an organization cannot afford to have too many of these. Having too
many low-risk projects may not be aggressive enough to make major breakthroughs
in innovative uses of systems. Each organization must decide on its acceptable mix of
projects of varying risk.

A matrix for assessing the relative risks related to the general rules just described
is shown in Figure 5-8. Using the risk factor rules to assess the technical risk level of
the CTS, Jim and Jackie concluded the following about their project:

1. The project is a relatively small project for PVF’s development organization. The
basic data for the system are readily available, so the creation of the system will
not be a large undertaking.

2. The requirements for the project are highly structured and easily obtainable. In
fact, an existing spreadsheet-based system is available for analysts to examine and
study.

3. The development group is familiar with the technology that will likely be used
to construct the system because the system will simply extend current system
capabilities.

4. The user group is familiar with the application area because they are already us-
ing the PC-based spreadsheet system described in Figure 5-3.

Given this risk assessment, Jim and Jackie mapped their information into the
risk framework of Figure 5-8. They concluded that this project should be viewed as
having “very low” technical risk (cell 4 of the figure). Although this method is useful

High Familiarity
with Technology
or Application Area

Low Familiarity
with Technology
or Application Area

Large Project

Small Project

Large Project

Small Project

Low Structure High Structure
(1)

Low risk
(very susceptible

to mismanagement)
(3)

Very low risk
(very susceptible

to mismanagement)

(5)
Very high risk

(7)
High risk

(2)
Low risk

(4)
Very low risk

(6)
Medium risk

(8)
Medium-low risk

Figure 5-8
Effects of degree of project structure,
project size, and familiarity
with application area on project
implementation risk
(Source: Based on Applegate, Austin, and
Soule, 2009; Tech Republic, 2005.)

126 Part II Planning

for gaining an understanding of technical feasibility, numerous other issues can
influence the success of the project. These nonfinancial and nontechnical issues are
described in the following section.

assessing other feasibility concerns
In this section, we will briefly conclude our discussion of project feasibility issues by
reviewing other forms of feasibility that you may need to consider when formulating
the business case for a system during project planning.

Assessing Operational Feasibility The first relates to examining the likelihood that
the project will attain its desired objectives, called operational feasibility. Its purpose
is to gain an understanding of the degree to which the proposed system will likely
solve the business problems or take advantage of the opportunities outlined in the
System Service Request or project identification study. For a project motivated from
information systems planning, operational feasibility includes justifying the project
on the basis of being consistent with or necessary for accomplishing the information
systems plan. In fact, the business case for any project can be enhanced by showing
a link to the business or information systems plan. Your assessment of operational
feasibility should also include an analysis of how the proposed system will affect orga-
nizational structures and procedures. Systems that have substantial and widespread
impact on an organization’s structure or procedures are typically riskier projects to
undertake. Thus, it is important for you to have a clear understanding of how an
information system will fit into the current day-to-day operations of the organization.

Assessing Schedule Feasibility Another feasibility concern relates to project du-
ration and is referred to as assessing schedule feasibility. The purpose of assessing
schedule feasibility is for you, as a systems analyst, to gain an understanding of the
likelihood that all potential time frames and completion date schedules can be met
and that meeting these dates will be sufficient for dealing with the needs of the
organization. For example, a system may have to be operational by a government-
imposed deadline, by a particular point in the business cycle (such as the beginning
of the season when new products are introduced), or at least by the time a competi-
tor is expected to introduce a similar system. Further, detailed activities may only be
feasible if resources are available when called for in the schedule. For example, the
schedule should not call for system testing during rushed business periods or for key
project meetings during annual vacation or holiday periods. The schedule of activi-
ties produced during project initiation and planning will be very precise and detailed
for the analysis phase. The estimated activities and associated times for activities after
the analysis phase are typically not as detailed (e.g., it will take two weeks to program
the payroll report module) but are rather at the life-cycle-phase level (e.g., it will take
six weeks for physical design, four months for programming, and so on). This means
that assessing schedule feasibility during project initiation and planning is more of a
“rough-cut” analysis of whether the system can be completed within the constraints
of the business opportunity or the desires of the users. While assessing schedule fea-
sibility you should also evaluate scheduling trade-offs. For example, factors such as
project team size, availability of key personnel, subcontracting or outsourcing activi-
ties, and changes in development environments may all be considered as having a
possible impact on the eventual schedule. As with all forms of feasibility, schedule
feasibility will be reassessed after each phase when you can specify with greater cer-
tainty the details of each step for the next phase.

Assessing Legal and Contractual Feasibility A third concern relates to assessing
legal and contractual feasibility issues. In this area, you need to gain an understand-
ing of any potential legal ramifications due to the construction of the system. Possible
considerations might include copyright or nondisclosure infringements, labor laws,

Operational feasibility
The process of assessing the degree to
which a proposed system solves business
problems or takes advantage of business
opportunities.

Schedule feasibility
The process of assessing the degree
to which the potential time frame and
completion dates for all major activities
within a project meet organizational
deadlines and constraints for affecting
change.

Legal and contractual
feasibility
The process of assessing potential legal
and contractual ramifications due to the
construction of a system.

 ChaPter 5 initiating and Planning SyStemS develoPment ProjectS 127

antitrust legislation (which might limit the creation of systems to share data with
other organizations), foreign trade regulations (e.g., some countries limit access to
employee data by foreign corporations), and financial reporting standards, as well as
current or pending contractual obligations. Contractual obligations may involve own-
ership of software used in joint ventures, license agreements for use of hardware or
software, nondisclosure agreements with partners, or elements of a labor agreement
(e.g., a union agreement may preclude certain compensation or work-monitoring
capabilities a user may want in a system). A common situation is that development of
a new application system for use on new computers may require new or expanded,
and more costly, system software licenses. Typically, legal and contractual feasibility is
a greater consideration if your organization has historically used an outside organiza-
tion for specific systems or services that you now are considering handling yourself.
In this case, ownership of program source code by another party may make it difficult
to extend an existing system or link a new system with an existing purchased system.

Assessing Political Feasibility A final feasibility concern focuses on assessing
 political feasibility in which you attempt to gain an understanding of how key stake-
holders within the organization view the proposed system. Because an information
system may affect the distribution of information within the organization, and thus
the distribution of power, the construction of an information system can have politi-
cal ramifications. Those stakeholders not supporting the project may take steps to
block, disrupt, or change the intended focus of the project.

In summary, depending upon the given situation, numerous feasibility issues
must be considered when planning a project. This analysis should consider economic,
technical, operational, schedule, legal, contractual, and political issues related to the
project. In addition to these considerations, project selection by an organization may
be influenced by issues beyond those discussed here. For example, projects may be
selected for construction despite high project costs and high technical risk if the
system is viewed as a strategic necessity; that is, the organization views the project as
being critical to the organization’s survival. Alternatively, projects may be selected
because they are deemed to require few resources and have little risk. Projects may
also be selected due to the power or persuasiveness of the manager proposing the
system. This means that project selection may be influenced by factors beyond those
discussed here and beyond items that can be analyzed. Understanding the reality
that projects may be selected based on factors beyond analysis, your role as a systems
analyst is to provide a thorough examination of the items that can be assessed. Your
analysis will ensure that a project review committee has as much information as pos-
sible when making project approval decisions. In the next section, we discuss how
project plans are typically reviewed.

buIldIng and revIewIng the baSelIne
Project Plan
All the information collected during project initiation and planning is collected
and organized into a document called the Baseline Project Plan. Once the BPP is
completed, a formal review of the project can be conducted with project clients and
other interested parties. This presentation, a walk-through, is discussed later in this
chapter. The focus of this review is to verify all information and assumptions in the
baseline plan before moving ahead with the project.

building the baseline Project Plan
As mentioned previously, the project size and organizational standards will dictate
the comprehensiveness of the project initiation and planning process as well as the
BPP. Yet most experienced systems builders have found project planning and a clear

Political feasibility
The process of evaluating how key
stakeholders within the organization view
the proposed system.

128 Part II Planning

project plan to be invaluable to project success. An outline of a BPP is provided in
Figure 5-9, which shows that it contains four major sections:

1. Introduction
2. System Description
3. Feasibility Assessment
4. Management Issues

The Introduction Section of the Baseline Project Plan The purpose of the Introduction
is to provide a brief overview of the entire document and outline a recommended

1.0

2.0

3.0

4.0

Introduction
A.

B.

System Description
A.
B.

Feasibility Assessment
A.

B.

C.

D.

E.

F.

Management Issues
A.

B.

C.

D.

BASELINE PROJECT PLAN REPORT

Project Overview—Provides an executive summary that specifies the project’s scope,
feasibility, justification, resource requirements, and schedules. Additionally, a brief
statement of the problem, the environment in which the system is to be implemented,
and constraints that a ect the project are provided.
Recommendation—Provides a summary of important findings from the planning
process and recommendations for subsequent activities.

Alternatives—Provides a brief presentation of alternative system configurations.
System Description—Provides a description of the selected configuration and a
narrative of input information, tasks performed, and resultant information.

Economic Analysis—Provides an economic justification for the system using
cost-benefit analysis.
Technical Analysis—Provides a discussion of relevant technical risk factors and an
overall risk rating of the project.
Operational Analysis—Provides an analysis of how the proposed system solves
business problems or takes advantage of business opportunities in addition to an
assessment of how current day-to-day activities will be changed by the system.
Legal and Contractual Analysis—Provides a description of any legal or contractual risks
related to the project (e.g., copyright or nondisclosure issues, data capture or
transferring, and so on).
Political Analysis—Provides a description of how key stakeholders within the
organization view the proposed system.
Schedules, Time Line, and Resource Analysis—Provides a description of potential time
frame and completion date scenarios using various resource allocation schemes.

Team Configuration and Management—Provides a description of the team member
roles and reporting relationships.
Communication Plan—Provides a description of the communication procedures to be
followed by management, team members, and the customer.
Project Standards and Procedures—Provides a description of how deliverables will be
evaluated and accepted by the customer.
Other Project-Specific Topics—Provides a description of any other relevant issues
related to the project uncovered during planning.

Figure 5-9
Outline of a Baseline Project Plan

 ChaPter 5 initiating and Planning SyStemS develoPment ProjectS 129

course of action for the project. The entire Introduction section is often limited to
only a few pages. Although the Introduction section is sequenced as the first section
of the BPP, it is often the final section to be written. It is only after performing most
of the project planning activities that a clear overview and recommendation can be
created. One activity that should be performed initially is the definition of project
scope.

When defining scope for the CTS within PVF, Jim Woo first needed to gain a
clear understanding of the project’s objectives. To do this, Jim briefly interviewed
Jackie Judson and several of her colleagues to gain a clear idea of their needs. He
also spent a few hours reviewing the existing system’s functionality, processes, and
data use requirements for performing customer tracking activities. These activities
provided him with the information needed to define the project scope and to iden-
tify possible alternative solutions. Alternative system solutions can relate to different
system scopes, platforms for deployment, or approaches to acquiring the system. We
elaborate on the idea of alternative solutions, called design strategies, when we discuss
the analysis phase of the life cycle. During project initiation and planning, the most
crucial element of the design strategy is the system’s scope. In sum, a determination
of scope will depend on the following factors:

•	 Which organizational units (business functions and divisions) might be affected
by or use the proposed system or system change?

•	 With which current systems might the proposed system need to interact or be
consistent, or which current systems might be changed due to a replacement
system?

•	 Who inside and outside the requesting organization (or the organization as a
whole) might care about the proposed system?

•	 What range of potential system capabilities will be considered?

The Project Scope Statement for the CTS project is shown in Figure 5-10.
For the CTS, project scope was defined using only textual information. It is

not uncommon, however, to define project scope using diagrams such as data flow
diagrams and entity-relationship models. For example, Figure 5-11 shows a context-
level data flow diagram used to define system scope for PVF’s Purchasing Fulfillment
System. The other items in the Introduction section of the BPP are simply executive
summaries of the other sections of the document.

The System Description Section of the Baseline Project Plan The second section of
the BPP is the System Description, which contains an outline of possible alternative so-
lutions in addition to the one deemed most appropriate for the given situation. Note
that this description is at a very high level and mostly narrative in form. The following
examples demonstrate that alternatives may be stated simply:

1. Web-based online system
2. Mainframe with central database
3. Local area network with decentralized databases
4. Batch data input with online retrieval
5. Purchasing of a prewritten package

If the project is approved for construction or purchase, you will need to collect
and structure information in a more detailed and rigorous manner during the analy-
sis phase and evaluate in greater depth these and other alternative directions for the
system. At this point in the project, your objective is only to identify the most obvious
alternative solutions.

When Jim and Jackie were considering system alternatives for the CTS, they
focused on two primary issues. First, they discussed how the system would be
acquired and considered three options: purchase the system if one could be found
that met PVF’s needs, outsource the development of the system to an outside orga-
nization, or build the system within PVF. The second issue focused on defining the

130 Part II Planning

comprehensiveness of the system’s functionality. To complete this task, Jim asked
Jackie to write a series of statements listing the types of tasks that she envisioned
marketing personnel would be able to accomplish when using the CTS. This list
of statements became the basis of the system description and was instrumental in
helping them make their acquisition decision. After considering the unique needs
of the marketing group, both decided that the best decision was to build the system
within PVF.

General Project Information

Problem/Opportunity Statement:

Project Objectives:

Project Description:

Business Benefits:

Project Deliverables:

Estimated Project Duration:

Project Name:
Sponsor:
Project Manager:

Customer Tracking System
Jackie Judson, VP Marketing
Jim Woo

Pine Valley Furniture
Project Scope Statement

Sales growth has outpaced the Marketing department’s ability to accurately track and
forecast customer buying trends. An improved method for performing this process must
be found in order to reach company objectives.

To enable the Marketing department to accurately track and forecast customer buying
patterns in order to better serve customers with the best mix of products. This will also
enable PVF to identify the proper application of production and material resources.

A new information system will be constructed that will collect all customer purchasing
activity, support display and reporting of sales information, aggregate data, and show
trends in order to assist marketing personnel in understanding dynamic market conditions.
The project will follow PVF’s systems development life cycle.

Improved understanding of customer buying patterns
Improved utilization of marketing and sales personnel
Improved utilization of production and materials

Customer tracking system analysis and design
Customer tracking system programs
Customer tracking documentation
Training procedures

5 months

Prepared by: Jim Woo
Date: September 10, 2017

Figure 5-10
Project Scope Statement for the Customer Tracking Systems (Pine Valley Furniture)

 ChaPter 5 initiating and Planning SyStemS develoPment ProjectS 131

The Feasibility Assessment Section of the Baseline Project Plan In the third
 section, Feasibility Assessment, issues related to project costs and benefits, technical dif-
ficulties, and other such concerns are outlined. This is also the section where high-
level project schedules are specified using network diagrams and Gantt charts. Recall
from Chapter 3 that this process is referred to as a work breakdown structure. During
project initiation and planning, task and activity estimates are not generally detailed.
An accurate work breakdown can be done only for the next one or two life cycle ac-
tivities. After defining the primary tasks for the project, an estimate of the resource
requirements can be made. As with defining tasks and activities, this activity is pri-
marily concerned with gaining rough estimates of the human resource requirements
because people are the most expensive resource element. Once you define the major
tasks and resource requirements, a preliminary schedule can be developed. Defining
an acceptable schedule may require that you find additional or different resources
or that you change the scope of the project. The greatest amount of project planning
effort is typically expended on these Feasibility Assessment activities.

The Management Issues Section of the Baseline Project Plan The final section,
Management Issues, outlines a number of managerial concerns related to the project.
This will be a very short section if the proposed project is going to be conducted
exactly as prescribed by the organization’s standard systems development methodol-
ogy. Most projects, however, have some unique characteristics that require minor to
major deviation from the standard methodology. In the Team Configuration and
Management portion, you identify the types of people to work on the project, who
will be responsible for which tasks, and how work will be supervised and reviewed
(Figure 5-12). In the Communications Plan portion, you explain how the user will
be kept informed about project progress (such as periodic review meetings or even a
newsletter) and what mechanisms will be used to foster sharing of ideas among team
members, such as some form of computer-based conference facility (Figure 5-13).
An example of the type of information contained in the Project Standards and
Procedures portion would be procedures for submitting and approving project
change requests and any other issues deemed important for the project’s success.

You should now have a feel for how a BPP is constructed and the types of
information it contains. Its creation is not meant to be a project in and of itself, but
rather a step in the overall systems development process. Developing the BPP has
two primary objectives. First, it helps to ensure that the customer and development
group share a common understanding of the project. Second, it helps to provide the
sponsoring organization with a clear idea of the scope, benefits, and duration of the
project.

Price & Terms Quotes

Shipment

Request for Quotes

Order

Supplier Material Evaluation

Material Specifications

Production Schedules

Production Capacities

Material Availability

Supplier Material
Specifications

0

Purchasing
Fulfillment

System

Suppliers

Engineering
Production
Schedulers

Figure 5-11
Context-level data flow diagram showing
project scope for Purchasing Fulfillment
System (Pine Valley Furniture)

132 Part II Planning

reviewing the baseline Project Plan
Before the next phase of the SDLC can begin, the users, management, and develop-
ment group must review the BPP in order to verify that it makes sense. This review
takes place before the BPP is submitted or presented to a project approval body, such
as an IS steering committee or the person who must fund the project. The objective
of this review is to ensure that the proposed system conforms to organizational stan-
dards and that all relevant parties understand and agree with the information con-
tained in the BPP. A common method for performing this review (as well as reviews
during subsequent life cycle phases) is called a structured walk-through. Walk-throughs
are peer group reviews of any product created during the systems development pro-
cess and are widely used by professional development organizations. Experience has
shown that walk-throughs are a very effective way to ensure the quality of an informa-
tion system and have become a common day-to-day activity for many systems analysts.

Most walk-throughs are not rigidly formal or exceedingly long in duration. It
is important, however, to establish a specific agenda for the walk-through so that all
attendees understand what is to be covered and the expected completion time. At

Walk-through
A peer group review of any product
created during the systems development
process; also called a structured
walk-through.

Stakeholder Document Format Team Contact Date Due

Team Members Project Status Report Project Intranet Juan and Kim First Monday of Month

Management Supervisor Project Status Report Hard Copy Juan and Kim First Monday of Month

User Group Project Status Report Hard Copy James and Kim First Monday of Month

Internal IT Staff Project Status Report E-Mail Jackie and James First Monday of Month

IT Manager Project Status Report Hard Copy Juan and Jeremy First Monday of Month

Contract Programmers Software Specifications E-Mail/Project Intranet Jordan and Kim October 4, 2017

Training Subcontractor Implementation and Training Plan Hard Copy Jordan and James January 10, 2018

Figure 5-13
The Project Communication Matrix provides a high-level summary of the communication plan

Project:
WebStore

Prepared by:
Juan Gonzales

Legend:

P = Primary

S = SupportManager:

Juan Gonzales

Page: 1 of 1

Responsibility Matrix

Task ID Task Jordan James Jackie Jeremy Kim Juan
A Collect Requirements P S S
B Develop Data Model P S S
C Develop Program Interface P S S
D Build Database S P S
E Design Test Scenarios S S S P S S
F Run Test Scenarios S S S S S P
G Create User Documentation P S S
H Install System S P S S
I Develop Customer Support S P S S

Figure 5-12
Task responsibility matrix

 ChaPter 5 initiating and Planning SyStemS develoPment ProjectS 133

walk-through meetings, there is a need to have individuals play specific roles. These
roles are as follows (Yourdon, 1989):

•	 Coordinator. This person plans the meeting and facilitates a smooth meeting
process. This person may be the project leader or a lead analyst responsible for
the current life cycle step.

•	 Presenter. This person describes the work product to the group. The presenter is
usually an analyst who has done all or some of the work being presented.

•	 User. This person (or group) makes sure that the work product meets the needs
of the project’s customers. This user would usually be someone not on the
project team.

•	 Secretary. This person takes notes and records decisions or recommendations
made by the group. This may be a clerk assigned to the project team or it may
be one of the analysts on the team.

•	 Standards bearer. The role of this person is to ensure that the work product
adheres to organizational technical standards. Many larger organizations have
staff groups within the unit responsible for establishing standard procedures,
methods, and documentation formats. These standards bearers validate the
work so that it can be used by others in the development organization.

•	 Maintenance oracle. This person reviews the work product in terms of future
maintenance activities. The goal is to make the system and its documentation
easy to maintain.

After Jim and Jackie completed their BPP for the CTS, Jim approached his boss
and requested that a walk-through meeting be scheduled and that a walk-through
coordinator be assigned to the project. PVF assists the coordinator by providing a
Walk-through Review Form, shown in Figure 5-14. Using this form, the coordina-
tor can more easily make sure that a qualified individual is assigned to each walk-
through role; that each member has been given a copy of the review materials; and
that each member knows the agenda, date, time, and location of the meeting. At the
meeting, Jim presented the BPP and Jackie added comments from a user’s perspec-
tive. Once the walk-through presentation was completed, the coordinator polled
each representative for his or her recommendation concerning the work product.
The results of this voting may result in validation of the work product, validation
pending changes suggested during the meeting, or a suggestion that the work prod-
uct requires major revision before being presented for approval. In this latter case,
substantial changes to the work product are usually requested, after which another
walk-through must be scheduled before the project can be proposed to the Systems
Priority Board (steering committee). In the case of the CTS, the BPP was supported
by the walk-through panel, pending some minor changes to the duration estimates
in the schedule. These suggested changes were recorded by the secretary on a Walk-
through Action List (see Figure 5-15) and given to Jim to incorporate into a final
version of the baseline plan to be presented to the steering committee.

As suggested by the previous discussion, walk-through meetings are a common
occurrence in most systems development groups and can be used for more activities
than reviewing the BPP, including the following:

•	 System specifications
•	 Logical and physical designs
•	 Code or program segments
•	 Test procedures and results
•	 Manuals and documentation

One of the key advantages in using a structured review process is it ensures
that formal review points occur during the project. At each subsequent phase of the
project, a formal review should be conducted (and shown on the project schedule)
to make sure all aspects of the project are satisfactorily accomplished before assign-
ing additional resources to the project. This conservative approach of reviewing each
major project activity with continuation contingent on successful completion of the

134 Part II Planning

Session Coordinator:

Project/Segment:

Coordinator’s Checklist:

Agenda:

Group Decision:

Confirmation with producer(s) that material is ready and stable:
Issue invitations, assign responsibilities, distribute materials: [] Y [] N
Set date, time, and location for meeting:

Date: / /

Location:

[] Y [] N [] Y [] N

[] Y [] N [] Y [] N

[] Y [] N [] Y [] N

[] Y [] N [] Y [] N

[] Y [] N [] Y [] N

[] Y [] N [] Y [] N

1.
2.
3.

All participants agree to follow PVF’s Rules of a Walk-through
New material: walk-through of all material
Old material: item-by-item checko� of previous action list
Creation of new action list (contribution by each participant)
Group decision (see below)
Deliver copy of this form to the project control manager

Accept product as-is
Revise (no further walk-through)
Review and schedule another walk-through

1.
2.
3.
4.
5.
6.

Pine Valley Furniture
Walk-through Review Form

Responsibilities

Coordinator

Presenter

User

Secretary

Standards

Maintenance

Participants Can Attend Received Materials

Time: A.M. / P.M. (circle one)

Signatures

Figure 5-14
Walk-through Review Form (Pine Valley Furniture)

 ChaPter 5 initiating and Planning SyStemS develoPment ProjectS 135

Session Coordinator:

Project/Segment:

Date and Time of Walk-through:

Pine Valley Furniture
Walk-through Action List

Fixed () Issues raised in review:

Date: / / Time: A.M. / P.M. (circle one)

Figure 5-15
Walk-through Action List (Pine Valley Furniture)

136 Part II Planning

Table 5-8 Guidelines for Making an effective Presentation
Presentation Planning

Who is the audience? To design the most effective presentation, you need to consider the audience (e.g., What do they know
about your topic? What is their education level?).

What is the message? Your presentation should be designed with a particular objective in mind.
What is the presentation

environment?
Knowledge of the room size, shape, and lighting is valuable information for designing an optimal

presentation.

Presentation Design

Organize the sequence. Organize your presentation so that like elements or topics are found in one place, instead of scattered
throughout the material in random fashion.

Keep it simple. Make sure that you don’t pack too much information onto a slide so that it is difficult to read. Also, work to
have as few slides as possible; in other words, only include information that you absolutely need.

Be consistent. Make sure that you are consistent in the types of fonts, font sizes, colors, design approach, and
backgrounds.

Use variety. Use both textual and graphical slides to convey information in the most meaningful format.
Don’t rely on the spell

checker alone.
Make sure you carefully review your presentation for typographical and wording errors.

Use bells and whistles
sparingly.

Make sure that you use familiar graphical icons to guide and enhance slides; don’t lose sight of your
message as you add bells and whistles. Also, take great care when making transitions between slides and
elements so that “special effects” don’t take away from your message.

Use supplemental materials
appropriately.

Take care when using supplemental materials so that they don’t distract the audience. For example, don’t
provide handouts until you want the audience to actually read this material.

Have a clear beginning and
end.

At the beginning, introduce yourself and your teammates (if any), thank your audience for being there,
and provide a clear outline of what will be covered during the presentation. At the conclusion, have a
concluding slide so that the audience clearly sees that the presentation is over.

Presentation Delivery

Practice. Make sure that you thoroughly test your completed work on yourself and others to be sure it covers your
points and presents them in an effective manner within the time frame required.

Arrive early and cue up your
presentation.

It is good practice, when feasible, to have your presentation ready to go prior to the arrival of the audience.

Learn to use the “special”
software keys.

Using special keys to navigate the presentation will allow you to focus on your message and not on the
software.

Have a backup plan. Have a backup plan in case technology fails or your presentation is lost when traveling.
Deliver the information

effectively.
To make an effective presentation, you must become an effective public speaker through practice.

Personal appearance matters. Your appearance and demeanor can go a long way toward enhancing how the audience receives your
presentation.

prior phase is called incremental commitment. It is much easier to stop or redirect a
project at any point when using this approach.

Walk-throughs are used throughout the duration of the project for briefing
team members and external stakeholders. These presentations can provide many
benefits to the team, but, unfortunately, are often not well done. With the prolif-
eration of computer technology and the availability of powerful software to assist in
designing and delivering presentations, making an effective presentation has never
been easier. Microsoft’s PowerPoint has emerged as the de facto standard for creating
computer-based presentations. Although this program is relatively easy to use, it can
also be misused such that the “bells and whistles” added to a computer-based pre-
sentation actually detract from the presentation. Like any project, to make an effec-
tive presentation it must be well-planned, well-designed, and well-delivered. Planning
and designing your presentation is equally important as delivering it. If your slides
are poorly laid out, hard to read, or inconsistent, it won’t matter how good your deliv-
ery is; your audience will think more about the poor quality of the slides than about
what you are saying. Fortunately, with a little work it is easy to design a high-quality
presentation if you follow a few simple steps, which are outlined in Table 5-8.

 ChaPter 5 initiating and Planning SyStemS develoPment ProjectS 137

electronIc commerce aPPlIcatIonS:
InItIatIng and PlannIng SyStemS
develoPment ProjectS
Initiating and planning systems development projects for an Internet-based EC
 application is very similar to the process followed for more traditional applications. In
Chapter 4, you read how PVF’s management began the WebStore project—to sell fur-
niture products over the Internet. In this section, we highlight some of the issues that
relate directly to the process of identifying and selecting systems development projects.

Initiating and Planning Systems development Projects for Pine
valley furniture’s webStore
Given the high priority of the WebStore project, Vice President of Marketing Jackie
Judson, and senior systems analyst, Jim Woo, were assigned to work on this project.
Like the CTS described earlier in this chapter, their initial activity was to begin the
project’s initiation and planning activities.

Initiating and Planning PVF’s E-Commerce System To start the initiation and
planning process, Jim and Jackie held several meetings over several days. At the first
meeting they agreed that “WebStore” would be the proposed system project name.
Next, they worked on identifying potential benefits, costs, and feasibility concerns.
To assist in this process, Jim developed a list of potential costs from developing web-
based systems that he shared with Jackie and the other project team members (see
Table 5-9).

Table 5-9 Web-based System Costs
Cost Category Examples

Platform Costs • Web-hosting service
• Web server
• Server software
• Software plug-ins
• Firewall server
• Router
• Internet connection

Content and Service • Creative design and development
• Ongoing design fees
• Web project manager
• Technical site manager
• Content staff
• Graphics staff
• Support staff
• Site enhancement funds
• Fees to license outside content
• Programming, consulting, and research
• Training and travel

Marketing • Direct mail
• Launch and ongoing public relations
• Print advertisement
• Paid links to other websites
• Promotions
• Marketing staff
• Advertising sales staff

138 Part II Planning

WebStore Project Walk-through After meeting with the project team, Jim and
Jackie established an initial list of benefits and costs (see Table 5-10) as well as several
feasibility concerns (see Table 5-11). Next, Jim worked with several of PVF’s technical
specialists to develop an initial project schedule. Figure 5-16 shows the Gantt chart
for this 84-day schedule. Finally, Jim and Jackie presented their initial project plans in
a walk-through to PVF’s board of directors and senior management. All were excited
about the project plan, and approval was given to move the WebStore project into
the analysis phase.

Figure 5-16
Schedule for WebStore project at Pine
Valley Furniture
(Source: Microsoft Corporation.)

Table 5-11 PVF WebStore: Feasibility Concerns
Feasibility Concern Description

Operational Online store is open 24/7/365
Returns/customer support

Technical New skill set for development, maintenance, and operation
Schedule Must be open for business by Q3
Legal Credit card fraud
Political Traditional distribution channel loses business

Table 5-10 PVF WebStore: Project benefits and Costs
Tangible Benefits Intangible Benefits

• Lower per-transaction overhead cost • First to market
• Repeat business • Foundation for complete Web-based IS

• Simplicity for customers

Tangible Costs (one-time) Intangible Costs

• Internet service setup fee • No face-to-face interaction
• Hardware • Not all customers use Internet
• Development cost
• Data entry

Tangible Costs (recurring)

• Internet service hosting fee
• Software
• Support
• Maintenance
• Decreased sales via traditional channels

 ChaPter 5 initiating and Planning SyStemS develoPment ProjectS 139

Summary
The project initiation and planning (PIP) phase is a criti-
cal activity in the life of a project. It is at this point that proj-
ects are accepted for development, rejected as infeasible,
or redirected. The objective of this process is to transform
a vague system request into a tangible system description
clearly outlining the objectives, feasibility issues, benefits,
costs, and time schedules for the project.

Project initiation includes forming the project initia-
tion team, establishing customer relationships, developing
a plan to get the project started, setting project manage-
ment procedures, and creating an overall project manage-
ment environment. A key activity in project planning is the
assessment of numerous feasibility issues associated with
the project. The types of feasibility that should be exam-
ined include economic, technical, operational, schedule,
legal and contractual, and political. These issues are influ-
enced by the project size, the type of system proposed, and
the collective experience of the development group and
potential customers of the system. High project costs and
risks are not necessarily bad; rather it is more important
that the organization understands the costs and risks asso-
ciated with a project and with the portfolio of active proj-
ects before proceeding.

After completing all analyses, a BPP can be created.
A BPP includes a high-level description of the proposed
system or system change, an outline of the various feasi-
bilities, and an overview of management issues specific to
the project. Before the development of an information sys-
tem can begin, the users, management, and development
group must review and agree on this specification. The
focus of this walk-through review is to assess the merits of
the project and to ensure that the project, if accepted for
development, conforms to organizational standards and
goals. An objective of this process is also to make sure that
all relevant parties understand and agree with the infor-
mation contained in the plan before subsequent develop-
ment activities begin.

Project initiation and planning is a challenging and
time-consuming activity that requires active involvement
from many organizational participants. The eventual suc-
cess of a development project, and the information systems
function in general, hinges on the effective use of disci-
plined, rational approaches such as the techniques outlined
in this chapter. In subsequent chapters, you will be exposed
to numerous other tools that will equip you to become an
effective designer and developer of information systems.

Key TermS

 5.1 Baseline Project Plan (BPP)
 5.2 Break-even analysis
 5.3 Business case
 5.4 Discount rate
 5.5 Economic feasibility
 5.6 Intangible benefit
 5.7 Intangible cost
 5.8 Legal and contractual feasibility

 5.9 One-time cost
 5.10 Operational feasibility
 5.11 Political feasibility
 5.12 Present value
 5.13 Project Scope Statement (PSS)
 5.14 Recurring cost
 5.15 Schedule feasibility
 5.16 Total cost of ownership (TCO)

 5.17 Tangible benefit
 5.18 Tangible cost
 5.19 Technical feasibility
 5.20 Time value of money (TVM)
 5.21 Total cost of ownership (TCO)
 5.22 Walk-through

Match each of the key terms above with the definition that best
fits it.

____ The concept that money available today is worth more
than the same amount tomorrow.

____ The process of evaluating how key stakeholders within the
organization view the proposed system.

____ A document prepared for the customer that describes
what the project will deliver and outlines generally at a
high level all work required to complete the project.

____ The justification for an information system, presented in
terms of the tangible and intangible economic benefits
and costs, and the technical and organizational feasibility
of the proposed system.

____ A process of identifying the financial benefits and costs as-
sociated with a development project.

____ The process of assessing the degree to which a proposed
system solves business problems or takes advantage of busi-
ness opportunities.

____ A cost resulting from the ongoing evolution and use of a
system.

____ The rate of return used to compute the present value of
future cash flows.

____ A benefit derived from the creation of an information system
that cannot be easily measured in dollars or with certainty.

____ The process of assessing the degree to which the potential
time frame and completion dates for all major activities
within a project meet organizational deadlines and con-
straints for affecting change.

____ A cost associated with an information system that can be
easily measured in dollars and with certainty.

140 Part II Planning

____ A peer group review of any product created during the sys-
tems development process.

____ A process of assessing the development organization’s abil-
ity to construct a proposed system.

____ A cost associated with project start-up and development or
system start-up.

____ The current value of a future cash flow.

____ A benefit derived from the creation of an information sys-
tem that can be measured in dollars and with certainty.

____ The process of assessing potential legal and contractual
ramifications due to the construction of a system.

____ A cost associated with an information system that cannot
be easily measured in terms of dollars or with certainty.

____ This plan is the major outcome and deliverable from the
project initiation and planning phase and contains the
best estimate of the project’s scope, benefits, costs, risks,
and resource requirements.

____ A type of cost–benefit analysis to identify at what point (if
ever) benefits equal costs.

____ The cost of owning and operating a system, including the
total cost of acquisition, as well as all costs associated with
its ongoing use and maintenance.

revIew QueSTIonS
 5.23 Contrast the following terms:

a. Break-even analysis; present value; net present value; re-
turn on investment

b. Economic feasibility; legal and contractual feasibility;
operational feasibility; political feasibility; schedule
feasibility

c. Intangible benefit; tangible benefit
d. Intangible cost; tangible cost

 5.24 List and describe the steps in the project initiation and
planning process.

 5.25 What is contained in a BPP? Are the content and format of
all baseline plans the same? Why or why not?

 5.26 Describe three commonly used methods for performing
economic cost–benefit analysis.

 5.27 List and discuss the different types of project feasibility
factors. Is any factor most important? Why or why not?

 5.28 What are the potential consequences of not assessing the
technical risks associated with an information systems de-
velopment project?

 5.29 In what ways could you identify that one IS project is riskier
than another?

 5.30 What are the types or categories of benefits of an IS
project?

 5.31 What intangible benefits might an organization obtain
from the development of an information system?

 5.32 Describe the concept of the time value of money. How
does the discount rate affect the value of $1 today versus
one year from today?

 5.33 Describe the structured walk-through process. What roles
need to be performed during a walk-through?

ProblemS and exercISeS
 5.34 Consider the purchase of a PC and laser printer for use

at your home and assess the risk for this project using the
project risk assessment factors in Table 5-7.

 5.35 Consider your use of a PC at either home or work and list
tangible benefits from an information system. Based on
this list, does your use of a PC seem to be beneficial? Why
or why not? Now do the same using Table 5-3, the intan-
gible benefits from an information system. Does this analy-
sis support or contradict your previous analysis? Based on
both analyses, does your use of a PC seem to be beneficial?

 5.36 Assume you are put in charge of launching a new website
for a local nonprofit organization. What costs would you
need to account for? Make a list of expected costs and
benefits for the project. You don’t need to list values, just
sources of expense. Consider both one-time and recurring
costs.

 5.37 Consider the situation you addressed in Problem and Ex-
ercise 5-35. Create numeric cost estimates for each of the
costs you listed. Calculate the net present value and return
on investment. Include a break-even analysis. Assume a
10 percent discount rate and a five-year time horizon.

 5.38 Consider the situation you addressed in Problem and
 Exercise 5-35. Create a sample Project Scope Statement
following the structure shown in Figure 5-10.

 5.39 Assuming monetary benefits of an information system at
$85,000 per year, one-time costs of $75,000, recurring costs
of $35,000 per year, a discount rate of 12 percent, and a
five-year time horizon, calculate the net present value of
these costs and benefits of an information system. Also
calculate the overall return on investment of the project
and then present a break-even analysis. At what point does
breakeven occur?

 5.40 Use the outline for the BPP provided in Figure 5-9 to pres-
ent the system specifications for the information system
you chose for Problem and Exercise 5-35.

 5.41 Change the discount rate for Problem and Exercise 5-35 to
10 percent and redo the analysis.

 5.42 Change the recurring costs in Problem and Exercise 5-35
to $40,000 and redo the analysis.

 5.43 Change the time horizon in Problem and Exercise 5-35 to
three years and redo the analysis.

 ChaPter 5 initiating and Planning SyStemS develoPment ProjectS 141

 5.44 Assume monetary benefits of an information system of
$40,000 the first year and increasing benefits of $10,000 a
year for the next five years (year 1 = $50,000, year 2 = $60,000,
year 3 = $70,000, year 4 = $80,000, year 5 = $90,000). One-
time development costs were $80,000 and recurring costs
were $45,000 over the duration of the system’s life. The dis-
count rate for the company was 11 percent. Using a six-year
time horizon, calculate the net present value of these costs
and benefits. Also calculate the overall return on investment
and then present a break-even analysis. At what point does
breakeven occur?

 5.45 Change the discount rate for Problem and Exercise 5-43 to
12 percent and redo the analysis.

 5.46 Change the recurring costs in Problem and Exercise 5-43
to $40,000 and redo the analysis.

 5.47 For the system you chose for Problem and Exercise 5-35,
complete section 1.0, A, Project Overview, of the BPP Re-
port. How important is it that this initial section of the BPP

Report is done well? What could go wrong if this section is
incomplete or incorrect?

 5.48 For the system you chose for Problem and Exercise 5-35,
complete section 2.0, A, Alternatives, of the BPP Report.
Without conducting a full-blown feasibility analysis, what is
your gut feeling as to the feasibility of this system?

 5.49 For the system you chose for Problem and Exercise 5-35,
complete section 3.0, A–F, Feasibility Analysis, of the BPP
Report. How does this feasibility analysis compare with
your gut feeling from the previous question? What might
go wrong if you rely on your gut feeling in determining
system feasibility?

 5.50 For the system you chose for Problem and Exercise 5-35,
complete section 4.0, A–C, Management Issues, of the
BPP Report. Why might people sometimes feel that these
additional steps in the project plan are a waste of time?
What would you say to convince them that these steps are
important?

FIeld exercISeS
 5.51 Describe several projects you are involved in or plan to

 undertake, whether they are related to your education or
to your professional or personal life (e.g., purchasing a
new vehicle, learning a new language, renovating a home).
For each project, sketch out a BPP like that outlined in
 Figure 5-9. Focus your efforts on item numbers 1.0 (Intro-
duction) and 2.0 (System Description).

 5.52 For each project from the previous question, assess the fea-
sibility in terms of economic, operational, technical, sched-
uling, legal and contractual, as well as political aspects.

 5.53 Network with a contact you have in some organization that
conducts projects (these might be information systems
projects, but they could be construction, product develop-
ment, research and development, or any type of project).
Interview a project manager and find out what type of BPP
is constructed. For a typical project, in what ways are base-
line plans modified during the life of a project? Why are
plans modified after the project begins? What does this tell
you about project planning?

 5.54 Through a contact you have in some organization that
uses packaged software, interview an IS manager respon-
sible for systems in an area that uses packaged application
software. What contractual limitations, if any, has the orga-
nization encountered with using the package? If possible,
review the license agreement for the software and make a
list of all the restrictions placed on a user of this software.

 5.55 Choose an organization that you are familiar with and
determine what is done to initiate information systems
projects. Who is responsible for initiating projects? Is this
process formal or informal? Does this appear to be a top-
down or bottom-up process? How could this process be
improved?

 5.56 Find an organization that does not use BPP for their IS
projects. Why doesn’t this organization use this method?
What are the advantages and disadvantages of not using
this method? What benefits could be gained from imple-
menting the use of BPP? What barriers are there to imple-
menting this method?

reFerenceS
Applegate, L. M., R. D. Austin, and D. L. Soule. 2009. Corpo-

rate Information Strategy and Management, 8th ed. New York:
McGraw-Hill.

Brynjolfsson, E., and S. Yang. 1997. The Intangible Benefits and
Costs of Investments: Evidence from Financial Markets. Proceed-
ings of the International Conference on Information Sys-
tems, pp. 147–66. Available at http://aisel.aisnet.org/cgi/
viewcontent.cgi?article=1053&context=icis1997. Accessed
February 23, 2015.

Cresswell, A. M. 2004. Return on Investment in Information Tech-
nology: A Guide for Managers Center for Technology in Govern-
ment. University at Albany, SUNY. Available at http://www.
ctg.albany.edu/publications/guides/roi/roi.pdf. Accessed
February 23, 2015.

Hubbard, D. 2007. “The IT Measurement Inversion.” CIO.com,
June 13. Available at http://www.cio.com/article/2438748/
it-organization/the-it-measurement-inversion.html.
Accessed February 23, 2015.

Keen, J. 2003. “Intangible Benefits Can Play Key Role in Busi-
ness Case.” CIO.com, Available at http://www.cio.com/
article/2442083/it-organization/intangible-benefits-can-play-
key-role-in-business-case.html. Accessed February 23, 2015.

King, J. L., and E. Schrems. 1978. “Cost–Benefit Analysis in In-
formation Systems Development and Operation.” ACM
Computing Surveys 10(1): 19–34.

Kirsch, L. J. 2000. “Software Project Management: An Integrated
Perspective for an Emerging Paradigm.” In R. W. Zmud
(ed.), Framing the Domains of IT Management: Projecting the

http://aisel.aisnet.org/cgi/viewcontent.cgi?article=1053&context=icis1997
http://www.ctg.albany.edu/publications/guides/roi/roi.pdf
http://www.cio.com/article/2438748/it-organization/the-it-measurement-inversion.html
http://www.cio.com/article/2442083/it-organization/intangible-benefits-can-playkey-role-in-business-case.html
http://aisel.aisnet.org/cgi/viewcontent.cgi?article=1053&context=icis1997
http://www.ctg.albany.edu/publications/guides/roi/roi.pdf
http://www.cio.com/article/2438748/it-organization/the-it-measurement-inversion.html
http://www.cio.com/article/2442083/it-organization/intangible-benefits-can-playkey-role-in-business-case.html
http://www.cio.com/article/2442083/it-organization/intangible-benefits-can-playkey-role-in-business-case.html

142 Part II Planning

Future from the Past, 285–304. Cincinnati, OH: Pinnaflex Ed-
ucational Resources.

Laplante, P. A. 2006. “Software Return on Investment (ROI).” In
P. A. Laplante and T. Costello (eds.), CIO Wisdom II, 163–76.
Upper Saddle River, NJ: Prentice Hall.

Lederer, A. L., and J. Prasad. 1992. “Nine Management Guide-
lines for Better Cost Estimating.” Communications of the ACM
35(2): 51–59.

Morris, R., and B. M. Sember. 2008. Project Management That
Works. AMACOM Division of American Management Asso-
ciation, New York City, NY.

Nash, K. S. 2008. “TCO Versus ROI.” CIO.com, April 9. Avail-
able at http://www.cio.com/article/2436828/metrics/
tco-versus-roi.html. Accessed February 23, 2015.

Parker, M. M., and R. J. Benson. 1988. Information Economics.
Upper Saddle River, NJ: Prentice Hall.

Pressman, R. S. 2014. Software Engineering, 8th ed. New York:
McGraw-Hill.

Sonje, R. 2008. “Improving Project Estimation Effectiveness.”
Available at http://www.projectperfect.com.au/white-
paper-improving-project-estimation-effectiveness.php.
Accessed February 23, 2015.

Tech Republic. 2005. “Project Risk Factors Checklist.” Version
2.0. Available at http://www.readbag.com/techrepublic-i-
tr-downloads-home-project-risk-factors-checklist. Accessed
February 23, 2015.

White, S., and S. Lui. 2005. “Distinguishing Costs of Coopera-
tion and Control in Alliances.” Strategic Management Journal
26(10): 913–32.

Yourdon, E. 1989. Structured Walkthroughs, 4th ed. Upper Saddle
River, NJ: Prentice Hall.

http://www.cio.com/article/2436828/metrics/tco-versus-roi.html
http://www.projectperfect.com.au/white-paper-improving-project-estimation-effectiveness.php
http://www.projectperfect.com.au/white-paper-improving-project-estimation-effectiveness.php
http://www.readbag.com/techrepublic-i-tr-downloads-home-project-risk-factors-checklist
http://www.readbag.com/techrepublic-i-tr-downloads-home-project-risk-factors-checklist
http://www.cio.com/article/2436828/metrics/tco-versus-roi.html

and understand the scope, risks, and costs associated with
making ‘No Customer Escapes’ a reality,” said Jim.

“This is going to be a lot of work, but I am sure I am
going to learn a lot,” replied Sally.

“So, let me get to work on the feasibility analyses,” said
Jim. “I will be sending requests out to all the team mem-
bers to get their ideas. I should have this e-mail ready
within an hour or so.”

“Great, I’ll look for it and respond as soon as I can,”
 answered Sally.

“Thanks, the faster we get this background work done,
the sooner we will be able to move on to what the system
will do,” replied Jim.

“Sounds good, talk to you later. Bye,” Sally said.
“Bye, Sally, and thanks for your quick feedback,”

answered Jim.

Case Questions

 5.57 Look over the scope statement (PE Figure 5-1). If
you were an employee at Petrie Electronics, would
you want to work on this project? Why or why not?

 5.58 If you were part of the management team at Petrie
Electronics, would you approve the project out-
lined in the scope statement in PE Figure 5-1? What
changes, if any, need to be made to the document?

 5.59 Identify a preliminary set of tangible and intangible
costs you think would occur for this project and the
system it describes. What intangible benefits do you
anticipate for the system?

 5.60 What do you consider to be the risks of the proj-
ect as you currently understand it? Is this a low-,
medium-, or high-risk project? Justify your answer.
 Assuming you were part of Jim’s team, would you
have any particular risks?

 5.61 If you were assigned to help Jim with this project, how
would you utilize the concept of incremental commit-
ment in the design of the Baseline Project Plan?

 5.62 If you were assigned to Jim’s team for this project,
when in the project schedule (in what phase or af-
ter which activities are completed) do you think you
could develop an economic analysis of the proposed
system? What economic feasibility factors do you
think would be relevant?

 5.63 If you were assigned to Jim’s team for this proj-
ect, what activities would you conduct in order to
prepare the details for the Baseline Project Plan?
Explain the purpose of each activity and show a
timeline or schedule for these activities.

 5.64 In Case Question 5-59, you analyze the risks associ-
ated with this project. Once deployed, what are the
potential operational risks of the proposed system?
How do you factor operational risks into a systems
development plan?

PetrIe eLeCtrOnICs

Chapter 5: Initiating and Planning Systems
Development Projects

Now that the “No Customer Escapes” project team has
been formed and a plan has been developed for distrib-
uting project information, Jim can begin working on the
project’s scope statement, workbook, and Baseline Proj-
ect Plan. He first drafted the project’s scope statement
and posted it on the project’s intranet (see PE Figure 5-1).
Once posted on the intranet, he sent a short e-mail mes-
sage to all team members requesting feedback.

 ChaPter 6 initiating and Planning SyStemS develoPment ProjectS 143

Minutes after posting the project charter, Jim’s office
phone rang.

“Jim, it’s Sally. I just looked over the scope statement
and have a few comments.”

“Great,” replied Jim, “It’s just a draft. What do you think?”
“Well, I think that we need to explain more about how

the system will work and why we think this new system
will more than pay for itself.”

“Those are good suggestions; I am sure many others will
also want to know that information. However, the scope
statement is a pretty high-level document and doesn’t get
into too much detail. Basically, its purpose is to just for-
mally announce the project, providing a very high-level
description as well as briefly listing the objectives, key as-
sumptions, and stakeholders. The other documents that
I am working on, the workbook and the Baseline Project
Plan, are intended to provide more details on specific
deliverables, costs, benefits, and so on. So, anyway, that
type of more detailed information will be coming next.”

“Oh, OK, that makes sense. I have never been on a proj-
ect like this, so this is all new to me,” said Sally.

“Don’t worry,” replied Jim, “Getting that kind of feed-
back from you and the rest of the team will be key for us
doing a thorough feasibility analysis. I am going to need
a lot of your help in identifying possible costs and ben-
efits of the system. When we develop the Baseline Proj-
ect Plan, we do a very thorough feasibility analysis—we
examine financial, technical, operational, schedule, legal
and contractual feasibility, as well as potential political is-
sues arising through the development of the system.”

“Wow, we have to do all that? Why can’t we just build the
system? I think we all know what we want,” replied Sally.

“That is another great question,” replied Jim. “I used to
think exactly the same way, but what I learned in my last
job was that there are great benefits to following a fairly
formal project management process with a new system.
By moving forward with care, we are much more likely to
have the right system, on time and on budget.”

“So,” asked Sally, “what is the next step?”
“Well, we need to do the feasibility analysis I just men-

tioned, which becomes part of the project’s Baseline Project
Plan. Once this is completed, we will have a walk-through
presentation to management to make sure they agree with

144 Part II Planning

Pe Figure 5-1
A Scope Statement for Petrie’s Customer Relationship Management System

Petrie Electronics Prepared: February 6, 2017

Scope Statement

Project Name: No Customer Escapes
Project Manager: Jim Watanabe (jwatanabe@petries.com)

Customer: Operations
Project Sponsor: Ella Whinston (ewhinston@petries.com)
Project Start/end (projected): 2/5/17 – 7/30/18

Project Overview:

This project will design and implement a customer relationship management system
in order to provide superior customer service by rewarding our most loyal customers.
Specifically, the system will track customer purchases, assign points for cumulative
purchases, and allow points to be redeemed for “rewards” at local stores. This goal of
this system is to provide an incentive to customers to choose Petrie Electronics as their
first and only choice for making electronic purchases. The system will provide Petrie
management with improved information on the purchase behavior of our most loyal
customers.

Objectives:

• Track customer purchases
• Accumulate redeemable points
• Reward customer loyalty and provide incentives to remain loyal customers
• Provide improved management information

Key Assumptions:

• System development will be outsourced
• Interface will be a web browser
• System will access existing customer sales databases

Stakeholders and responsibilities:

Stakeholder role responsibility Signatures

Ella Whinston Chief Operating Officer Project Vision, Executive
Sponsor

Ella Whinston

Bob Petroski Senior Operations
Manager

Monitoring, Resources Bob Petroski

Jim Watanabe Project Manager Plan, Monitor, Execute
Project

Jim Watanabe

Sally Fukuyama Assistant Director,
Marketing

System Functionality Sally Fukuyama

Sanjay Agarwal Lead Analyst Technical Architect Sanjay Agarwal

mailto:jwatanabe@petries.com
mailto:ewhinston@petries.com

145

Part three

Analysis

Chapter 6
Determining System Requirements

Chapter 7
Structuring System Process Requirements

Chapter 8
Structuring System Data Requirements

146

Overview

Analysis is the first systems development life cycle (SDLC)
phase where you begin to understand, in depth, the need
for system changes. Systems analysis involves a substantial
amount of effort and cost, and is therefore undertaken
only after management has decided that the systems de-
velopment project under consideration has merit and
should be pursued through this phase. The analysis team
should not take the analysis process for granted or at-
tempt to speed through it. Most observers would agree
that many of the errors in developed systems are directly
traceable to inadequate efforts in the analysis and design
phases of the life cycle. Because analysis is a large and
involved process, we divide it into two main activities to
make the overall process easier to understand:

•	 Requirements determination. This is primarily a fact-
finding activity.

•	 Requirements structuring. This activity creates a thor-
ough and clear description of current business op-
erations and new information processing services.

The purpose of analysis is to determine what informa-
tion and information processing services are needed to
support selected objectives and functions of the organi-
zation. Gathering this information is called requirements
determination, the subject of Chapter 6. The fact-finding
techniques in Chapter 6 are used to learn about the cur-
rent system, the organization that the replacement sys-
tem will support, and user requirements or expectations
for the replacement system.

In Chapter 6, we also discuss a major source of new
systems, Business Process Reengineering (BPR). In con-
trast to the incremental improvements that drive many
systems development projects, BPR results in a radical
redesign of the processes that information systems are
designed to support. We show how BPR relates to infor-
mation systems analysis in Chapter 7, where we use data
flow diagrams to support the reengineering process. In
Chapter 6, you will also learn about new requirements de-
termination techniques sometimes used as part of Agile
Methodologies. These include the Planning Game (from
eXtreme Programming) and Usage-Centered Design.

Information about current operations and require-
ments for a replacement system must be organized for
analysis and design. Organizing, or structuring, sys-
tem requirements results in diagrams and descriptions

(models) that can be analyzed to show deficiencies, inef-
ficiencies, missing elements, and illogical components of
the current business operation and information systems.
Along with user requirements, they are used to deter-
mine the strategy for the replacement system.

The results of the requirements determination can
be structured according to three essential views of the
current and replacement information systems:

•	 Process. The sequence of data movement and han-
dling operations within the system.

•	 Logic and timing. The rules by which data are trans-
formed and manipulated and an indication of what
triggers data transformation.

•	 Data. The inherent structure of data independent of
how or when they are processed.

The process view of a system can be represented by data
flow diagrams, the primary subject of Chapter 7. The
chapter also includes a section on decision tables—one
of the ways to describe the logic and timing of what goes
on inside the process boxes in data flow diagrams. Chap-
ter 7 ends with four appendices. The first three are each
dedicated to one of three techniques from the object-ori-
ented view of development. The first appendix introduc-
es you to use case modeling, an object-oriented method
used to map a system’s functionality. The second appen-
dix introduces you to activity diagrams, while the third
features sequence diagrams. These object-oriented mod-
els focus on system logic and timing. The fourth appen-
dix covers business process modeling, which is not part
of the object-oriented approach. Finally, the data view of
a system, discussed in Chapter 8, shows the rules that gov-
ern the structure and integrity of data and concentrates
on what data about business entities and relationships
among these entities must be accessed within the system.
Chapter 8 features entity relationship techniques in the
body of the chapter and class diagramming techniques
for modeling data in a special object-oriented section at
the end of the chapter. Petrie’s case installments follow
Chapters 7 and 8 to illustrate the processes, logic, and
data models that describe a new system. The cases also il-
lustrate how diagrams and models for each of these three
views of a system relate to one another to form a consist-
ent and thorough structured description of a proposed
system.

Part three

Analysis

147

Systems analysis is the part of the systems development
life cycle in which you determine how the current infor-
mation system functions and assess what users would like
to see in a new system. Analysis has two subphases: re-
quirements determination and requirements structuring.
In this chapter, you will learn about determining system
requirements. Techniques used in requirements determi-
nation have evolved over time to become more structured
and increasingly rely on computer support. We will first
study the more traditional requirements determination
methods, including interviewing, observing users in their
work environment, and collecting procedures and other
written documents. We will then discuss more current
methods for collecting system requirements. The first of
these methods is Joint Application Design (JAD). Next,
you will read about how analysts rely more and more on
information systems to help them perform analysis. As
you will see, CASE tools, discussed in Chapter 1, are use-
ful in requirements determination, and prototyping has
become a key tool for some requirements determination
efforts. Finally, you will learn how requirements analysis
continues to be an important part of systems analysis and
design, whether the approach involves business process
redesign, new Agile techniques (such as constant user

involvement or usage-centered design), or focuses on de-
veloping Internet applications.

Performing requirements
DeterminAtion
As stated earlier and shown in Figure 6-1, there are two
subphases to systems analysis: requirements determina-
tion and requirements structuring. We will address these
as separate steps, but you should consider the steps as par-
allel and iterative. For example, as you determine some
aspects of the current and desired system(s), you begin to
structure these requirements or build prototypes to show
users how a system might behave. Inconsistencies and
deficiencies discovered through structuring and proto-
typing lead you to explore further the operation of cur-
rent system(s) and the future needs of the organization.
Eventually, your ideas and discoveries converge in a thor-
ough and accurate depiction of current operations and
requirements for the new system. As you think about be-
ginning the analysis phase, you are probably wondering
what exactly is involved in requirements determination.
We discuss this process in the next section.

6.4 participate in and help plan a Joint Application
Design session,

6.5 use prototyping during requirements
determination,

6.6 describe contemporary approaches to
requirements determination, and

6.7 understand how requirements determination
techniques apply to the development of electronic
commerce applications.

Learning Objectives

After studying this chapter, you should be able to

6.1 describe options for designing and conducting
interviews and develop a plan for conducting an
interview to determine system requirements,

6.2 explain the advantages and pitfalls of observing
workers and analyzing business documents to
determine system requirements,

6.3 explain how computing can provide support for
requirements determination,

Determining system
requirements6

Chapter

Introduction

148 Part III AnAlysis

the Process of Determining requirements
Once management has granted permission to pursue development of a new system
(this was done at the end of the project identification and selection phase of the
SDLC) and a project is initiated and planned (see Chapter 5), you begin determining
what the new system should do. During requirements determination, you and other
analysts gather information on what the system should do from as many sources as
possible: from users of the current system; from observing users; and from reports,
forms, and procedures. All of the system requirements are carefully documented and
prepared for structuring, the subject of Chapters 7 and 8.

In many ways, gathering system requirements is like conducting any investiga-
tion. Have you read any of the Sherlock Holmes or similar mystery stories? Do you
enjoy solving puzzles? From these experiences, we can detect some similar character-
istics for a good systems analyst during the requirements determination subphase.
These characteristics include the following:

•	 Impertinence. You should question everything. You need to ask questions such
as: Are all transactions processed the same way? Could anyone be charged
something other than the standard price? Might we someday want to allow and
encourage employees to work for more than one department?

•	 Impartiality. Your role is to find the best solution to a business problem or
opportunity. It is not, for example, to find a way to justify the purchase of new
hardware or to insist on incorporating what users think they want into the new
system requirements. You must consider issues raised by all parties and try to
find the best organizational solution.

•	 Relax constraints. Assume that anything is possible and eliminate the infeasible.
For example, do not accept this statement: “We’ve always done it that way,
so we have to continue the practice.” Traditions are different from rules and
policies. Traditions probably started for a good reason but, as the organization
and its environment change, they may turn into habits rather than sensible
procedures.

•	 Attention to details. Every fact must fit with every other fact. One element out of
place means that even the best system will fail at some time. For example, an
imprecise definition of who a customer is may mean that you purge customer
data when a customer has no active orders, yet these past customers may be vital
contacts for future sales.

DesignImplementation

Planning

Maintenance Requirements Determination
Requirements Structuring

Analysis

Figure 6-1
Systems development life cycle with analysis phase highlighted.

 ChaPter 6 Determining system requirements 149

•	 Reframing. Analysis is, in part, a creative process. You must challenge yourself
to look at the organization in new ways. You must consider how each user views
his or her requirements. You must be careful not to jump to the following
conclusion: “I worked on a system like that once—this new system must work
the same way as the one I built before.”

Deliverables and outcomes
The primary deliverables from requirements determination are the various forms of
information gathered during the determination process: transcripts of interviews;
notes from observation and analysis of documents; sets of forms, reports, job descrip-
tions, and other documents; and computer-generated output such as system proto-
types. In short, anything that the analysis team collects as part of determining system
requirements is included in the deliverables resulting from this subphase of the sys-
tems development life cycle. Table 6-1 lists examples of some specific information
that might be gathered during requirements determination.

These deliverables contain the information you need for systems analysis within
the scope of the system you are developing. In addition, you need to understand the
following components of an organization:

•	 The business objectives that drive what and how work is done
•	 The information people need to do their jobs
•	 The data (definition, volume, size, etc.) handled within the organization to

support the jobs
•	 When, how, and by whom or what the data are moved, transformed, and stored
•	 The sequence and other dependencies among different data-handling activities
•	 The rules governing how data are handled and processed
•	 Policies and guidelines that describe the nature of the business and the market

and environment in which it operates
•	 Key events affecting data values and when these events occur

As should be obvious, such a large amount of information must be organized in order
to be useful. This is the purpose of the next subphase—requirements structuring.

From just this subphase of analysis, you have probably already realized that
the amount of information to be gathered could be huge, especially if the scope
of the system under development is broad. The time required to collect and struc-
ture a great deal of information can be extensive and, because it involves so much
human effort, quite expensive. Too much analysis is not productive, and the term
analysis paralysis has been coined to describe a systems development project that has
become bogged down in an abundance of analysis work. Because of the dangers of
excessive analysis, today’s systems analysts focus more on the system to be developed
than on the current system. The techniques you will learn about later in this chapter,
JAD and prototyping, were developed to keep the analysis effort at a minimum yet
still keep it effective. Newer techniques have also been developed to keep require-
ments determination fast and flexible, including continual user involvement, usage-
centered design, and the Planning Game from eXtreme Programming. Traditional
 fact-gathering techniques are the subject of the next section.

Table 6-1 Deliverables for Requirements Determination

1. Information collected from conversations with or observations of users: interview transcripts,
notes from observation, meeting minutes

2. Existing written information: business mission and strategy statements, sample business forms
and reports and computer displays, procedure manuals, job descriptions, training manuals,
flowcharts and documentation of existing systems, consultant reports

3. Computer-based information: results from JAD sessions, CASE repository contents and reports
of existing systems, and displays and reports from system prototypes

150 Part III AnAlysis

trADitionAl methoDs for Determining
requirements
At the core of systems analysis is the collection of information. At the outset, you
must collect information about the information systems that are currently being used
and how users would like to improve the current systems and organizational opera-
tions with new or replacement information systems. One of the best ways to get this
information is to talk to the people who are directly or indirectly involved in the
different parts of the organizations affected by the possible system changes: users,
managers, funders, and so on. Another way to find out about the current system
is to gather copies of documentation relevant to current systems and business pro-
cesses. In this chapter, you will learn about various ways to get information directly
from stakeholders: interviews, group interviews, the Nominal Group Technique, and
direct observation. You will learn about collecting documentation on the current sys-
tem and organizational operation in the form of written procedures, forms, reports,
and other hard copy. These traditional methods of collecting system requirements
are listed in Table 6-2.

interviewing and listening
Interviewing is one of the primary ways analysts gather information about an infor-
mation systems project. Early in a project, an analyst may spend a large amount of
time interviewing people about their work, the information they use to do it, and the
types of information processing that might supplement their work. Other stakehold-
ers are interviewed to understand organizational direction, policies, expectations
managers have on the units they supervise, and other nonroutine aspects of organi-
zational operations. During interviewing you will gather facts, opinions, and specula-
tion and observe body language, emotions, and other signs of what people want and
how they assess current systems.

There are many ways to effectively interview someone, and no one method is
necessarily better than another. Some guidelines you should keep in mind when you
interview, summarized in Table 6-3, are discussed next.

First, you should prepare thoroughly before the interview. Set up an appoint-
ment at a time and for a duration convenient for the interviewee. The general nature
of the interview should be explained to the interviewee in advance. You may ask the
interviewee to think about specific questions or issues or to review certain documen-
tation to prepare for the interview. You should spend some time thinking about what
you need to find out and write down your questions. Do not assume that you can
anticipate all possible questions. You want the interview to be natural, and, to some
degree, you want to spontaneously direct the interview as you discover what expertise
the interviewee brings to the session.

You should prepare an interview guide or checklist so that you know in which
sequence you intend to ask your questions and how much time you want to spend
in each area of the interview. The checklist might include some probing questions

Table 6-2 Traditional Methods of Collecting System Requirements

•	 Individually interview people informed about the operation and issues of the current system
and future systems needs

•	 Interview groups of people with diverse needs to find synergies and contrasts among system
requirements

•	Observe workers at selected times to see how data are handled and what information people
need to do their jobs

•	Study business documents to discover reported issues, policies, rules, and directions as well
as concrete examples of the use of data and information in the organization

Table 6-3 Guidelines for effective
Interviewing

Plan the Interview
•	 Prepare interviewee: appoint-

ment, priming questions
•	 Prepare checklist, agenda, and

questions

Listen carefully and take notes
(record if permitted)

Review notes within 48 hours of
interview

Be neutral
Seek diverse views

 ChaPter 6 Determining system requirements 151

to ask as follow-up if you receive certain anticipated responses. You can, to some de-
gree, integrate your interview guide with the notes you take during the interview, as
depicted in a sample guide in Figure 6-2. This same guide can serve as an outline for
a summary of what you discover during an interview.

The first page of the sample interview guide contains a general outline of the
interview. Besides basic information on who is being interviewed and when, you list
major objectives for the interview. These objectives typically cover the most impor-
tant data you need to collect, a list of issues on which you need to seek agreement
(e.g., content for certain system reports), and which areas you need to explore, not
necessarily with specific questions. You also include reminder notes to yourself on
key information about the interviewee (e.g., job history, known positions taken on is-
sues, and role with current system). This information helps you to be personal, shows
that you consider the interviewee to be important, and may assist you in interpreting
some answers. Also included is an agenda for the interview with approximate time
limits for different sections of the interview. You may not follow the time limits pre-
cisely, but the schedule helps you cover all areas during the time the interviewee is
available. Space is also allotted for general observations that do not fit under specific
questions and for notes taken during the interview about topics skipped or issues
raised that could not be resolved.

On subsequent pages you list specific questions; the sample form in Figure 6-2
includes space for taking notes on these questions. Because unanticipated informa-
tion arises, you will not strictly follow the guide in sequence. You can, however, check
off the questions you have asked and write reminders to yourself to return to or skip
certain questions as the dynamics of the interview unfold.

Choosing Interview Questions You need to decide what mix and sequence of open-
ended and closed-ended questions you will use. Open-ended questions are usually
used to probe for information for which you cannot anticipate all possible responses
or for which you do not know the precise question to ask. The person being inter-
viewed is encouraged to talk about whatever interests him or her within the general
bounds of the question. An example is, “What would you say is the best thing about
the information system you currently use to do your job?” or “List the three most
frequently used menu options.” You must react quickly to answers and determine
whether or not any follow-up questions are needed for clarification or elaboration.
Sometimes body language will suggest that a user has given an incomplete answer or
is reluctant to divulge some information; a follow-up question might yield additional
insight. One advantage of open-ended questions is that previously unknown informa-
tion can surface. You can then continue exploring along unexpected lines of inquiry
to reveal even more new information. Open-ended questions also often put the inter-
viewees at ease because they are able to respond in their own words using their own
structure; open-ended questions give interviewees more of a sense of involvement
and control in the interview. A major disadvantage of open-ended questions is the
length of time it can take for the questions to be answered. In addition, open-ended
questions can be difficult to summarize.

Closed-ended questions provide a range of answers from which the interviewee
may choose. Here is an example:

Which of the following would you say is the one best thing about the information system
you currently use to do your job (pick only one)?

a. Having easy access to all of the data you need
b. The system’s response time
c. The ability to access the system from remote locations

Closed-ended questions work well when the major answers to questions are well
known. Another plus is that interviews based on closed-ended questions do not nec-
essarily require a large time commitment—more topics can be covered. You can see
body language and hear voice tone, which can aid in interpreting the interviewee’s

Open-ended questions
Questions in interviews that have no
prespecified answers.

Closed-ended questions
Questions in interviews that ask those
responding to choose from among a set of
specified responses.

152 Part III AnAlysis

Interview Outline

Interviewee: Interviewer:
Name of person being interviewed Name of person leading interview

Location/Medium: Appointment Date:
O�ce, conference room, Start Time:
or phone number End Time:

Objectives: Reminders:
What data to collect Background/experience of interviewee
On what to gain agreement Known opinions of interviewee
What areas to explore

Agenda: Approximate Time:
Introduction 1 minute
Background on Project 2 minutes
Overview of Interview

Topics to Be Covered 1 minute
Permission to Record

Topic 1 Questions 5 minutes
Topic 2 Questions

… …
7 minutes

Summary of Major Points 2 minutes
Questions from Interviewee 5 minutes
Closing 1 minute

General Observations:
Interviewee seemed busy probably need to call in a few days for follow-up questions because he gave
only short answers. PC was turned o�—probably not a regular PC user.

Unresolved Issues, Topics Not Covered:
He needs to look up sales �gures from 1999. He raised the issue of how to handle returned goods,
but we did not have time to discuss.

Interviewee: Date:

Questions: Notes:

When to ask question, if conditional Answer
Question: 1 Yes, I ask for a report on my

Have you used the current sales product line weekly.
tracking system? If so, how often ?

Observations
Seemed anxious—may be

overestimating usage frequency.

If yes, go to Question 2

Question: 2 Answer
What do you like least about the Sales are shown in units, not

system? dollars.

Observations
System can show sales in dollars,

but user does not know this.

Figure 6-2
Typical interview guide

 ChaPter 6 Determining system requirements 153

responses. Closed-ended questions can also be an easy way to begin an interview
and to determine which line of open-ended questions to pursue. You can include
an “other” option to encourage the interviewee to add unanticipated responses. A
major disadvantage of closed-ended questions is that useful information that does
not quite fit into the defined answers may be overlooked as the respondent tries to
make a choice instead of providing his or her best answer.

Closed-ended questions, like objective questions on an examination, can follow
several forms, including the following choices:

•	 True or false.
•	 Multiple choice (with only one response or selecting all relevant choices).
•	 Rating a response or idea on a scale, say from bad to good or strongly agree to

strongly disagree. Each point on the scale should have a clear and consistent
meaning to each person, and there is usually a neutral point in the middle of
the scale.

•	 Ranking items in order of importance.

Interview Guidelines First, with either open- or closed-ended questions, do not
phrase a question in a way that implies a right or wrong answer. The respondent must
feel that he or she can state his or her true opinion and perspective and that his or
her idea will be considered equally with those of others. Questions such as “Should
the system continue to provide the ability to override the default value, even though
most users now do not like the feature?” should be avoided because such wording
predefines a socially acceptable answer.

The second guideline to remember about interviews is to listen very carefully to
what is being said. Take careful notes or, if possible, record the interview (be sure to
ask permission first!). The answers may contain extremely important information for
the project. Also, this may be the only chance you have to get information from this
particular person. If you run out of time and still need to get information from the
person you are talking to, ask to schedule a follow-up interview.

Third, once the interview is over, go back to your office and type up your notes
within 48 hours. If you recorded the interview, use the recording to verify the material
in your notes. After 48 hours, your memory of the interview will fade quickly. As you
type and organize your notes, write down any additional questions that might arise
from lapses in your notes or from ambiguous information. Separate facts from your
opinions and interpretations. Make a list of unclear points that need clarification. Call
the person you interviewed and get answers to these new questions. Use the phone
call as an opportunity to verify the accuracy of your notes. You may also want to send a
written copy of your notes to the person you interviewed so the person can check your
notes for accuracy. Finally, make sure you thank the person for his or her time. You may
need to talk to your respondent again. If the interviewee will be a user of your system or
is involved in another way in the system’s success, you want to leave a good impression.

Fourth, be careful during the interview not to set expectations about the new
or replacement system unless you are sure these features will be part of the delivered
system. Let the interviewee know that there are many steps to the project and the
perspectives of many people need to be considered, along with what is technically
possible. Let respondents know that their ideas will be carefully considered, but that
due to the iterative nature of the systems development process, it is premature to say
now exactly what the ultimate system will or will not do.

Fifth, seek a variety of perspectives from the interviews. Find out what potential
users of the system, users of other systems that might be affected by changes, manag-
ers and superiors, information systems staff who have experience with the current
system, and others think the current problems and opportunities are and what new
information services might better serve the organization. You want to understand
all possible perspectives so that in a later approval step you will have information on
which to base a recommendation or design decision that all stakeholders can accept.

154 Part III AnAlysis

interviewing groups
One drawback to using interviews to collect systems requirements is the need for the
analyst to reconcile apparent contradictions in the information collected. A series
of interviews may turn up inconsistent information about the current system or its
replacement. You must work through all of these inconsistencies to figure out what
might be the most accurate representation of current and future systems. Such a
process requires several follow-up phone calls and additional interviews. Catching
important people in their offices is often difficult and frustrating, and scheduling
new interviews may become very time consuming. In addition, new interviews may
reveal new questions that in turn require additional interviews with those interviewed
earlier. Clearly, gathering information about an information system through a series
of individual interviews and follow-up calls is not an efficient process.

Another option available to you is the group interview. In a group interview,
several key people are interviewed at once. To make sure all of the important infor-
mation is collected, you may conduct the interview with one or more analysts. In
the case of multiple interviewers, one analyst may ask questions while another takes
notes, or different analysts might concentrate on different kinds of information. For
example, one analyst may listen for data requirements while another notes the timing
and triggering of key events. The number of interviewees involved in the process may
range from two to however many you believe can be comfortably accommodated.

A group interview has a few advantages. One, it is a much more effective use of
your time than a series of interviews with individuals (although the time commitment
of the interviewees may be more of a concern). Two, interviewing several people
together allows them to hear the opinions of other key people and gives them the
opportunity to agree or disagree with their peers. Synergies also often occur. For
example, the comments of one person might cause another person to say, “That
reminds me of” or “I didn’t know that was a problem.” You can benefit from such
a discussion as it helps you identify issues on which there is general agreement and
areas where views diverge widely.

The primary disadvantage of a group interview is the difficulty in scheduling
it. The more people who are involved, the more difficult it will be finding a conve-
nient time and place for everyone. Modern videoconferencing technology can mini-
mize the geographical dispersion factors that make scheduling meetings so difficult.
Group interviews are at the core of the JAD process, which we discuss in a later sec-
tion in this chapter. A specific technique for working with groups, Nominal Group
Technique, is discussed next.

Nominal Group Technique Many different techniques have been developed over
the years to improve the process of working with groups. One of the more popular
techniques for generating ideas among group members is called Nominal Group
Technique (NGT). NGT is exactly what the name indicates—the individuals working
together to solve a problem are a group in name only, or nominally. Group members
may be gathered in the same room for NGT, but they all work alone for a period of
time. Typically, group members make a written list of their ideas. At the end of the
idea-generation time, group members pool their individual ideas under the guid-
ance of a trained facilitator. Pooling usually involves having the facilitator ask each
person in turn for an idea that has not been presented before. As the person reads
the idea aloud, someone else writes down the idea on a blackboard or flip chart.
After all of the ideas have been introduced, the facilitator will then ask for the group
to openly discuss each idea, primarily for clarification.

Once all of the ideas are understood by all of the participants, the facilitator
will try to reduce the number of ideas the group will carry forward for additional
consideration. There are many ways to reduce the number of ideas. The facilitator
may ask participants to choose only a subset of ideas that they believe are important.
Then the facilitator will go around the room, asking each person to read aloud an

Nominal group Technique
(NgT)
A facilitated process that supports idea
generation by groups. At the beginning of
the process, group members work alone to
generate ideas. The ideas are then pooled
under the guidance of a trained facilitator.

 ChaPter 6 Determining system requirements 155

idea that is important to him or her that has not yet been identified by someone else.
Or the facilitator may work with the group to identify and either eliminate or com-
bine ideas that are very similar to others. At some point, the facilitator and the group
end up with a tractable set of ideas, which can be further prioritized.

In a requirements determination context, the ideas being sought in an NGT
exercise would typically apply to problems with the existing system or ideas for new
features in the system being developed. The end result would be a list of either prob-
lems or features that group members themselves had generated and prioritized.
There should be a high level of ownership of such a list, at least for the group that
took part in the NGT exercise.

There is some evidence to support the use of NGT to help focus and refine the
work of a group in that the number and quality of ideas that result from an NGT may
be higher than what would normally be obtained from an unfacilitated group meet-
ing. An NGT exercise could be used to complement the work done in a typical group
interview or as part of a Joint Application Design effort, described in more detail
later in this chapter.

Directly observing users
All the methods of collecting information that we have been discussing up until now
involve getting people to recall and convey information they have about an organi-
zational area and the information systems that support these processes. People, how-
ever, are not always very reliable informants, even when they try to be reliable and
tell what they think is the truth. As odd as it may sound, people often do not have a
completely accurate appreciation of what they do or how they do it. This is especially
true concerning infrequent events, issues from the past, or issues for which people
have considerable passion. Because people cannot always be trusted to reliably inter-
pret and report their own actions, you can supplement and corroborate what people
tell you by watching what they do or by obtaining relatively objective measures of
how people behave in work situations. (See the box “Lost Soft Drink Sales” for an
example of the importance of systems analysts learning firsthand about the business
for which they are designing systems.)

For example, one possible view of how a hypothetical manager does her job
is that a manager carefully plans her activities, works for long periods of time and
consistently on solving problems, and controls the pace of her work. A manager
might tell you that is how she spends her day. When Mintzberg (1973) observed how
managers work, however, he found that a manager’s day is actually punctuated by
many, many interruptions. Managers work in a fragmented manner, focusing on a
problem or on a communication for only a short time before they are interrupted
by phone calls or visits from their subordinates and other managers. An information
system designed to fit the work environment described by our hypothetical manager
would not effectively support the actual work environment in which that manager
finds herself.

As another example, consider the difference between what another employee
might tell you about how much he uses e-mail and how much e-mail use you might
discover through more objective means. An employee might tell you he is swamped
with e-mail messages and that he spends a significant proportion of his time respond-
ing to e-mail. However, if you were able to check electronic mail records, you might
find that this employee receives only 3 e-mail messages per day on average, and that
the most messages he has ever received during one eight-hour period is 10. In this
case, you were able to obtain an accurate behavioral measure of how much e-mail
this employee copes with without having to watch him read his e-mail.

The intent behind obtaining system records and direct observation is the same,
however, and that is to obtain more firsthand and objective measures of employee
interaction with information systems. In some cases, behavioral measures will be
a more accurate reflection of reality than what employees believe. In other cases,

156 Part III AnAlysis

the behavioral information will substantiate what employees have told you directly.
Although observation and obtaining objective measures are desirable ways to collect
pertinent information, such methods are not always possible in real organizational
settings. Thus, these methods are not totally unbiased, just as no other one data-
gathering method is unbiased.

For example, observation can cause people to change their normal operating
behavior. Employees who know they are being observed may be nervous and make
more mistakes than normal, may be careful to follow exact procedures they do not
typically follow, and may work faster or slower than normal. Moreover, because ob-
servation typically cannot be continuous, you receive only a snapshot image of the
person or task you observe, which may not include important events or activities.
Because observation is very time consuming, you will not only observe for a limited
time, but also a limited number of people and a limited number of sites. Again, obser-
vation yields only a small segment of data from a possibly vast variety of data sources.
Exactly which people or sites to observe is a difficult selection problem. You want
to pick both typical and atypical people and sites, and observe during normal and
abnormal conditions and times to receive the richest possible data from observation.

Analyzing Procedures and other Documents
As noted earlier, asking questions of the people who use a system every day or who
have an interest in a system is an effective way to gather information about current
and future systems. Observing current system users is a more direct way of seeing how
an existing system operates, but even this method provides limited exposure to all as-
pects of current operations. These methods of determining system requirements can
be enhanced by examining system and organizational documentation to discover
more details about current systems and the organization these systems support.

Although we discuss here several important types of documents that are useful in
understanding possible future system requirements, our discussion does not exhaust
all possibilities. You should attempt to find all written documents about the organiza-
tional areas relevant to the systems under redesign. Besides the few specific documents

A systems analyst was quite surprised to read that sales of all
soft-drink products were lower, instead of higher, after a new
delivery truck routing system was installed. The software was
designed to reduce stock-outs at customer sites by allowing
drivers to visit each customer more often using more efficient
delivery routes.

Confused by the results, management asked the analyst to
delay a scheduled vacation, but he insisted that he could look
afresh at the system only after a few overdue days of rest and
relaxation.

Instead of taking a vacation, however, the analyst called
a delivery dispatcher he interviewed during the design of the
system and asked to be given a route for a few days. The
analyst drove a route (for a regular driver who was actually on
vacation), following the schedule developed from the new sys-
tem. What the analyst discovered was that the route was very
efficient, as expected; so at first the analyst could not see any
reason for lost sales.

During the third and last day of his “vacation,” the analyst
stayed overtime at one store to ask the manager if she had

any ideas why sales might have dropped off in recent weeks.
The manager had no explanation but did make a seemingly
unrelated observation that the regular route driver appeared
to have less time to spend in the store. He did not seem to take
as much interest in where the products were displayed and did
not ask for promotional signs to be displayed, as he had often
done in the past.

From this conversation, the analyst concluded that the new
delivery truck routing system was, in one sense, too good.
It placed the driver on such a tight schedule that he had no
time left for the “schmoozing” required to get special treat-
ment, which gave the company’s products an edge over the
competition.

Without firsthand observation of the system in action
gained by participating as a system user, the analyst might
never have discovered the true problem with the system
design. Once time was allotted for not only stocking new
products but also for necessary marketing work, product sales
returned to and exceeded levels achieved before the new sys-
tem had been introduced.

lost Soft Drink Sales

 ChaPter 6 Determining system requirements 157

we discuss, organizational mission statements, business plans, organization charts,
business policy manuals, job descriptions, internal and external correspondence, and
reports from prior organizational studies can all provide valuable insight.

What can the analysis of documents tell you about the requirements for a new
system? In documents you can find information about the following:

•	 Problems with existing systems (e.g., missing information or redundant steps)
•	 Opportunities to meet new needs if only certain information or information

processing were available (e.g., analysis of sales based on customer type)
•	 Organizational direction that can influence information system requirements

(e.g., trying to link customers and suppliers more closely to the organization)
•	 Titles and names of key individuals who have an interest in relevant existing

systems (e.g., the name of a sales manager who led a study of the buying
behavior of key customers)

•	 Values of the organization or individuals who can help determine priorities for
different capabilities desired by different users (e.g., maintaining market share
even if it means lower short-term profits)

•	 Special information processing circumstances that occur irregularly that may
not be identified by any other requirements determination technique (e.g.,
special handling needed for a few large-volume customers that requires use of
customized customer ordering procedures)

•	 The reason why current systems are designed as they are, which can suggest
features left out of current software, which may now be feasible and more
desirable (e.g., data about a customer’s purchase of competitors’ products were
not available when the current system was designed; these data are now available
from several sources)

•	 Data, rules for processing data, and principles by which the organization
operates that must be enforced by the information system (e.g., each customer
is assigned exactly one sales department staff member as a primary contact if the
customer has any questions)

One type of useful document is a written work procedure for an individual or
a work group. The procedure describes how a particular job or task is performed,
including data and information that are used and created in the process of perform-
ing the job. For example, the procedure shown in Figure 6-3 includes the data (list
of features and advantages, drawings, inventor name, and witness names) that are
required to prepare an invention disclosure. It also indicates that besides the inven-
tor, the vice president for research, the department head, and the dean must review
the material, and that a witness is required for any filing of an invention disclosure.
These insights clearly affect what data must be kept, to whom information must be
sent, and the rules that govern valid forms.

Procedures are not trouble-free sources of information, however. Sometimes
your analysis of several written procedures will reveal a duplication of effort in two
or more jobs. You should call such duplication to the attention of management as an
issue to be resolved before system design can proceed. That is, it may be necessary to
redesign the organization before the redesign of an information system can achieve
its full benefits. Another problem you may encounter with a procedure occurs when
the procedure is missing. Again, it is not your job to create a document for a missing
procedure—that is up to management. A third and common problem with a written
procedure happens when the procedure is out of date. You may realize the procedure
is out of date when you interview the person responsible for performing the task de-
scribed in the procedure. Once again, the decision to rewrite the procedure so that it
matches reality is made by management, but you may make suggestions based upon
your understanding of the organization. A fourth problem often encountered with
written procedures is that the formal procedures may contradict information you col-
lected from interviews and observation about how the organization operates and what
information is required. As in the other cases, resolution rests with management.

158 Part III AnAlysis

All of these problems illustrate the difference between formal systems and
informal systems. Formal systems are recognized in the official documentation of
the organization; informal systems are the way in which the organization actually
works. Informal systems develop because of inadequacies of formal procedures, in-
dividual work habits and preferences, resistance to control, and other factors. It is
important to understand both formal and informal systems because each provides
insight into information requirements and what will be required to convert from
present to future information services.

A second type of document useful to systems analysts is a business form (see
Figure 6-4). Forms are used for all types of business functions, from recording an order
acknowledging the payment of a bill to indicating what goods have been shipped.
Forms are important for understanding a system because they explicitly indicate what

Formal system
The official way a system works as
described in organizational documentation.

informal system
The way a system actually works.

GUIDE FOR PREPARATION OF INVENTION DISCLOSURE
(See FACULTY and STAFF MANUALS for Detailed

Patent Policy and Routing Procedures.)

(1) DISCLOSE ONLY ONE INVENTION PER FORM.

(2) PREPARE COMPLETE DISCLOSURE.

The disclosure of your invention is adequate for patent purposes ONLY if it enables a
person skilled in the art to understand the invention.

(3) CONSIDER THE FOLLOWING IN PREPARING A COMPLETE DISCLOSURE:

(a) All essential elements of the invention, their relationship to one another, and their
mode of operation.

(b) Equivalents that can be substituted for any elements.

(c) List of features believed to be new.

(d) Advantages this invention has over the prior art.

(e) Whether the invention has been built and/or tested.

(4) PROVIDE APPROPRIATE ADDITIONAL MATERIAL.

Drawings and descriptive material should be provided as needed to clarify the dis-
closure. Each page of this material must be signed and dated by each inventor and
properly witnessed. A copy of any current and/or planned publication relating to the
invention should be included.

(5) INDICATE PRIOR KNOWLEDGE AND INFORMATION.

Pertinent publications, patents or previous devices, and related research or engineer-
ing activities should be identified.

(6) HAVE DISCLOSURE WITNESSED.

Persons other than coinventors should serve as witnesses and should sign each
sheet of the disclosure only after reading and understanding the disclosure.

(7) FORWARD ORIGINAL PLUS ONE COPY (two copies if supported by grant/contract)
TO VICE PRESIDENT FOR RESEARCH VIA DEPARTMENT HEAD AND DEAN.

Figure 6-3
Example of a procedure

 ChaPter 6 Determining system requirements 159

data flow in or out of a system and which are necessary for the system to function.
In the sample invoice form in Figure 6-4, we see locations for data such as the name
and bill-to address of the customer, the invoice number, data (quantity, description,
amount) about each line item on the invoice, and calculated data such as the total.

A form gives us crucial information about the nature of the organization. For
example, the company can ship and bill to different addresses; customers can have
discounts applied; and the freight expense is charged to the customer. A printed form
may correspond to a computer display that the system will generate for someone to
enter and maintain data or to display data to online users. Forms are most useful to
you when they contain actual organizational data because this allows you to determine
the characteristics of the data that are actually used by the application. The ways in
which people use forms change over time, and data that were needed when a form was
designed may no longer be required. You can use the systems analysis techniques pre-
sented in Chapters 7 and 8 to help you determine which data are no longer required.

A third type of useful document is a report generated by current systems. As
the primary output for some types of systems, a report enables you to work backward
from the information on the report to the data that must have been necessary to gen-
erate them. Figure 6-5 presents an example of a typical financial report, a statement

Your Company Name

INVOICE

SUBTOTAL

TAX RATE

SALES TAX

THANK YOU FOR YOUR BUSINESS!
OTHER

TOTAL

Your Company Slogan

8.60%

Street Address
City, ST ZIP Code
Phone:
Fax:

–

DESCRIPTION T

T

AMOUNT

March 13, 2017DATE:

100INVOICE #

Project or Service DescriptionFOR:

Name
Company Name
Street Address
City, ST ZIP Code
Phone:

BILL TO:

$

$

$

Make all checks payable to Your Company Name. If you have any
questions concerning this invoice, contact Name, Phone Number, Email

–

–

Figure 6-4
An invoice form from Microsoft Excel
(Source: Microsoft Corporation.)

160 Part III AnAlysis

Mellankamp Industries

Statement of Cash Flows

October 1 through December 31, 2017

OPERATING ACTIVITIES

Net Income

Adjustments to reconcile Net Income to net
cash provided by operations:

Accounts Receivable

Employee Loans

Inventory Asset

Retainage

Accounts Payable

Business Credit Card

BigOil Card

Sales Tax Payable

Net cash provided by Operating Activities

INVESTING ACTIVITIES

Equipment

Prepaid Insurance

Net cash provided by Investing Activities

FINANCING ACTIVITIES

Bank Loan

Emergency Loan

Note Payable

Equipment Loan

Opening Balance Equity

Owner’s Equity: Owner’s Draw

Retained Earnings

Net cash provided by Financing Activities

Net cash increase for period

Cash at beginning of period

Cash at end of period

Oct 1–Dec 31, 2017

$38,239.15

–$46,571.69

–62.00

–18,827.16

–2,461.80

29,189.66

70.00

–18.86

687.65

$244.95

–$44,500.00

2,322.66

–$42,177.34

–$868.42

3,911.32

–17,059.17

43,013.06

–11,697.50

–6,000.00

 8,863.39

$20,162.68

–$21,769.71

–$21,818.48

–$43,588.19

Figure 6-5
An example of a report: a statement of
cash flows

 ChaPter 6 Determining system requirements 161

of cash flows. You would analyze such reports to determine which data need to be
captured over what time period and what manipulation of these raw data would be
necessary to produce each field on the report.

If the current system is computer-based, a fourth set of useful documents are
those that describe the current information systems—how they were designed and
how they work. A lot of different types of documents fit this description, everything
from flowcharts to data dictionaries and CASE tool reports to user manuals. An ana-
lyst who has access to such documents is lucky; many information systems developed
in-house lack complete documentation (unless a CASE tool has been used).

Analysis of organizational documents and observation, along with interviewing,
are the methods most often used for gathering system requirements. Table 6-4 summa-
rizes the comparative features of observation and analysis of organizational documents.

ContemPorAry methoDs for Determining
system requirements
Even though we called interviews, observation, and document analysis traditional
methods for determining a system’s requirements, all of these methods are still very
much used by analysts to collect important information. Today, however, there are
additional techniques to collect information about the current system, the organiza-
tional area requesting the new system, and what the new system should be like. In this
section, you will learn about several contemporary information-gathering techniques
for analysis (listed in Table 6-5): JAD, CASE tools to support JAD, and prototyping.
As we said earlier, these techniques can support effective information collection and
structuring while reducing the amount of time required for analysis.

Table 6-4 Comparison of Observation and Document analysis
Characteristic Observation Document Analysis
Information Richness High (many channels) Low (passive) and old
Time Required Can be extensive Low to moderate
Expense Can be high Low to moderate
Chance for Follow-Up

and Probing
Good: probing and clarification

questions can be asked during
or after observation

Limited: probing possible
only if original author is
available

Confidentiality Observee is known to interviewer;
observee may change behavior
when observed

Depends on nature of
document; does not change
simply by being read

Involvement of Subject Interviewees may or may not
be involved and committed
depending on whether they know
if they are being observed

None, no clear commitment

Potential Audience Limited numbers and limited time
(snapshot) of each

Potentially biased by which
documents were kept or
because document was not
created for this purpose

Table 6-5 Contemporary Methods for Collecting System Requirements

•	Bringing session users, sponsors, analysts, and others together in a JAD session to discuss and
review system requirements

•	Using CASE tools during a JAD to analyze current systems to discover requirements that will
meet changing business conditions

•	 Iteratively developing system prototypes that refine the understanding of system requirements in
concrete terms by showing working versions of system features

162 Part III AnAlysis

Joint Application Design
Joint Application Design (JAD) started in the late 1970s at IBM, and since then the
practice of JAD has spread throughout many companies and industries. For exam-
ple, it is quite popular in the insurance industry in Connecticut, where a JAD users’
group has been formed. In fact, several generic approaches to JAD have been docu-
mented and popularized (see Wood and Silver, 1995, for an example). The main
idea behind JAD is to bring together the key users, managers, and systems analysts
involved in the analysis of a current system. In that respect, JAD is similar to a group
interview; a JAD, however, follows a particular structure of roles and agenda that is
quite different from a group interview during which analysts control the sequence of
questions answered by users. The primary purpose of using JAD in the analysis phase
is to collect systems requirements simultaneously from the key people involved with
the system. The result is an intense and structured, but highly effective, process. As
with a group interview, having all the key people together in one place at one time al-
lows analysts to see where there are areas of agreement and where there are conflicts.
Meeting with all of these important people for over a week of intense sessions allows
you the opportunity to resolve conflicts, or at least to understand why a conflict may
not be simple to resolve.

JAD sessions are usually conducted at a location other than the place where
the people involved normally work. The idea behind such a practice is to keep par-
ticipants away from as many distractions as possible so that they can concentrate on
systems analysis. A JAD may last anywhere from four hours to an entire week and
may consist of several sessions. A JAD employs thousands of dollars of corporate re-
sources, the most expensive of which is the time of the people involved. Other ex-
penses include the costs associated with flying people to a remote site and putting
them up in hotels and feeding them for several days.

The typical participants in a JAD are listed below:

•	 JAD session leader. The JAD session leader organizes and runs the JAD. This
person has been trained in group management and facilitation as well as in
systems analysis. The JAD leader sets the agenda and sees that it is met; he or
she remains neutral on issues and does not contribute ideas or opinions, but
rather concentrates on keeping the group on the agenda, resolving conflicts
and disagreements, and soliciting all ideas.

•	 Users. The key users of the system under consideration are vital participants in a
JAD. They are the only ones who have a clear understanding of what it means to
use the system on a daily basis.

•	 Managers. Managers of the work groups who use the system in question
provide insight into new organizational directions, motivations for and
organizational impacts of systems, and support for requirements determined
during the JAD.

•	 Sponsor. As a major undertaking due to its expense, a JAD must be sponsored
by someone at a relatively high level in the company. If the sponsor attends any
sessions, it is usually only at the very beginning or the end.

•	 Systems analysts. Members of the systems analysis team attend the JAD, although
their actual participation may be limited. Analysts are there to learn from users
and managers, not to run or dominate the process.

•	 Scribe. The scribe takes notes during the JAD sessions. This is usually done on a
laptop. Notes may be taken using a word processor, or notes and diagrams may
be entered directly into a CASE tool.

•	 IS staff. Besides systems analysts, other information systems (IS) staff, such
as programmers, database analysts, IS planners, and data center personnel,
may attend to learn from the discussion and possibly contribute their ideas
on the technical feasibility of proposed ideas or the technical limitations of
current systems.

Joint Application Design
(JAD)
A structured process in which users,
managers, and analysts work together
for several days in a series of intensive
meetings to specify or review system
requirements.

JAD session leader
The trained individual who plans and leads
Joint Application Design sessions.

Scribe
The person who makes detailed notes
of the happenings at a Joint Application
Design session.

 ChaPter 6 Determining system requirements 163

JAD sessions are usually held in special-purpose rooms where participants sit around
horseshoe-shaped tables, as shown in Figure 6-6. These rooms are typically equipped
with whiteboards. Other audiovisual tools may be used, such as magnetic symbols that
can be easily rearranged on a whiteboard, flip charts, and computer-generated displays.
Flip-chart paper is typically used for keeping track of issues that cannot be resolved dur-
ing the JAD or for those issues requiring additional information that can be gathered
during breaks in the proceedings. Computers may be used to create and display form or
report designs, diagram existing or replacement systems, or create prototypes.

When a JAD is completed, the end result is a set of documents that detail
the workings of the current system related to the study of a replacement system.
Depending on the exact purpose of the JAD, analysts may also walk away from the
JAD with some detailed information on what is desired of the replacement system.

Taking Part in a JAD Imagine that you are a systems analyst taking part in your first
JAD. What might participating in a JAD be like? Typically, JADs are held off-site at
comfortable conference facilities. On the first morning of the JAD, you and your fel-
low analysts walk into a room that looks much like the one depicted in Figure 6-6. The
JAD facilitator is already there; she is finishing writing the day’s agenda on a flip chart.
The scribe is seated in a corner with his laptop, preparing to take notes on the day’s
activities. Users and managers begin to enter in groups and seat themselves around
the U-shaped table. You and the other analysts review your notes that describe what
you have learned so far about the information system you are all here to discuss. The
session leader opens the meeting with a welcome and a brief rundown of the agenda.
The first day will be devoted to a general overview of the current system and major
problems associated with it. The next two days will be devoted to an analysis of current
system screens. The last two days will be devoted to analysis of reports.

Flip Chart

Laptop

Projector

Agenda
1.
2.
3.
4.
5.
6.
7.
8.
9.

Overview
...
...
...
...
...
...
...

Name Tents

Figure 6-6
Illustration of the typical room layout for
a JAD
(Source: Based on Wood and Silver,
1995.)

164 Part III AnAlysis

The session leader introduces the corporate sponsor, who talks about the or-
ganizational unit and current system related to the systems analysis study and the
importance of upgrading the current system to meet changing business conditions.
He leaves, and the JAD session leader takes over. She yields the floor to the senior
analyst, who begins a presentation on key problems with the system that have already
been identified. After the presentation, the session leader opens the discussion to
the users and managers in the room.

After a few minutes of talk, a heated discussion begins between two users from
different corporate locations. One user, who represents the office that served as the
model for the original systems design, argues that the system’s perceived lack of flex-
ibility is really an asset, not a problem. The other user, who represents an office that
was part of another company before a merger, argues that the current system is so
inflexible as to be virtually unusable. The session leader intervenes and tries to help
the users isolate particular aspects of the system that may contribute to the system’s
perceived lack of flexibility.

Questions arise about the intent of the original developers. The session leader
asks the analysis team about their impressions of the original system design. Because
these questions cannot be answered during this meeting (none of the original de-
signers are present and none of the original design documents are readily available),
the session leader assigns the question about intent to the “to do” list. This question
becomes the first one on a flip-chart sheet of “to do” items, and the session leader
gives you the assignment of finding out about the intent of the original designers.
She writes your name next to the “to do” item on the list and continues with the ses-
sion. Before the end of the JAD, you must get an answer to this question.

The JAD will continue like this for its duration. Analysts will make presenta-
tions, help lead discussions on form and report design, answer questions from users
and managers, and take notes on what is being said. After each meeting, the analy-
sis team will meet, usually informally, to discuss what has occurred that day and to
consolidate what they have learned. Users will continue to contribute during the
meetings, and the session leader will facilitate, intervening in conflicts and seeing
that the group follows the agenda. When the JAD is over, the session leader and her
assistants must prepare a report that documents the findings in the JAD and is circu-
lated among users and analysts.

CASE Tools During JAD For requirements determination and structuring, the most
useful CASE tools are for diagramming and form and report generation. The more
interaction analysts have with users during this phase, the more useful this set of
tools is. The analyst can use diagramming and prototyping tools to give graphic form
to system requirements, show the tools to users, and make changes based on the
users’ reactions. The same tools are very valuable for requirements structuring as
well. Using common CASE tools during requirements determination and structuring
makes the transition between these two subphases easier and reduces the total time
spent. In structuring, CASE tools that analyze requirements information for correct-
ness, completeness, and consistency are also useful. Finally, for alternative genera-
tion and selection, diagramming and prototyping tools are key to presenting users
with graphic illustrations of what the alternative systems will look like. Such a practice
provides users and analysts with better information to select the most desirable alter-
native system.

Some observers advocate using CASE tools during JADs (Lucas, 1993). Running
a CASE tool during a JAD enables analysts to enter system models directly into a
CASE tool, providing consistency and reliability in the joint model-building process.
The CASE tool captures system requirements in a more flexible and useful way than
can a scribe or an analysis team making notes. Further, the CASE tool can be used to
project menu, display, and report designs, so users can directly observe old and new
designs and evaluate their usefulness for the analysis team.

 ChaPter 6 Determining system requirements 165

using Prototyping During requirements Determination
Prototyping is an iterative process involving analysts and users whereby a rudimen-
tary version of an information system is built and rebuilt according to user feedback.
Prototyping can replace the systems development life cycle or augment it. What we
are interested in here is how prototyping can augment the requirements determina-
tion process.

In order to gather an initial basic set of requirements, you will still have to inter-
view users and collect documentation. Prototyping, however, will enable you to quickly
convert basic requirements into a working, though limited, version of the desired in-
formation system. The prototype will then be viewed and tested by the user. Typically,
seeing verbal descriptions of requirements converted into a physical system will prompt
the user to modify existing requirements and generate new ones. For example, in the
initial interviews, a user might have said that he wanted all relevant utility billing infor-
mation (e.g., the client’s name and address, the service record, and payment history)
on a single computer display form. Once the same user sees how crowded and confus-
ing such a design would be in the prototype, he might change his mind and instead
ask to have the information organized on several screens, but with easy transitions
from one screen to another. He might also be reminded of some important require-
ments (data, calculations, etc.) that had not surfaced during the initial interviews.

You would then redesign the prototype to incorporate the suggested changes
(Figure 6-7). Once modified, users would again view and test the prototype. And,
once again, you would incorporate their suggestions for change. Through such an it-
erative process, the chances are good that you will be able to better capture a system’s
requirements.

As the prototype changes through each iteration, more and more of the design
specifications for the system are captured in the prototype. The prototype can then
serve as the basis for the production system in a process called evolutionary prototyp-
ing. Alternatively, the prototype can serve only as a model, which is then used as a
reference for the construction of the actual system. In this process, called throwaway
prototyping, the prototype is discarded after it has been used.

Evolutionary Prototyping In evolutionary prototyping, you begin by modeling
parts of the target system and, if the prototyping process is successful, you evolve the
rest of the system from those parts (McConnell, 1996). A life-cycle model of evolu-
tionary prototyping illustrates the iterative nature of the process and the tendency to
refine the prototype until it is ready to release (Figure 6-8). One key aspect of this ap-
proach is that the prototype becomes the actual production system. Because of this,
you often start with those parts of the system that are most difficult and uncertain.

Prototyping
An iterative process of systems development
in which requirements are converted to a
working system that is continually revised
through close collaboration between an
analyst and users.

Identify
Problem

Initial
Requirements Develop

Prototype

Problems

W
or

kin
g

Pro
to

typ
e

New Requirements

Next Version

Convert to
Operational

System

Implement and
Use Prototype

Revise and Enhance
Prototype

If Prototype
Ine�cient Figure 6-7

The prototyping methodology
(Source: Based on “Prototyping: The New
Paradigm for Systems Development,” by
J. D. Naumann and A. M. Jenkins, MIS
Quarterly 6(3): 29–44.)

166 Part III AnAlysis

Although a prototype system may do a great job of representing easy-to-see as-
pects of a system, such as the user interface, the production system itself will perform
many more functions, several of which are transparent or invisible to the users. Any
given system must be designed to facilitate database access, database integrity, system
security, and networking. Systems also must be designed to support scalability, mul-
tiuser support, and multiplatform support. Few of these design specifications will be
coded into a prototype. Further, as much as 90 percent of a system’s functioning is
devoted to handling exceptional cases (McConnell, 1996). Prototypes are designed
to handle only the typical cases, so exception handling must be added to the proto-
type as it is converted to the production system. Clearly, the prototype captures only
part of the system requirements.

Throwaway Prototyping Unlike evolutionary prototyping, throwaway prototyping
does not preserve the prototype that has been developed. With throwaway prototyp-
ing, there is never any intention to convert the prototype into a working system.
Instead, the prototype is developed quickly to demonstrate some aspect of a system
design that is unclear or to help users decide among different features or interface
characteristics. Once the uncertainty the prototype was created to address has been
reduced, the prototype can be discarded, and the principles learned from its cre-
ation and testing can then become part of the requirements determination.

Prototyping is most useful for requirements determination when

•	 user requirements are not clear or well understood, which is often the case for
totally new systems or systems that support decision making;

•	 one or a few users and other stakeholders are involved with the system;
•	 possible designs are complex and require concrete form to fully evaluate;
•	 communication problems have existed in the past between users and analysts

and both parties want to be sure that system requirements are as specific as
possible; and

•	 tools (such as form and report generators) and data are readily available to
rapidly build working systems.

Prototyping also has some drawbacks as a tool for requirements determination.
These include the following:

•	 Prototypes have a tendency to avoid creating formal documentation of system
requirements, which can then make the system more difficult to develop into a
fully working system.

•	 Prototypes can become very idiosyncratic to the initial user and difficult to
diffuse or adapt to other potential users.

•	 Prototypes are often built as stand-alone systems, thus ignoring issues of sharing
data and interactions with other existing systems, as well as issues with scaling up
applications.

•	 Checks in the SDLC are bypassed so that some more subtle, but still important,
system requirements might be forgotten (e.g., security, some data entry controls,
or standardization of data across systems).

Initial Concept Design and
Implement
Initial Prototype

Refine Prototype
until Acceptable

Complete and
Release
Prototype

Figure 6-8
McConnell’s evolutionary prototyping
model

 ChaPter 6 Determining system requirements 167

rADiCAl methoDs for Determining system
requirements
Whether traditional or contemporary, the methods for determining system require-
ments that you have read about in this chapter apply to any requirements determi-
nation effort, regardless of its motivation. But most of what you have learned has
traditionally been applied to systems development projects that involve automating
existing processes. Analysts use system requirements determination to understand
current problems and opportunities, as well as to determine what is needed and de-
sired in future systems. Typically, the current way of doing things has a large impact on
the new system. In some organizations, though, management is looking for new ways
to perform current tasks. These new ways may be radically different from how things
are done now, but the payoffs may be enormous: Fewer people may be needed to do
the same work, relationships with customers may improve dramatically, and processes
may become much more efficient and effective, all of which can result in increased
profits. The overall process by which current methods are replaced with radically new
methods is generally referred to as business process reengineering (BPR). Although
the term BPR is usually associated with a management fad that occurred in the 1990s,
businesses remain vitally interested in business processes and how to improve them
(Sharp and McDermott, 2001). Even if the term business process reengineering may seem
dated to some, process orientation remains a lasting legacy of the BPR movement.

To better understand BPR, consider the following analogy. Suppose you are a
successful European golfer who has tuned your game to fit the style of golf courses
and weather in Europe. You have learned how to control the flight of the ball in
heavy winds, roll the ball on wide open greens, putt on large and undulating greens,
and aim at a target without the aid of the landscaping common on North American
courses. When you come to the United States to make your fortune on the US tour,
you discover that incrementally improving your putting, driving accuracy, and sand
shots will help, but the new competitive environment is simply not suited to your style
of the game. You need to reengineer your whole approach, learning how to aim at
targets, spin and stop a ball on the green, and manage the distractions of crowds and
the press. If you are good enough, you may survive, but without reengineering, you
will never be a winner.

Just as the competitiveness of golf forces good players to adapt their games to
changing conditions, the competitiveness of our global economy has driven most
companies into a mode of continuously improving the quality of their products and
services (Dobyns and Crawford-Mason, 1991). Organizations realize that creatively
using information technologies can yield significant improvements in most business
processes. The idea behind BPR is not just to improve each business process, but, in a
systems modeling sense, to reorganize the complete flow of data in major sections of
an organization to eliminate unnecessary steps, achieve synergies among previously
separate steps, and become more responsive to future changes. Companies such as
IBM, Procter & Gamble, Walmart, and Ford are actively pursuing BPR efforts and
have had great success. Yet many other companies have found difficulty in apply-
ing BPR principles (Moad, 1994). Nonetheless, BPR concepts are actively applied in
both corporate strategic planning and information systems planning as a way to radi-
cally improve business processes (as described in Chapter 4).

BPR advocates suggest that radical increases in the quality of business processes
can be achieved through creative application of information technologies. BPR advo-
cates also suggest that radical improvement cannot be achieved by tweaking existing
processes but rather by using a clean sheet of paper and asking, “If we were a new
organization, how would we accomplish this activity?” Changing the way work is per-
formed also changes the way information is shared and stored, which means that the
results of many BPR efforts are the development of information system maintenance
requests or requests for system replacement. It is likely that you will encounter or
have encountered BPR initiatives in your own organization.

Business process
 reengineering (BPr)
The search for, and implementation of,
radical change in business processes to
achieve breakthrough improvements in
products and services.

168 Part III AnAlysis

identifying Processes to reengineer
A first step in any BPR effort relates to understanding what processes to change.
To do this, you must first understand which processes represent the key business
processes for the organization. Key business processes are the structured set of mea-
surable activities designed to produce a specific output for a particular customer or
market. The important aspect of this definition is that key processes are focused on
some type of organizational outcome, such as the creation of a product or the deliv-
ery of a service. Key business processes are also customer focused. In other words, key
business processes would include all activities used to design, build, deliver, support,
and service a particular product for a particular customer. BPR efforts, therefore,
first try to understand those activities that are part of the organization’s key business
processes and then alter the sequence and structure of activities to achieve radical
improvements in speed, quality, and customer satisfaction. The same techniques you
learned to use for systems requirement determination can be used to discover and
understand key business processes. Interviewing key individuals, observing activities,
reading and studying organizational documents, and conducting JADs can all be
used to find and fathom key business processes.

After identifying key business processes, the next step is to identify specific ac-
tivities that can be radically improved through reengineering. Hammer and Champy
(1993), who are most closely identified with the term BPR and the process itself, sug-
gest asking three questions to identify activities for radical change:

1. How important is the activity to delivering an outcome?
2. How feasible is changing the activity?
3. How dysfunctional is the activity?

The answers to these questions provide guidance for selecting which activi-
ties to change. Those activities deemed important, changeable, yet dysfunctional,
are primary candidates. To identify dysfunctional activities, they suggest you look
for activities where there are excessive information exchanges between individuals,
where information is redundantly recorded or needs to be rekeyed, where there are
excessive inventory buffers or inspections, and where there is a lot of rework or com-
plexity. Many of the tools and techniques for modeling data, processes, events, and
logic within the IS development process are also being applied to model business
processes within BPR efforts (see Davenport, 1993). Thus, the skills of a systems ana-
lyst are often central to many BPR efforts.

Disruptive technologies
Once key business processes and activities have been identified, information technol-
ogies must be applied to radically improve business processes. To do this, Hammer
and Champy (1993) suggest that organizations think “inductively” about information
technology. Induction is the process of reasoning from the specific to the general,
which means that managers must learn the power of new technologies and think of
innovative ways to alter the way work is done. This is contrary to deductive thinking,
where problems are first identified and solutions are then formulated.

Hammer and Champy suggest that managers especially consider disruptive
technologies when applying deductive thinking. Disruptive technologies are those
that enable breaking long-held business rules that inhibit organizations from making
radical business changes. For example, Procter & Gamble (P&G), the huge consumer
products company, uses information technology to “innovate innovation” (Teresko,
2004). Technology helps different organizational units work together seamlessly on
new products. P&G also uses computer simulations to expedite product design and
test potential products with consumers early in the design process. Table 6-6 shows
several long-held business rules and beliefs that constrain organizations from making
radical process improvements. For example, the first rule suggests that information

Key business processes
The structured, measured set of activities
designed to produce a specific output for a
particular customer or market.

Disruptive technologies
Technologies that enable breaking long-
held business rules that inhibit organizations
from making radical business changes.

 ChaPter 6 Determining system requirements 169

can only appear in one place at a time. However, the advent of distributed databases
(see Chapter 12) and pervasive wireless networking have “disrupted” this long-held
business belief.

requirements DeterminAtion using Agile
methoDologies
You’ve already learned about many different ways to determine the requirements for
a system. Yet new methods and techniques are constantly being developed. Three
more requirements determination techniques are presented in this section. The first
is continual user involvement in the development process, a technique that works
especially well with small and dedicated development teams. The second approach
is a JAD-like process called Agile Usage-Centered Design. The third approach is the
Planning Game, which was developed as part of eXtreme Programming.

Continual user involvement
In Chapter 1, you read about the criticisms of the traditional waterfall SDLC. One
of those criticisms was that the waterfall SDLC allowed users to be involved in the
development process only in the early stages of analysis. Once requirements had
been gathered from them, the users were not involved again in the process until
the system was being installed and they were asked to sign off on it. Typically, by the
time the users saw the system again, it was nothing like what they had imagined.
Also, given how their business processes had changed since analysis ended, the sys-
tem most likely did not adequately address user needs. This view of the traditional
waterfall SDLC and user involvement is a stereotype of the process, and it does not
describe every systems development project that used the waterfall model. However,
limited user involvement has been common enough to be perceived as a real and
serious problem in systems development.

One approach to the problem of limited user involvement is to involve the users
continually, throughout the entire analysis and design process. Such an approach
works best when development can follow the analysis–design–code–test cycle favored
by the Agile Methodologies (Figure 6-9), because the user can provide information on
requirements and then watch and evaluate as those requirements are designed, coded,
and tested. This iterative process can continue through several cycles, until most of
the major functionality of the system has been developed. Extensive involvement of

Table 6-6 long-Held Organizational Rules That are being eliminated through Disruptive
Technologies

Rule Disruptive Technology
Information can appear in only one place

at a time.
Distributed databases allow the sharing of

information.
Businesses must choose between

centralization and decentralization.
Advanced telecommunications networks can

support dynamic organizational structures.
Managers must make all decisions. Decision-support tools can aid nonmanagers.
Field personnel need offices where they

can receive, store, retrieve, and transmit
information.

Wireless data communication and portable
computers provide a “virtual” office for
workers.

The best contact with a potential buyer is
personal contact.

Interactive communication technologies allow
complex messaging capabilities.

You have to find out where things are. Automatic identification and tracking
technology knows where things are.

Plans get revised periodically. High-performance computing can provide
real-time updating.

170 Part III AnAlysis

users in the analysis and design process is a key part of many Agile approaches, but it
was also a key part of Rapid Application Development (see Chapter 1).

Continual user involvement was a key aspect of the success of Boeing’s Wire
Design and Wire Install system for the 757 aircraft (Bedoll, 2003). The system was
intended to support engineers who customize plane configurations for customers,
allowing them to analyze all 50,000 wires that can possibly be installed on a 757. A
previous attempt at building a similar system took over three years, and the resulting
system was never used. The second attempt, relying on Agile Methodologies, resulted
in a system that was in production after only six weeks. One of the keys to success
was a user liaison who spent half of his time with the small development team and
half with the other end users. In addition to following the analysis–design–code–test
cycle, the team also had weekly production releases. The user liaison was involved
every step of the way. Obviously, for such a requirements determination to succeed,
the user who works with the development team must be very knowledgeable, but he
or she must also be in a position to give up his or her normal business responsibilities
in order to become heavily involved in the system’s development.

Agile usage-Centered Design
Continual user involvement in systems development is an excellent way to ensure
that requirements are captured accurately and immediately implemented in system
design. However, such constant interaction works best when the development team
is small, as was the case in the Boeing example. Also, it is not always possible to have
continual access to users for the duration of a development project. Thus, Agile de-
velopers have come up with other means for effectively involving users in the re-
quirements determination process. One such method is called Agile Usage-Centered
Design, originally developed by Larry Constantine (2002) and adapted for Agile
Methodologies by Jeff Patton (2002). Patton describes the process in nine steps,
which we have adapted and presented as eight steps in Table 6-7.

Notice how similar the overall process is to a JAD meeting. All of the experts
are gathered together and work with the help of the facilitator. What is unique about
the Agile Usage-Centered Design is the process that supports it, which focuses on
user roles, user goals, and the tasks necessary to achieve those goals. Then, tasks are
grouped and turned into paper-and-pencil prototypes before the meeting is over.
Requirements captured from users and developers are captured as prototyped system
screens. Patton (2002) believes that the two most effective aspects of this approach
are the venting session, which lets everyone get their complaints out in the open, and

Code

Analyze

Test Design

Figure 6-9
The iterative analysis–design–code–test
cycle

 ChaPter 6 Determining system requirements 171

the use of 3 × 5 cards, which serve as very effective communication tools. As with any
analysis and design process or technique, however, Agile Usage-Centered Design will
not work for every project or every company.

the Planning game from eXtreme Programming
You read about eXtreme Programming in Chapter 1, and you know that it is an
approach to software development put together by Kent Beck (Beck and Andres,
2004). You also know that it is distinguished by its short cycles, its incremental plan-
ning approach, its focus on automated tests written by programmers and customers
to monitor the process of development, and its reliance on an evolutionary approach
to development that lasts throughout the lifetime of the system. One of the key em-
phases of eXtreme Programming is its use of two-person programming teams and
having a customer on-site during the development process. The relevant parts of
eXtreme Programming that relate to requirements determination are (1) how plan-
ning, analysis, design, and construction are all fused together into a single phase of
activity and (2) its unique way of capturing and presenting system requirements and
design specifications. All phases of the life cycle converge into a series of activities
based on the basic processes of coding, testing, listening, and designing.

What is of interest here, however, is the way requirements and specifications
are dealt with. Both of these activities take place in what Beck calls the “Planning
Game.” The Planning Game is really just a stylized approach to development that
seeks to maximize fruitful interaction between those who need a new system and
those who build it. The players in the Planning Game, then, are Business and
Development. Business is the customer and is ideally represented by someone who
knows the processes to be supported by the system being developed. Development
is represented by those actually designing and constructing the system. The game
pieces are what Beck calls “Story Cards.” These cards are created by Business and
contain a description of a procedure or feature to be included in the system. Each
card is dated and numbered and has space on it for tracking its status throughout the
development effort.

Table 6-7 Steps in the agile Usage-Centered Design Method for Requirements Determination

1. Gather a group of people, including analysts, users, programmers, and testing staff, and
sequester them in a room to collaborate on this design. Include a facilitator who knows this
process.

2. Give everyone a chance to vent about the current system and to talk about the features
everyone wants in the new system. Record all of the complaints and suggestions for change
on whiteboards or flip charts for everyone to see.

3. Determine what the most important user roles would be. Determine who will be using the
system and what their goals are for using the system. Write the roles on 3 × 5 cards. Sort
the cards so that similar roles are close to each other. Patton (2002) calls this a role model.

4. Determine what tasks user roles will have to complete in order to achieve their goals. Write
these down on 3 × 5 cards. Order tasks by importance and then by frequency. Place the
cards together based on how similar the tasks are to each other. Patton calls this a task model.

5. Task cards will be grouped together on the table based on their similarity. Grab a stack of
cards. This is called an interaction context.

6. For each task card in the interaction context, write a description of the task directly on
the task card. List the steps that are necessary to complete the task. Keep the descriptions
conversational to make them easy to read. Simplify.

7. Treat each stack as a tentative set of tasks to be supported by a single aspect of the user
interface, such as a screen, page, or dialogue, and create a paper-and-pencil prototype for
that part of the interface. Show the basic size and placement of the screen components.

8. Take on a user role and step through each task in the interaction context as modeled in
the paper-and-pencil prototype. Make sure the user role can achieve its goals by using the
prototype. Refine the prototype accordingly.

172 Part III AnAlysis

The Planning Game has three phases: exploration, commitment, and steering
(Figure 6-10). In exploration, Business creates a Story Card for something it wants
the new system to do. Development responds with an estimation of how long it would
take to implement the procedure. At this point, it may make sense to split a Story
Card into multiple Story Cards, as the scope of features and procedures becomes
more clear during discussion. In the commitment phase, Business sorts Story Cards
into three stacks: one for essential features, one for features that are not essential but
would still add value, and one for features that would be nice to have. Development
then sorts Story Cards according to risk, based on how well they can estimate the
time needed to develop each feature. Business then selects the cards that will be
included in the next release of the product. In the final phase, steering, Business
has a chance to see how the development process is progressing and to work with
Development to adjust the plan accordingly. Steering can take place as often as once
every three weeks.

The Planning Game between Business and Development is followed by the
Iteration Planning Game, played only by programmers. Instead of Story Cards, pro-
grammers write Task Cards, which are based on Story Cards. Typically, several Task
Cards are generated for each Story Card. The Iteration Planning Game has the same
three phases as the Planning Game: exploration, commitment, and steering. During
exploration, programmers convert Story Cards into Task Cards. During commitment,
they accept responsibility for tasks and balance their workloads. During steering, the
programmers write the code for the feature and test it. If it works, they integrate the
feature into the product being developed. The Iteration Planning Game takes place
during the time intervals between steering phase meetings in the Planning Game.

You can see how the Planning Game is similar in some ways to Agile Usage-
Centered Design. Both rely on participation by users, rely on cards as communica-
tion devices, and focus on tasks the system being designed is supposed to perform.
Although these approaches differ from some of the more traditional ways of deter-
mining requirements, such as interviews and prototyping, many of the core prin-
ciples are the same. Customers, or users, remain the source for what the system is
supposed to do. Requirements are still captured and negotiated. The overall process

COMMITMENT
Business sorts Stories by necessity.
Development sorts Stories by risk.

Business chooses Stories for next release.

STEERING
Business reviews progress.

Business and Development adjust plan.

EXPLORATION
Business writes a Story Card.

Development provides an estimate.

Figure 6-10
eXtreme Programming’s Planning Game
Sources: Top to bottom: imtmphoto/
Shutterstock; nenetus/Fotolia;
rilueda/Fotolia

 ChaPter 6 Determining system requirements 173

is still documented, although the extent and formality of the documentation may
differ. Given the way requirements are identified and recorded and broken down
from stories to tasks, design specifications can easily incorporate the characteristics
of quality requirements: completeness, consistency, modifiability, and traceability.

eleCtroniC CommerCe APPliCAtions:
Determining system requirements
Determining system requirements for an Internet-based electronic commerce appli-
cation is no different than the process followed for other applications. In the last
chapter, you read how PVF’s management began the WebStore project, a project
to sell furniture products over the Internet. In this section, we examine the process
followed by PVF to determine system requirements and highlight some of the issues
and capabilities that you may want to consider when developing your own Internet-
based application.

Determining system requirements for Pine Valley furniture’s
Webstore
To collect system requirements as quickly as possible, Jim and Jackie decided to
hold a three-day JAD session. In order to get the most out of these sessions, they in-
vited a broad range of people, including representatives from Sales and Marketing,
Operations, and Information Systems. Additionally, they asked an experienced JAD
facilitator, Cheri Morris, to conduct the session. Together with Cheri, Jim and Jackie
developed a very ambitious and detailed agenda for the session. Their goal was to
collect requirements on the following items:

•	 System Layout and Navigation Characteristics
•	 WebStore and Site Management System Capabilities
•	 Customer and Inventory Information
•	 System Prototype Evolution

In the remainder of this section, we briefly highlight the outcomes of the JAD
session.

System Layout and Navigation Characteristics As part of the process of prepar-
ing for the JAD session, all participants were asked to visit several established re-
tail websites, including www.amazon.com, www.landsend.com, www.sony.com, and www.
pier1.com. At the JAD session, participants were asked to identify characteristics
of these sites that they found appealing and those characteristics that they found
cumbersome. This allowed participants to identify and discuss those features that
they wanted the WebStore to possess. The outcomes of this activity are summarized
in Table 6-8.

Table 6-8 Desired layout and Navigation Feature of WebStore

Layout and Design •	Navigation menu and logo placement should remain consistent
throughout the entire site (this allows users to maintain familiarity while
using the site and minimizes users who get “lost” in the site)

•	Graphics should be lightweight to allow for quick page display
•	 Text should be used over graphics whenever possible

Navigation •	Any section of the store should be accessible from any other section via
the navigation menu

•	Users should always be aware of what section they are currently in

http://www.amazon.com
http://www.landsend.com
http://www.sony.com
http://www.pier1.com
http://www.pier1.com

174 Part III AnAlysis

WebStore and Site Management System Capabilities After agreeing to the general
layout and navigational characteristics of the WebStore, the session then turned its
focus to the basic system capabilities. To assist in this process, systems analysts from
the Information Systems Department developed a draft skeleton of the WebStore.
This skeleton was based on the types of screens common to and capabilities of
popular retail websites. For example, many retail websites have a “shopping cart”
feature that allows customers to accumulate multiple items before checking out
rather than buying a single item at a time. After some discussion, the participants
agreed that the system structure shown in Table 6-9 would form the foundation for the
WebStore system.

In addition to the WebStore capabilities, members of the Marketing and Sales
Department described several reports that would be necessary to effectively manage
customer accounts and sales transactions. In addition, the department wants to be
able to conduct detailed analyses of site visitors, sales tracking, and so on. Members
of the Operations Department expressed a need to easily update the product catalog.
These collective requests and activities were organized into a system design structure
called the Site Management System, which is summarized in Table 6-9. The structures
of both the WebStore and Site Management Systems will be given to the Information
Systems Department as the baseline for further analysis and design activities.

Customer and Inventory Information The WebStore will be designed to support
the furniture purchases of three distinct types of customers:

•	 Corporate customers
•	 Home office customers
•	 Student customers

To effectively track the sales to these different types of customers, distinct informa-
tion must be captured and stored by the system. Table 6-10 summarizes this informa-
tion for each customer type that was identified during the JAD session. In addition
to the customer information, information about the products ordered must also be
captured and stored. Orders reflect the range of product information that must be
specified to execute a sales transaction. Thus, in addition to capturing the customer
information, product and sales data must also be captured and stored. Table 6-10 lists
the results of this analysis.

Table 6-9 System Structure of the WebStore and Site Management Systems
WebStore System Site Management System

❑❑ Main Page
•	 Product Line (catalog)

❑✓ Desks
❑✓ Chairs
❑✓ Tables
❑✓ File Cabinets

•	 Shopping Cart
•	 Checkout
•	 Account Profile
•	 Order Status/History
•	 Customer Comments

❑❑ Company Info
❑❑ Feedback
❑❑ Contact Information

❑❑ User Profile Manager
❑❑ Order Maintenance Manager
❑❑ Content (catalog) Manager
❑❑ Reports
•	 Total Hits
•	 Most Frequent Page Views
•	 Users/Time of Day
•	 Users/Day of Week
•	 Shoppers Not Purchasing (used shopping cart—did

not checkout)
•	 Feedback Analysis

 ChaPter 6 Determining system requirements 175

System Prototype Evolution As a final activity, the JAD participants, benefiting
from extensive input from the Information Systems staff, discussed how the system
implementation should evolve. After completing analysis and design activities, it
was agreed that the system implementation should progress in three main stages so
that changes to the requirements could be more easily identified and implemented.
Table 6-11 summarizes these stages and the functionality that would be incorporated
at each stage of the implementation.

At the conclusion of the JAD session there was a good feeling among the partic-
ipants. All felt that a lot of progress had been made and that clear requirements had
been identified. With these requirements in hand, Jim and the Information Systems
staff could now begin to turn these lists of requirements into formal analysis and
design specifications. To show how information flows through the WebStore, data
flow diagrams (Chapter 7) will be produced. To show a conceptual model of the data
used within WebStore, an entity-relationship diagram (Chapter 8) will be produced.
Both of these analysis documents will become part of the foundation for detailed
system design and implementation.

Table 6-10 Customer and Inventory Information for WebStore
Corporate Customer Home Office Customer Student Customer
•	Company Name
•	Company Address
•	Company Phone
•	Company Fax
•	Company Preferred Shipping

Method
•	Buyer Name
•	Buyer Phone
•	Buyer E-Mail

•	Name
•	Doing Business as

(company name)
•	Address
•	 Phone
•	 Fax
•	E-Mail

•	Name
•	School
•	Address
•	 Phone
•	E-Mail

Inventory Information
•	SKU
•	Name
•	Description

•	 Finished Product Size
•	 Finished Product Weight
•	Available Materials

•	Available Colors
•	 Price
•	 Lead Time

Table 6-11 Stages of System Implementation of WebStore

Stage 1—Basic Functionality:
•	Simple catalog navigation; two products per section—limited attributes set
•	25 sample users
•	Simulated credit card transaction
•	 Full shopping cart functionality
Stage 2—Look and Feel:
•	 Full product attribute set and media (images, video)—commonly referred to as the “product

data catalog”
•	 Full site layout
•	Simulated integration with Purchasing Fulfillment and Customer Tracking systems
Stage 3—Staging/Preproduction:
•	 Full integration with Purchasing Fulfillment and Customer Tracking systems
•	 Full credit card processing integration
•	 Full product data catalog

176 Part III AnAlysis

Summary

As we saw in Chapter 1, there are two subphases in the sys-
tems analysis phase of the systems development life cycle:
requirements determination and requirements structur-
ing. Chapter 6 has focused on requirements determina-
tion, the gathering of information about current systems
and the need for replacement systems. Chapters 7 and 8
will address techniques for structuring the requirements
elicited during requirements determination.

For requirements determination, the traditional
sources of information about a system include interviews;
observation; group interviews; and procedures, forms, and
other useful documents. Often many or even all of these
sources are used to gather perspectives on the adequacy
of current systems and the requirements for replacement
systems. Each form of information collection has its advan-
tages and disadvantages. Selecting the methods to use de-
pends on the need for rich or thorough information, the
time and budget available, the need to probe deeper once
initial information is collected, the need for confiden-
tiality for those providing assessments of system require-
ments, the desire to get people involved and committed to
a project, and the potential audience from which require-
ments should be collected.

Both open- and closed-ended questions can be
posed during interviews. In either case, you must be very
precise in formulating a question in order to avoid ambi-
guity and to ensure a proper response. During observa-
tion you must try not to intrude or interfere with normal
business activities so that the people being observed do
not modify their activities from normal processes. The
results of all requirements-gathering methods should be
compared because there may be differences between the
formal or official system and the way people actually work,
the informal system.

You also learned about contemporary methods to
collect requirements information, many of which make
use of information systems. JAD begins with the idea of
the group interview and adds structure and a JAD ses-
sion leader to it. Typical JAD participants include the ses-
sion leader, a scribe, key users, managers, a sponsor, and

systems analysts. JAD sessions are usually held off-site and
may last as long as one week.

Systems analysis is increasingly performed with com-
puter assistance, as is the case in using CASE tools and
prototyping to support requirements determination. As
part of the prototyping process, users and analysts work
closely together to determine requirements that the ana-
lyst then builds into a model. The analyst and user then
work together to revise the model until it is close to what
the user desires.

BPR is an approach to radically changing business
processes. BPR efforts are a source of new information re-
quirements. Information systems and technologies often
enable BPR by allowing an organization to eliminate or
relax constraints on traditional business rules. Agile re-
quirements determination techniques are another contem-
porary approach to figuring out what a new or improved
system is supposed to do. Continual customer involvement
relies on high levels of user participation. Agile Usage-
Centered Design and the Planning Game rely on novel in-
teractions between users and developers to uncover basic
tasks and features the new system should include.

Most of the same techniques used for requirements
determination for traditional systems can also be fruit-
fully applied to the development of Internet applications.
Accurately capturing requirements in a timely manner for
Internet applications is just as important as for more tradi-
tional systems.

The result of requirements determination is a thor-
ough set of information, including some charts, that de-
scribes the current systems being studied and the need
for new and different capabilities to be included in the
replacement systems. This information, however, is not
in a form that makes analysis of true problems and clear
statements of new features possible. Thus, you and other
analysts will study this information and structure it into
standard formats suitable for identifying problems and un-
ambiguously describing the specifications for new systems.
We discuss a variety of popular techniques for structuring
requirements in the next two chapters.

Key TermS

 6.1 Business process reengineering
(BPR)

 6.2 Closed-ended questions
 6.3 Disruptive technologies
 6.4 Formal system

 6.5 Informal system
 6.6 JAD session leader
 6.7 Joint Application

Design (JAD)
 6.8 Key business processes

 6.9 Nominal Group Technique
(NGT)

 6.10 Open-ended questions
 6.11 Prototyping
 6.12 Scribe

 ChaPter 6 Determining system requirements 177

 6.13 Describe systems analysis and the major activities that
occur during this phase of the systems development life
cycle.

 6.14 Describe four traditional techniques for collecting infor-
mation during analysis. When might one be better than
another?

 6.15 What is JAD? How is it better than traditional information-
gathering techniques? What are its weaknesses?

 6.16 How has computing been used to support requirements
determination?

 6.17 How can NGT be used for requirements determination?

 6.18 How can CASE tools be used to support requirements de-
termination? Which type of CASE tool is appropriate for
use during requirements determination?

 6.19 Describe how prototyping can be used during require-
ments determination. How is it better or worse than tradi-
tional methods?

 6.20 When conducting a business process reengineering study,
what should you look for when trying to identify a business
process to change? Why?

 6.21 What are disruptive technologies and how do they enable
organizations to radically change their business processes?

 6.22 Why is continual user involvement a useful way to discover
system requirements? Under what conditions might it be
used? Under what conditions might it not be used?

 6.23 Describe Agile Usage-Centered Design. Describe the Plan-
ning Game. Compare and contrast these two requirements
determination techniques.

Match each of the key terms above with the definition that best
fits it.

____ Questions in interviews that ask those responding to
choose from among a set of specified responses.

____ Technologies that enable breaking long-held business
rules that inhibit organizations from making radical busi-
ness changes.

____ A facilitated process that supports idea generation by
groups. At the beginning of the process, group members
work alone to generate ideas. The ideas are then pooled
under the guidance of a trained facilitator.

____ The structured, measured set of activities designed to pro-
duce a specific output for a particular customer or market.

____ An iterative process in which requirements are converted
to a working system that is continually revised through or-
ganized user collaboration.

____ The official way a system works as described in organiza-
tional documentation.

____ The search for, and implementation of, radical change in
business processes to achieve breakthrough improvements
in products and services.

____ The way a system actually works.

____ The person who makes detailed notes of the happenings
at a JAD session.

____ Questions in interviews that have no prespecified answers.

____ The trained individual who plans and leads JAD sessions.

____ A structured process in which users, managers, and ana-
lysts work together for several days in a series of meetings
to clarify or review requirements.

revIew QueSTIonS

ProblemS and exercISeS
 6.24 Choose either CASE or prototyping as a topic and review

a related article from the popular press and from the aca-
demic research literature. Summarize the two articles and,
based on your reading, prepare a list of arguments for why
this type of system would be useful in a JAD session. Also
address the limits for applying this type of system in a JAD
setting.

 6.25 As mentioned in this chapter, one of the potential prob-
lems with gathering information requirements by observ-
ing potential system users is that people may change their
behavior when they are being observed. What could you
do to overcome this potential confounding factor in accu-
rately determining information requirements?

 6.26 Summarize the problems with the reliability and usefulness
of analyzing business documents as a method for gathering
information requirements. How could you cope with these

problems to effectively use business documents as a source
of insights on system requirements?

 6.27 Suppose you were asked to lead a JAD session. List 10
guidelines you would follow to assist you in playing the
proper role of a JAD session leader.

 6.28 Prepare a plan, similar to Figure 6-2, for an interview with
your academic advisor to determine which courses you
should take to develop the skills you need to be hired as a
programmer/analyst.

 6.29 Write at least three closed-ended questions that you might
use in an interview of users of a word-processing package
in order to develop ideas for the next version of the pack-
age. Test these questions by asking a friend to answer the
questions; then interview your friend to determine why she
responded as she did. From this interview, determine if she

178 Part III AnAlysis

 6.34 Effective interviewing is not something that you can learn
from just reading about it. You must first do some inter-
viewing, preferably a lot of it, because interviewing skills
improve only with experience. To get an idea of what in-
terviewing is like, try the following: Find three friends or
classmates to help you complete this exercise. Organize
yourselves into pairs. Write down a series of questions
you can use to find out about a job your partner now has
or once held. You decide what questions to use, but at a
minimum, you must find out the following: (1) the job’s
title; (2) the job’s responsibilities; (3) who your partner re-
ported to; (4) who reported to your partner, if anyone did;
and (5) what information your partner used to do his or
her job. At the same time, your partner should be prepar-
ing questions to ask you about a job you had. Now conduct
the interview. Take careful notes. Organize what you find
into a clear form that another person could understand.
Now repeat the process, but this time, your partner inter-
views you.

While the two of you have been interviewing each
other, your two other friends should have been doing the
same thing. When all four of you are done, switch partners
and repeat the entire process. When you are all done, each
of you should have interviewed two people, and each of you
should have been interviewed by two people. Now, you and
the person who interviewed your original partner should
compare your findings. Most likely, your findings will not
be identical to what the other person found. If your find-
ings differ, discover why. Did you use the same questions?
Did the other person do a more thorough job of inter-
viewing your first partner because it was the second time
he or she had conducted an interview? Did you both ask
follow-up questions? Did you both spend about the same
amount of time on the interview? Prepare a report with this
person about why your findings differed. Now find both of
the people who interviewed you. Does one set of findings
differ from the other? If so, try to figure out why. Did one
of them (or both of them) misrepresent or misunderstand
what you told them? Each person should now write a report
on their experience, using it to explain why interviews are
sometimes inconsistent and inaccurate and why having two
people interview someone on a topic is better than having
just one person do the interview. Explain the implications

of what you have learned for the requirements determina-
tion subphase of the systems development life cycle.

 6.35 Choose a work team at your work or university and inter-
view them in a group setting. Ask them about their current
system (whether computer-based or not) for performing
their work. Ask each of them what information they use
and/or need and from where/whom they get it. Was this
a useful method for you to learn about their work? Why or
why not? What comparative advantages does this method
provide as compared to one-on-one interviews with each
team member? What comparative disadvantages?

 6.36 For the same work team you used in Field Exercise 6-35,
examine copies of any relevant written documentation
(e.g., written procedures, forms, reports, system documen-
tation). Are any of these forms of written documentation
missing? Why? With what consequences? To what extent
does this written documentation fit with the information
you received in the group interview?

 6.37 Interview systems analysts, users, and managers who have
been involved in JAD sessions. Determine the location,
structure, and outcomes of each of their JAD sessions.
Elicit their evaluations of their sessions. Were they produc-
tive? Why or why not?

 6.38 Survey the literature on JAD in the academic and popular
press and determine the “state of the art.” How is JAD be-
ing used to help determine system requirements? Is using
JAD for this process beneficial? Why or why not? Present
your analysis to the IS manager at your work or at your uni-
versity. Does your analysis of JAD fit with his or her percep-
tion? Why or why not? Is he or she currently using JAD, or
a JAD-like method, for determining system requirements?
Why or why not?

 6.39 With the help of other students or your instructor, con-
tact someone in an organization who has carried out a
BPR study. What effects did this study have on information
systems? In what ways did information technology, espe-
cially disruptive technologies, facilitate making the radical
changes discovered in the BPR study?

 6.40 Find an organization that uses Agile techniques for re-
quirements determination. What techniques do they use?
How did they discover them? What did they use before?
What is their evaluation of the Agile techniques they use?

misunderstood any of your questions and, if so, rewrite the
questions to be less ambiguous.

 6.30 Figure 6-2 shows part of a guide for an interview. How
might an interview guide differ when a group interview is
to be conducted?

 6.31 Group interviews and JADs are very powerful ways to col-
lect system requirements, but special problems arise dur-
ing group requirements collection sessions. Summarize
the special interviewing and group problems that arise in
such group sessions and suggest ways that you, as a group

interviewer or group facilitator, might deal with these
problems.

 6.32 Review the material in Chapter 4 on corporate and infor-
mation systems strategic planning. How are these processes
different from BPR? What new perspectives might BPR
bring that classical strategic planning methods may not
have?

 6.33 Research other Agile methodologies and write a re-
port about how they handle systems requirements
determination.

FIeld exercISeS

 ChaPter 6 Determining system requirements 179

reFerenceS
Beck, K., and C. Andres. 2004. eXtreme Programming eXplained.

Upper Saddle River, NJ: Addison-Wesley.
Bedoll, R. 2003. “A Tale of Two Projects: How ‘Agile’ Methods

Succeeded After ‘Traditional’ Methods Had Failed in a Crit-
ical System-Development Project.” Proceedings of 2003 XP/
Agile Universe Conference. New Orleans, LA. August. Ber-
lin: Springer-Verlag, 25–34.

Constantine, L. 2002. “Process Agility and Software Usability: To-
ward Lightweight Usage-Centered Design.” Information Age
August/September. Available at www.infoage.idg.com.au/
index.php?id=244792583. Accessed February 12, 2004.

Davenport, T. H. 1993. Process Innovation: Reengineering Work
Through Information Technology. Boston: Harvard Business
School Press.

Dobyns, L., and C. Crawford-Mason. 1991. Quality or Else. Bos-
ton: Houghton-Mifflin.

Hammer, M. 1996. Beyond Reengineering. New York: Harper
Business.

Hammer, M., and J. Champy. 1993. Reengineering the Corporation.
New York: Harper Business.

Lucas, M. A. 1993. “The Way of JAD.” Database Programming &
Design. 6 (July): 42–49.

McConnell, S. 1996. Rapid Development. Redmond, WA: Micro-
soft Press.

Mintzberg, H. 1973. The Nature of Managerial Work. New York:
Harper & Row.

Moad, J. 1994. “After Reengineering: Taking Care of Business.”
Datamation. 40 (20): 40–44.

Naumann, J. D., and A. M. Jenkins. 1982. “Prototyping: The New
Paradigm for Systems Development.” MIS Quarterly 6(3):
29–44.

Patton, J. 2002. “Designing Requirements: Incorporating Usage-
Centered Design into an Agile SW Development Process.”
In D. Wells and L. Williams (eds.), Extreme Programming and
Agile Methods – XP/Agile Universe 2002, LNCS 2418, 1–12.
Berlin: Springer-Verlag.

Sharp, A., and P. McDermott. 2001. Workflow Modeling: Tools for
Process Improvement and Application Development. Norwood,
MA: Artech House Inc.

Teresko, J. 2004. “P&G’s Secret: Innovating Innovation.” Industry
Week 253(12), 27–34.

Wood, J., and D. Silver. 1995. Joint Application Development, 2nd
ed. New York: John Wiley & Sons.

http://www.infoage.idg.com.au/index.php?id=244792583
http://www.infoage.idg.com.au/index.php?id=244792583

180 Part III AnAlysis

PetrIe eLeCtrOnICs

Pe Table 6-1 Requirements and Constraints for Petrie’s
Customer loyalty Project

Requirements:
•	Effective customer incentives – System should be able to

effectively store customer activity and convert to rewards and
other incentives

•	Easy for customers to use – Interface should be intuitive for
customer use

•	 Proven performance – System as proposed should have been
used successfully by other clients

•	Easy to implement – Implementation should not require outside
consultants or extraordinary skills on the part of our staff or
require specialized hardware

•	Scalable – System should be easily expandable as number of
participating customers grows

•	Vendor support – Vendor should have proven track record of
reliable support and infrastructure in place to provide it

Constraints:
•	Cost to buy – Licenses for one year should be under $500,000
•	Cost to operate – Total operating costs should be no more than

$1 million per year
•	 Time to implement – Duration of implementation should not

exceed three months
•	Staff to implement – Implementation should be successful with

the staff we have and with the skills they already possess

Pe Table 6-2 alternatives for Petrie’s Customer loyalty Project

Alternative A:
Data warehousing-centered system designed and licensed by
Standard Basic Systems Inc. (SBSI). The data warehousing tools
at the heart of the system were designed and developed by
SBSI and work with standard relational DBMS and relational/
OO hybrid DBMS. The SBSI tools and approach have been
used for many years and are well known in the industry, but SBSI-
certified staff are essential for implementation, operation, and
maintenance. The license is relatively expensive. The customer
loyalty application using the SBSI data warehousing tools is
an established application, used by many retail businesses in
other industries.

Alternative B:
Customer Relationship Management-centered system designed
and licensed by XRA Corporation. XRA is a pioneer in CRM
systems, so its CRM is widely recognized as an industry leader.
The system includes tools that support customer loyalty programs.
The CRM system itself is large and complex, but pricing in this
proposal is based only on modules used for the customer loyalty
application.

Alternative C:
Proprietary system designed and licensed by Nova Innovation
Group, Inc. The system is relatively new and leading edge, so
it has only been implemented in a few sites. The vendor is truly
innovative but small and inexperienced. The customer interface,
designed for a standard web browser, is stunning in its design
and is extremely easy for customers to use to check on their loyalty
program status. The software runs remotely, in the “cloud,” and
data related to the customer loyalty program would be stored in
the cloud too.

Chapter 6: Determining System requirements

Jim Watanabe, the project manager, thought that although
the customer loyalty project at Petrie Electronics had
gone slowly at first, the past few weeks had been fast-
paced and busy. He spent much of his time planning and
conducting interviews with key stakeholders inside the
company. He also worked with the marketing group to
put together some focus groups made up of loyal custom-
ers, to get some ideas about what they would value in a
customer loyalty program. Jim had also spent some time
studying customer loyalty programs at other big retail
chains and those in other industries as well, such as the
airlines, which are known for their extensive customer
loyalty programs. As project manager, he also supervised
the efforts of his team members. Together, they collected
a great deal of data. Jim had just finished creating a high-
level summary of the information into a table he could
send to his team members (PE Table 6-1).

as it might have been to develop a unique system just for
Petrie, there was little point in reinventing the wheel. The
IT staff would customize the system interface, and there
would be lots of work for Sanjay’s staff in integrating the
new system and its related components with Petrie’s ex-
isting systems, but the core of the system would have al-
ready been developed by someone else.

Just as he was finishing the e-mail he would send to
his team about the new system’s requirements and con-
straints, he received a new message from Sanjay. He had
asked Sanjay to take the lead in scouting out existing cus-
tomer loyalty systems that Petrie could license. Sanjay
conducted a preliminary investigation that was now com-
plete. His e-mail contained the descriptions of three of the
systems he found and studied (PE Table 6-2). Obviously,
Jim and his team would need to have a lot more informa-
tion about these alternatives, but Jim was intrigued by the
possibilities. He sent a reply to Sanjay, asking him to pass
the alternatives on to the team and to prepare a briefing
for the team that would include more detailed informa-
tion about each alternative.

From the list of requirements, it was clear that he and
his team did not favor building a system from scratch in-
house. Jim was glad that the team felt that way. Not only
was building a system like this in-house an antiquated
practice, it was expensive and time consuming. As nice

 ChaPter 6 Determining system requirements 181

Case Questions

 6.41 What do you think are the sources of the informa-
tion Jim and his team collected? How do you think
they collected all of that information?

 6.42 Examine PE Table 6-1. Are there any requirements
or constraints that you can think of that were over-
looked? List them.

 6.43 If you were looking for alternative approaches for
Petrie’s customer loyalty program, where would you

look for information? Where would you start? How
would you know when you were done?

 6.44 Using the web, find three customizable customer
loyalty program systems being sold by vendors. Cre-
ate a table like PE Table 6-2 that compares them.

 6.45 Why shouldn’t Petrie’s staff build their own unique
system in-house?

182

In the last chapter, you learned of various methods that
systems analysts use to collect the information neces-
sary to determine information systems requirements. In
this chapter, our focus will be on one tool that is used
to coherently represent the information gathered as part
of requirements determination—data flow diagrams.
Data flow diagrams enable you to model how data flow
through an information system, the relationships among
the data flows, and how data come to be stored at spe-
cific locations. Data flow diagrams also show the pro-
cesses that change or transform data. Because data flow
diagrams concentrate on the movement of data between
processes, these diagrams are called process models.

As its name indicates, a data flow diagram is a graph-
ical tool that allows analysts (and users, for that matter)
to depict the flow of data in an information system. The
system can be physical or logical, manual or computer-
based. In this chapter, you will learn how to draw and re-
vise data flow diagrams. We present the basic symbols used
in such diagrams and a set of rules that govern how these
diagrams are drawn. You will also learn about what to do
and what not to do when drawing data flow diagrams. Two

important concepts related to data flow diagrams are also
presented: balancing and decomposition. Toward the end
of the chapter, we present the use of data flow diagrams
as part of the analysis of an information system and as a
tool for supporting business process reengineering. You
will also learn how process modeling is important for the
analysis of electronic commerce applications. Also in this
chapter, you will learn about decision tables. Decision
tables allow you to represent the conditional logic that is
part of some data flow diagram processes. Finally, at the
end of the chapter, we have included special sections on
an object-oriented development approach to process and
logic modeling. These sections cover use cases, activity di-
agrams, and sequence diagrams. We have also included an
appendix on business process modeling.

Process Modeling
Process modeling involves graphically representing the
functions, or processes, that capture, manipulate, store,
and distribute data between a system and its environment
and between components within a system. A common

7.4 balance higher-level and lower-level data flow
diagrams,

7.5 use data flow diagrams as a tool to support the
analysis of information systems,

7.6 discuss process modeling for electronic commerce
applications, and

7.7 use decision tables to represent the logic of choice
in conditional statements.

Learning Objectives

After studying this chapter, you should be able to

7.1 understand the logical modeling of processes by
studying examples of data flow diagrams,

7.2 draw data flow diagrams following specific rules
and guidelines that lead to accurate and well-
structured process models,

7.3 decompose data flow diagrams into lower-level
diagrams,

structuring system
Process requirements7

chapter

Introduction

 Chapter 7 Structuring SyStem ProceSS requirementS 183

form of a process model is a data flow diagram (DFD). Over the years, several dif-
ferent tools have been developed for process modeling. In this chapter, we focus on
DFDs, the traditional process modeling technique of structured analysis and design
and one of the techniques most frequently used today for process modeling. We also
introduce you to decision tables, a well-known way to model the conditional logic
contained in many DFD processes.

Modeling a system’s Process for structured Analysis
As Figure 7-1 shows, the analysis phase of the systems development life cycle has two
subphases: requirements determination and requirements structuring. The analy-
sis team enters the requirements structuring phase with an abundance of informa-
tion gathered during the requirements determination phase. During requirements
structuring, you and the other team members must organize the information into a
meaningful representation of the information system that currently exists and of the
requirements desired in a replacement system. In addition to modeling the process-
ing elements of an information system and how data are transformed in the system,
you must also model the processing logic (decision tables) and the structure of data
within the system (Chapter 8). For traditional structured analysis, a process model is
only one of three major complementary views of an information system. Together,
process, logic, and data models provide a thorough specification of an information
system and, with the proper supporting tools, also provide the basis for the automatic
generation of many working information system components.

deliverables and outcomes
In structured analysis, the primary deliverables from process modeling are a set of co-
herent, interrelated DFDs. Table 7-1 provides a more detailed list of the deliverables
that result when DFDs are used to study and document a system’s processes. First, a
context diagram shows the scope of the system, indicating which elements are inside
and which are outside the system. Second, DFDs of the system specify which pro-
cesses move and transform data, accepting inputs and producing outputs. These dia-
grams are developed with sufficient detail to understand the current system and to

Data flow diagram (DFD)
A picture of the movement of data between
external entities and the processes and
data stores within a system.

DesignImplementation

Planning

Maintenance Analysis Requirements Determination
Requirements Structuring

Figure 7-1
Systems development life cycle with the
analysis phase highlighted

184 part iii AnAlySiS

eventually determine how to convert the current system into its replacement. Finally,
entries for all of the objects included in all of the diagrams are included in the proj-
ect dictionary or CASE repository. This logical progression of deliverables allows you
to understand the existing system. You can then abstract this system into its essential
elements to show how the new system should meet the information-processing re-
quirements identified during requirements determination. Remember, the deliver-
ables of process modeling are simply stating what you learned during requirements
determination; in later steps in the systems development life cycle, you and other
project team members will make decisions on exactly how the new system will deliver
these new requirements in specific manual and automated functions. Because re-
quirements determination and structuring are often parallel steps, DFDs evolve from
the more general to the more detailed as current and replacement systems are better
understood.

DFDs provide notation as well as illustrate important concepts about the move-
ment of data between manual and automated steps, and they offer a way to depict
work flow in an organization. DFDs continue to be beneficial to information systems
professionals as tools for both analysis and communication. For that reason, we de-
vote almost an entire chapter to DFDs, but we complement our coverage of DFDs
with an introduction to use cases and use case diagrams in the chapter appendix on
use case.

dAtA Flow diAgrAMMing MechAnics
DFDs are versatile diagramming tools. With only four symbols, you can use DFDs to
represent both physical and logical information systems. DFDs are not as good as
flowcharts for depicting the details of physical systems; on the other hand, flowcharts
are not very useful for depicting purely logical information flows. In fact, flowchart-
ing has been criticized by proponents of structured analysis and design because it
is too physically oriented. Flowcharting symbols primarily represent physical com-
puting equipment, such as terminals and permanent storage. One continual criti-
cism of system flowcharts has been that overreliance on such charts tends to result
in premature physical system design. Consistent with the incremental commitment
philosophy of the systems development life cycle (SDLC), you should wait to make
technology choices and to decide on physical characteristics of an information sys-
tem until you are sure all functional requirements are correct and accepted by users
and other stakeholders.

DFDs do not share this problem of premature physical design because they do
not rely on any symbols to represent specific physical computing equipment. They
are also easier to use than flowcharts because they involve only four different symbols.

definitions and symbols
There are two different standard sets of DFD symbols (see Figure 7-2); each set con-
sists of four symbols that represent the same things: data flows, data stores, processes,
and sources/sinks (or external entities). The set of symbols we will use in this book
was devised by Gane and Sarson (1979). The other standard set was developed by
DeMarco (1979) and Yourdon (Yourdon and Constantine, 1979).

Table 7-1 Deliverables for Process Modeling

1. Context DFD
2. DFDs of the system (adequately decomposed)
3. Thorough descriptions of each DFD component

 Chapter 7 Structuring SyStem ProceSS requirementS 185

A data flow can be best understood as data in motion, moving from one place
in a system to another. A data flow could represent data on a customer order form or
a payroll check; it could also represent the results of a query to a database, the con-
tents of a printed report, or data on a data entry computer display form. A data flow
is data that move together, so it can be composed of many individual pieces of data
that are generated at the same time and that flow together to common destinations.
A data store is data at rest. A data store may represent one of many different physical
locations for data; for example, a file folder, one or more computer-based file(s), or
a notebook. To understand data movement and handling in a system, it is not impor-
tant to understand the system’s physical configuration. A data store might contain
data about customers, students, customer orders, or supplier invoices. A process is
the work or actions performed on data so that they are transformed, stored, or dis-
tributed. When modeling the data processing of a system, it does not matter whether
a process is performed manually or by a computer. Finally, a source/sink is the origin
and/or destination of the data. Sources/sinks are sometimes referred to as external
entities because they are outside the system. Once processed, data or information
leave the system and go to some other place. Because sources and sinks are outside
the system we are studying, many of the characteristics of sources and sinks are of no
interest to us. In particular, we do not consider the following:

•	 Interactions that occur between sources and sinks
•	 What a source or sink does with information or how it operates (i.e., a source or

sink is a “black box”)
•	 How to control or redesign a source or sink because, from the perspective of

the system we are studying, the data a sink receives and often what data a source
provides are fixed

•	 How to provide sources and sinks direct access to stored data because, as exter-
nal agents, they cannot directly access or manipulate data stored within the sys-
tem; that is, processes within the system must receive or distribute data between
the system and its environment

The symbols for each set of DFD conventions are presented in Figure 7-2. In
both conventions, a data flow is depicted as an arrow. The arrow is labeled with a
meaningful name for the data in motion; for example, Customer Order, Sales
Receipt, or Paycheck. The name represents the aggregation of all the individual el-
ements of data moving as part of one packet, that is, all the data moving together

Data store
Data at rest, which may take the form of
many different physical representations.

Process
The work or actions performed on data
so that they are transformed, stored, or
distributed.

Source/sink
The origin and/or destination of data;
sometimes referred to as external entities.

process

data store

source/sink

data flow

DeMarco and Yourdon
symbols

Gane and Sarson
symbols

Figure 7-2
Comparison of DeMarco and Yourdon
and Gane and Sarson DFD symbol sets

186 part iii AnAlySiS

at the same time. A square is used in both conventions for sources/sinks and has a
name that states what the external agent is, such as Customer, Teller, EPA Office, or
Inventory Control System. The Gane and Sarson symbol for a process is a rectangle
with rounded corners; it is a circle for DeMarco and Yourdon. The Gane and Sarson
rounded rectangle has a line drawn through the top. The upper portion is used to
indicate the number of the process. Inside the lower portion is a name for the pro-
cess, such as Generate Paycheck, Calculate Overtime Pay, or Compute Grade Point
Average. The Gane and Sarson symbol for a data store is a rectangle that is missing its
right vertical side. At the left end is a small box used to number the data store, and
inside the main part of the rectangle is a meaningful label for the data store, such as
Student File, Transcripts, or Roster of Classes. The DeMarco and Yourdon data store
symbol consists of two parallel lines, which may be depicted horizontally or vertically.

As stated earlier, sources/sinks are always outside the information system and
define the boundaries of the system. Data must originate outside a system from one
or more sources, and the system must produce information to one or more sinks
(these are principles of open systems, and almost every information system is an
open system). If any data processing takes place inside the source/sink, it is of no
interest because this processing takes place outside the system we are diagramming.
A source/sink might consist of the following:

•	 Another organization or organization unit that sends data to or receives in-
formation from the system you are analyzing (e.g., a supplier or an academic
department—in either case, the organization is external to the system you are
studying)

•	 A person inside or outside the business unit supported by the system you are
analyzing who interacts with the system (e.g., a customer or loan officer)

•	 Another information system with which the system you are analyzing exchanges
information

Many times students who are just learning how to use DFDs will become con-
fused as to whether something is a source/sink or a process within a system. This
dilemma occurs most often when the data flows in a system cross office or depart-
mental boundaries so that some processing occurs in one office and the processed
data are moved to another office where additional processing occurs. Students are
tempted to identify the second office as a source/sink to emphasize the fact that
the data have been moved from one physical location to another (Figure 7-3a).
However, we are not concerned with where the data are physically located. We are
more interested in how they are moving through the system and how they are being
processed. If the processing of data in the other office may be automated by your
system or the handling of data there may be subject to redesign, then you should
represent the second office as one or more processes rather than as a source/sink
(Figure 7.3b).

developing dFds: An example
To illustrate how DFDs are used to model the logic of data flows in information sys-
tems, we will present and work through an example. Consider Hoosier Burger, a fic-
tional restaurant in Bloomington, Indiana, owned by Bob and Thelma Mellankamp.
Some are convinced that its hamburgers are the best in Bloomington, maybe even in
southern Indiana. Many people, especially Indiana University students and faculty,
frequently eat at Hoosier Burger. The restaurant uses an information system that
takes customer orders, sends the orders to the kitchen, monitors goods sold and in-
ventory, and generates reports for management.

The information system is depicted as a DFD in Figure 7-4. The highest-level
view of this system, shown in the figure, is called a context diagram. You will notice
that this context diagram contains only one process, no data stores, four data flows,
and three sources/sinks. The single process, labeled 0, represents the entire system;

Context diagram
An overview of an organizational system
that shows the system boundaries, external
entities that interact with the system, and
the major information flows between the
entities and the system.

HOOSIER
BURGER

 Chapter 7 Structuring SyStem ProceSS requirementS 187

Payment

Payment Data
Receipt

Payment Data

Deposit Data

Credit Data

BANK

CUSTOMER
MASTER

D1

2.0

Make
Bank

Deposit

1.0

Record
Payment

CUSTOMER

Accounting
Department

Figure 7-3
Differences between sources/sinks and
processes
(a) An improperly drawn DFD showing a
process as a source/sink

all context diagrams have only one process, labeled 0. The sources/sinks repre-
sent the environmental boundaries of the system. Because the data stores of the
system are conceptually inside one process, data stores do not appear on a context
diagram.

The analyst must determine which processes are represented by the single pro-
cess in the context diagram. As you can see in Figure 7-5, we have identified four

BANK

Payment

Payment Data
Receipt

Payment Data

Deposit Data

Credit Data

3.0

Update
Customer

Master

CUSTOMER

1.0

Record
Payment

2.0

Make
Bank

Deposit

CUSTOMER
MASTERD1

(b) A DFD showing proper use of a
process

RESTAURANT
MANAGER

KITCHEN

Receipt

Customer Order
Food Order

Management
Reports

0

Food-
Ordering
System

CUSTOMER

Figure 7-4
Context diagram of Hoosier Burger’s
food-ordering system

188 part iii AnAlySiS

separate processes. The main processes represent the major functions of the system,
and these major functions correspond to actions such as the following:

1. Capturing data from different sources (e.g., Process 1.0)
2. Maintaining data stores (e.g., Processes 2.0 and 3.0)
3. Producing and distributing data to different sinks (e.g., Process 4.0)
4. High-level descriptions of data transformation operations (e.g., Process 1.0)

These major functions often correspond to the activities on the main system
menu.

We see that the system begins with an order from a customer, as was the case
with the context diagram. In the first process, labeled 1.0, we see that the customer
order is processed. The result is four streams, or flows, of data: (1) the food order is
transmitted to the kitchen, (2) the customer order is transformed into a list of goods
sold, (3) the customer order is transformed into inventory data, and (4) the process
generates a receipt for the customer.

Notice that the sources/sinks are the same in the context diagram and in this
diagram: the customer, the kitchen, and the restaurant’s manager. This diagram is
called a level-0 diagram because it represents the primary individual processes in the
system at the highest possible level. Each process has a number that ends in .0 (cor-
responding to the level number of the DFD).

Two of the data flows generated by the first process, Receive and Transform
Customer Food Order, go to external entities, so we no longer have to worry about
them. We are not concerned about what happens outside our system. Let’s trace
the flow of the data represented in the other two data flows. First, the data labeled
Goods Sold go to Process 2.0, Update Goods Sold File. The output for this process
is labeled Formatted Goods Sold Data. This output updates a data store labeled

Level-0 diagram
A DFD that represents a system’s major
processes, data flows, and data stores at a
high level of detail.

CUSTOMER

RESTAURANT
MANAGER

KITCHEN

Receipt

Customer Order
Food Order

Management
Reports

Goods
Sold

Inventory
Data

Formatted
Goods Sold Data

Formatted
Inventory Data

Daily Inventory
Depletion Amounts

Daily Goods Sold
Amounts

Inventory
FileD1

Goods Sold
FileD2

1.0

Receive and
Transform
Customer

Food Order

3.0

Update
Inventory

File

2.0

Update
Goods Sold

File

4.0

Produce
Management

Reports

Figure 7-5
Level-0 DFD of Hoosier Burger’s food-
ordering system

 Chapter 7 Structuring SyStem ProceSS requirementS 189

Goods Sold File. If the customer order was for two cheeseburgers, one order of
fries, and a large soft drink, each of these categories of goods sold in the data store
would be incremented appropriately. The Daily Goods Sold Amounts are then used
as input to Process 4.0, Produce Management Reports. Similarly, the remaining
data flow generated by Process 1.0, Inventory Data, serves as input for Process 3.0,
Update Inventory File. This process updates the Inventory File data store, based on
the inventory that would have been used to create the customer order. For example,
an order of two cheeseburgers would mean that Hoosier Burger now has two fewer
hamburger patties, two fewer burger buns, and four fewer slices of American cheese.
The Daily Inventory Depletion Amounts are then used as input to Process 4.0. The
data flow leaving Process 4.0, Management Reports, goes to the sink Restaurant
Manager.

Figure 7-5 illustrates several important concepts about information movement.
Consider the data flow Inventory Data moving from Process 1.0 to Process 3.0. We
know from this diagram that Process 1.0 produces this data flow and that Process 3.0
receives it. However, we do not know the timing of when this data flow is produced,
how frequently it is produced, or what volume of data is sent. Thus, this DFD hides
many physical characteristics of the system it describes. We do know, however, that
this data flow is needed by Process 3.0 and that Process 1.0 provides these needed
data.

Also implied by the Inventory Data data flow is that whenever Process 1.0 pro-
duces this flow, Process 3.0 must be ready to accept it. Thus, Processes 1.0 and 3.0
are coupled with each other. In contrast, consider the link between Process 2.0 and
Process 4.0. The output from Process 2.0, Formatted Goods Sold Data, is placed in
a data store and, later, when Process 4.0 needs such data, it reads Daily Goods Sold
Amounts from this data store. In this case, Processes 2.0 and 4.0 are decoupled by
placing a buffer, a data store, between them. Now, each of these processes can work
at their own pace, and Process 4.0 does not have to be ready to accept input at any
time. Further, the Goods Sold File becomes a data resource that other processes
could potentially draw upon for data.

data Flow diagramming rules
You must follow a set of rules when drawing DFDs. Unlike system flowcharts, these
rules allow you (or a CASE tool) to evaluate DFDs for correctness. The rules for
DFDs are listed in Table 7-2. Figure 7-6 illustrates incorrect ways to draw DFDs and
the corresponding correct application of the rules. The rules that prescribe naming
conventions (rules C, G, I, and P) and those that explain how to interpret data flows
in and out of data stores (rules N and O) are not illustrated in Figure 7-6.

In addition to the rules in Table 7-2, there are two DFD guidelines that often
apply:

1. The inputs to a process are different from the outputs of that process. The reason is that
processes, because they have a purpose, typically transform inputs into outputs,
rather than simply pass the data through without some manipulation. What may
happen is that the same input goes in and out of a process, but the process also
produces other new data flows that are the result of manipulating the inputs.

2. Objects on a DFD have unique names. Every process has a unique name. There is
no reason for two processes to have the same name. To keep a DFD uncluttered,
however, you may repeat data stores and sources/sinks. When two arrows have
the same data flow name, you must be careful that these flows are exactly the
same. It is easy to reuse the same data flow name when two packets of data are
almost the same but not identical. A data flow name represents a specific set of
data, and another data flow that has even one more or one less piece of data
must be given a different, unique name.

190 part iii AnAlySiS

decomposition of dFds
In the earlier example of Hoosier Burger’s food-ordering system, we started with a
high-level context diagram. Upon thinking more about the system, we saw that the
larger system consisted of four processes. The act of going from a single system to
four component processes is called (functional) decomposition. Functional decompo-
sition is an iterative process of breaking the description or perspective of a system
down into finer and finer detail. This process creates a set of hierarchically related
charts in which one process on a given chart is explained in greater detail on another
chart. For the Hoosier Burger system, we broke down, or decomposed, the larger
system into four processes. Each resulting process (or subsystem) is also a candidate
for decomposition. Each process may consist of several subprocesses. Each subpro-
cess may also be broken down into smaller units. Decomposition continues until you
have reached the point at which no subprocess can logically be broken down any
further. The lowest level of a DFD is called a primitive DFD, which we define later in
this chapter.

Let’s continue with Hoosier Burger’s food-ordering system to see how a level-0
DFD can be further decomposed. The first process in Figure 7-5, called Receive and
Transform Customer Food Order, transforms a customer’s verbal food order (e.g., “Give
me two cheeseburgers, one small order of fries, and one regular orange soda”) into

Functional decomposition
An iterative process of breaking the
description of a system down into finer and
finer detail, which creates a set of charts
in which one process on a given chart
is explained in greater detail on another
chart.

HOOSIER
BURGER

Table 7-2 Rules Governing Data Flow Diagramming
Process:
A. No process can have only outputs. It would be making data from nothing (a miracle). If an

object has only outputs, then it must be a source.
B. No process can have only inputs (a black hole). If an object has only inputs, then it must be

a sink.
C. A process has a verb phrase label.
Data Store:
D. Data cannot move directly from one data store to another data store. Data must be moved

by a process.
E. Data cannot move directly from an outside source to a data store. Data must be moved by a

process that receives data from the source and places the data into the data store.
F. Data cannot move directly to an outside sink from a data store. Data must be moved by a

process.
G. A data store has a noun phrase label.
Source/Sink:
H. Data cannot move directly from a source to a sink. It must be moved by a process if the data

are of any concern to our system. Otherwise, the data flow is not shown on the DFD.
I. A source/sink has a noun phrase label.
Data Flow:
J. A data flow has only one direction of flow between symbols. It may flow in both directions

between a process and a data store to show a read before an update. The latter is usually
indicated, however, by two separate arrows because these happen at different times.

K. A fork in a data flow means that exactly the same data goes from a common location to
two or more different processes, data stores, or sources/sinks (this usually indicates different
copies of the same data going to different locations).

L. A join in a data flow means that exactly the same data come from any of two or more
different processes, data stores, or sources/sinks to a common location.

M. A data flow cannot go directly back to the same process it leaves. There must be at least one
other process that handles the data flow, produces some other data flow, and returns the
original data flow to the beginning process.

N. A data flow to a data store means update (delete or change).
O. A data flow from a data store means retrieve or use.
P. A data flow has a noun phrase label. More than one data flow noun phrase can appear on

a single arrow as long as all of the flows on the same arrow move together as one package.

(Source: Based on Celko, 1987.)

 Chapter 7 Structuring SyStem ProceSS requirementS 191

four different outputs. Process 1.0 is a good candidate process for decomposition.
Think about all of the different tasks that Process 1.0 has to perform: (1) receive a cus-
tomer order, (2) transform the entered order into a form meaningful for the kitchen’s
system, (3) transform the order into a printed receipt for the customer, (4) transform
the order into goods sold data, and (5) transform the order into inventory data. At
least five logically separate functions can occur in Process 1.0. We can represent the
decomposition of Process 1.0 as another DFD, as shown in Figure 7-7.

Incorrect Correct

A.

B.

D.

E.

F.

H.

K.

L.

M.

J.

Rule

A

B

A

A

A

B

A

A

A

A

AA

B

C

Figure 7-6
Incorrect and correct ways to draw DFDs

192 part iii AnAlySiS

Note that each of the five processes in Figure 7-7 is labeled as a subprocess of
Process 1.0: Process 1.1, Process 1.2, and so on. Also note that, just as with the other
DFDs we have looked at, each of the processes and data flows is named. You will also
notice that no sources or sinks are represented. Although you may include sources
and sinks, the context and level-0 diagrams show the sources and sinks. The DFD in
Figure 7-7 is called a level-1 diagram. If we should decide to decompose Processes
2.0, 3.0, or 4.0 in a similar manner, the DFDs we would create would also be level-1
diagrams. In general, a level-n diagram is a DFD that is generated from n nested de-
compositions from a level-0 diagram.

Processes 2.0 and 3.0 perform similar functions in that they both use data input
to update data stores. Because updating a data store is a singular logical function,
neither of these processes needs to be decomposed further. We can, however, de-
compose Process 4.0, Produce Management Reports, into at least three subprocesses:
Access Goods Sold and Inventory Data, Aggregate Goods Sold and Inventory Data,
and Prepare Management Reports. The decomposition of Process 4.0 is shown in the
level-1 diagram of Figure 7-8.

Each level-1, -2, or -n DFD represents one process on a level-n-1 DFD; each
DFD should be on a separate page. As a rule of thumb, no DFD should have more

Level-n diagram
A DFD that is the result of n nested
decompositions from a process on a level-0
diagram.

Customer
Order

Customer Order
Customer Order

Customer Order

Customer
Order Food Order

Inventory
Data

Goods Sold Data

Receipt

1.1

Receive
Customer

Order

1.2

Generate
Customer
Receipt

1.5

Generate
Inventory

Decrements

1.4

Generate
Goods Sold
Increments

1.3

Transform
Order to
Kitchen
Format

Figure 7-7
Level-1 diagram showing the
decomposition of Process 1.0 from the
level-0 diagram for Hoosier Burger’s
food-ordering system

Daily Goods
Sold Amounts

Inventory Data

Goods Sold Data

Aggregated Data

Management
Reports

Daily Inventory
Depletion Amounts

4.2

Aggregate
Goods Sold

and Inventory
Data

4.1

Access
Goods Sold

and Inventory
Data

4.3

Prepare
Management

Reports

Figure 7-8
Level-1 diagram showing the
decomposition of Process 4.0 from the
level-0 diagram for Hoosier Burger’s
food-ordering system

 Chapter 7 Structuring SyStem ProceSS requirementS 193

than about seven processes because too many processes will make the diagram too
crowded and difficult to understand. To continue with the decomposition of Hoosier
Burger’s food-ordering system, we examine each of the subprocesses identified in
the two level-1 diagrams we have produced, one for Process 1.0 and one for Process
4.0. Should we decide that any of these subprocesses should be further decomposed,
we would create a level-2 diagram showing that decomposition. For example, if we
decided that Process 4.3 in Figure 7-8 should be further decomposed, we would cre-
ate a diagram that looks something like Figure 7-9. Again, notice how the subpro-
cesses are labeled.

Just as the labels for processes must follow numbering rules for clear commu-
nication, process names should also be clear yet concise. Typically, process names
begin with an action verb, such as Receive, Calculate, Transform, Generate, or
Produce. Process names often are the same as the verbs used in many computer pro-
gramming languages. Example process names include Merge, Sort, Read, Write, and
Print. Process names should capture the essential action of the process in just a few
words, yet be descriptive enough of the process’s action so that anyone reading the
name gets a good idea of what the process does. Many times, students just learning
DFDs will use the names of people who perform the process or the department in
which the process is performed as the process name. This practice is not very useful
because we are more interested in the action the process represents than the person
performing it or the place where it occurs.

Balancing dFds
When you decompose a DFD from one level to the next, there is a conservation prin-
ciple at work. You must conserve inputs and outputs to a process at the next level of
decomposition. In other words, Process 1.0, which appears in a level-0 diagram, must
have the same inputs and outputs when decomposed into a level-1 diagram. This
conservation of inputs and outputs is called balancing.

Let’s look at an example of balancing a set of DFDs. Look back at Figure 7-4.
This is the context diagram for Hoosier Burger’s food-ordering system. Notice that
there is one input to the system, the customer order, which originates with the cus-
tomer. Notice also that there are three outputs: the customer receipt, the food order
intended for the kitchen, and management reports. Now look at Figure 7-5. This is
the level-0 diagram for the food-ordering system. Remember that all data stores and
flows to or from them are internal to the system. Notice that the same single input
to the system and the same three outputs represented in the context diagram also
appear at level 0. Further, no new inputs to or outputs from the system have been
introduced. Therefore, we can say that the context diagram and level-0 DFDs are
balanced.

Now look at Figure 7-7, where Process 1.0 from the level-0 DFD has been de-
composed. As we have seen before, Process 1.0 has one input and four outputs. The
single input and multiple outputs all appear on the level-1 diagram in Figure 7-7. No
new inputs or outputs have been added. Compare Process 4.0 in Figure 7-5 with its
decomposition in Figure 7-8. You see the same conservation of inputs and outputs.

Figure 7-10 shows one example of what an unbalanced DFD could look like.
The context diagram shows one input to the system, A, and one output, B. Yet in
the level-0 diagram, there is an additional input, C, and flows A and C come from

Balancing
The conservation of inputs and outputs
to a DFD process when that process is
decomposed to a lower level.

4.3.2

Print
Management

Reports

Formatted DataAggregated Data Management Reports

4.3.1

Format
Management

Reports

Figure 7-9
Level-2 diagram showing the
decomposition of Process 4.3 from the
level-1 diagram for Process 4.0 for
Hoosier Burger’s food-ordering system

194 part iii AnAlySiS

Write
Software

X.0

Payment and Coupon

Figure 7-11
Example of data flow splitting
(a) Composite data flow

(b) Disaggregated data flows X.1

X.2

Payment

Coupon

Formatted C

A

C B

Formatted A

1.0

SOURCE
ONE

2.0

SOURCE
TWO

SINK

A B

0

SOURCE SINK

Figure 7-10
An unbalanced set of DFDs
(a) Context diagram

(b) Level-0 diagram

different sources. These two DFDs are not balanced. If an input appears on a level-0
diagram, it must also appear on the context diagram. What happened with this ex-
ample? Perhaps, when drawing the level-0 DFD, the analyst realized that the system
also needed C in order to compute B. A and C were both drawn in the level-0 DFD,
but the analyst forgot to update the context diagram. When making corrections, the
analyst should also include “SOURCE ONE” and “SOURCE TWO” on the context
diagram. It is very important to keep DFDs balanced from the context diagram all
the way through each level of diagram you create.

A data flow consisting of several subflows on a level-n diagram can be split
apart on a level-n diagram for a process that accepts this composite data flow as
input. For example, consider the partial DFDs from Hoosier Burger, illustrated in
Figure 7-11. In Figure 7-11a, we see that a composite, or package, data flow—Payment
and Coupon—is input to the process. That is, the payment and coupon always flow
together and are input to the process at the same time. In Figure 7-11b, the process
is decomposed (sometimes referred to as exploded or nested) into two subprocesses,

 Chapter 7 Structuring SyStem ProceSS requirementS 195

Table 7-3 advanced Rules Governing Data Flow Diagramming
Q. A composite data flow on one level can be split into component data flows at the next level,

but no new data can be added and all data in the composite must be accounted for in one
or more subflows.

R. The inputs to a process must be sufficient to produce the outputs (including data placed
in data stores) from the process. Thus, all outputs can be produced, and all data in inputs
move somewhere: to another process or to a data store outside the process or onto a more
detailed DFD showing a decomposition of that process.

S. At the lowest level of DFDs, new data flows may be added to represent data that are
transmitted under exceptional conditions; these data flows typically represent error messages
(e.g., “Customer not known; do you want to create a new customer?”) or confirmation
notices (e.g., “Do you want to delete this record?”).

T. To avoid having data flow lines cross each other, you may repeat data stores or sources/
sinks on a DFD. Use an additional symbol, like a double line on the middle vertical line of
a data store symbol or a diagonal line in a corner of a sink/source square, to indicate a
repeated symbol.

(Source: Based on Celko, 1987.)

and each subprocess receives one of the components of the composite data flow
from the higher-level DFD. These diagrams are still balanced because exactly the
same data are included in each diagram.

The principle of balancing and the goal of keeping a DFD as simple as possible
led to four additional, advanced rules for drawing DFDs. These advanced rules are
summarized in Table 7-3. Rule Q covers the situation illustrated in Figure 7-11. Rule
R covers a conservation principle about process inputs and outputs. Rule S addresses
one exception to balancing. Rule T tells you how you can minimize clutter on a DFD.

An exAMPle dFd
To illustrate the creation and refinement of DFDs, we will look at another example
from Hoosier Burger. We saw that the food-ordering system generates two types of
usage data—goods sold and inventory. At the end of each day, the manager, Bob
Mellankamp, generates the inventory report that tells him how much inventory should
have been used for each item associated with a sale. The amounts shown on the inven-
tory report are just one input to a largely manual inventory control system Bob uses
every day. Figure 7-12 lists the steps involved in Bob’s inventory control system.

In the Hoosier Burger inventory system, three sources of data come from
outside: suppliers, the food-ordering system inventory report, and stock on hand.
Suppliers provide invoices as input, and the system returns payments and orders as
outputs to the suppliers. Both the inventory report and the stock-on-hand amounts

1. Meet delivery trucks before opening restaurant.

2. Unload and store deliveries.

3. Log invoices and file in accordion file.

4. Manually add amounts received to stock logs.

5. After closing, print inventory report.

6. Count physical inventory amounts.

7. Compare inventory report totals to physical count totals.

8. Compare physical count totals to minimum order quantities. If the amount is less,
make order; if not, do nothing.

9. Pay bills that are due and record them as paid.

Figure 7-12
List of activities involved in Bob
Mellankamp’s inventory control system
for Hoosier Burger

HOOSIER
BURGER

196 part iii AnAlySiS

provide inventory counts as system inputs. When Bob receives invoices from suppli-
ers, he records their receipt on an invoice log sheet and files the actual invoices in
his accordion file. Using the invoices, Bob records the amount of stock delivered on
the stock logs, which are paper forms posted near the point of storage for each inven-
tory item. Figure 7-13 gives a partial example of Hoosier Burger’s stock log. Notice
that the minimum order quantities—the stock level at which orders must be placed in
order to avoid running out of an item—appear on the log form. The stock log also has
spaces for entering the starting amount, amount delivered, and the amount used for
each item. Amounts delivered are entered on the sheet when Bob logs stock deliveries;
amounts used are entered after Bob has compared the amounts of stock used accord-
ing to a physical count and according to the numbers on the inventory report gener-
ated by the food-ordering system. We should note that Hoosier Burger has standing
daily delivery orders for some perishable items that are used every day, such as burger
buns, meats, and vegetables. Bob uses the minimum order quantities and the amount
of stock on hand to determine which orders need to be placed. He uses the invoices to
determine which bills need to be paid, and he carefully records each payment.

To create the DFD, we need to identify the essence of the inventory system
Bob has established. What are the key data necessary to keep track of inventory and
pay bills? What are the key processes involved? At least four key processes make up
Hoosier Burger’s inventory system: (1) account for anything added to inventory,
(2) account for anything taken from inventory, (3) place orders, and (4) pay bills.
Key data used by the system include inventories and stock-on-hand counts, however
they are determined. Major outputs from the system continue to be orders and pay-
ments. If we focus on the essential elements of the system, we obtain the context
diagram and the level-0 DFD shown in Figure 7-14.

At this point, we can revise the DFD based on any new functionality desired
for the system. For Hoosier Burger’s inventory system, Bob Mellankamp would like
to add three additional functions. First, Bob would like data on new shipments to
be entered into an automated system, thus doing away with paper stock log sheets.
Bob would like shipment data to be as current as possible because it will be entered
into the system as soon as the new stock arrives at the restaurant. Second, Bob would
like the system to determine automatically whether a new order should be placed.
Automatic ordering would relieve Bob of worrying about whether Hoosier Burger
has enough of everything in stock at all times. Finally, Bob would like to be able to
know, at any time, the approximate inventory level for each good in stock. For some
goods, such as hamburger buns, Bob can visually inspect the amount in stock and
determine approximately how much is left and how much more is needed before
closing time. For other items, however, Bob may need a rough estimate of what is in
stock more quickly than he can estimate via a visual inspection.

Stock Log

Date: Jan 1 Jan 2

Reorder
Quantity

Starting
Amount

Amount
Delivered

Amount
Used

Starting
Amount

Item

Hamburger buns 50 dozen 5 50 43 12

Hot dog buns 25 dozen 0 25 22 3

English mu�ns 10 dozen 6 10 12 4

Napkins 2 cases 10 0 2 8

Straws 1 case 1 0 1 0

Figure 7-13
Hoosier Burger’s stock log form

 Chapter 7 Structuring SyStem ProceSS requirementS 197

Orders

Invoices Counts

Payments

SUPPLIER
STOCK

ON HANDInventory
System

Figure 7-14
(a) Context diagram for Hoosier Burger’s
inventory control system

Invoices

InvoicesPayments

Orders

Counts

Amounts UsedAmounts Added

Inventory Levels

Minimum Order
Quantities

INVENTORYD1

1.0

Update
Inventory

Added

3.0

Generate
Orders

4.0

Generate
Payments

2.0

Update
Inventory

Used

SUPPLIER
STOCK

ON HAND

The revised DFD for Hoosier Burger’s inventory system is shown in Figure 7-15.
The main difference between the DFD in Figure 7-14b and the revised DFD in
Figure 7-15 is the new Process 5.0, which allows for querying the inventory data to
get an estimate of how much of an item is in stock. Bob’s two other requests for
change can both be handled within the existing logical view of the inventory system.

Invoices

InvoicesPayments Orders

Counts

Amounts
Used

Amounts
Added

Inventory
Levels

Inventory
Levels

Minimum Order
Quantities

INVENTORYD1

1.0

Update
Inventory

Added

3.0

Generate
Orders

4.0

Generate
Payments

2.0

Update
Inventory

Used

SUPPLIER STOCK
ON HAND

Query
Request

Query Result

5.0

Query
Inventory

Levels

MANAGER

Figure 7-15
Revised level-0 DFD for Hoosier Burger’s inventory control system

(b) Level-0 DFD for Hoosier Burger’s
inventory control system

198 part iii AnAlySiS

Process 1.0, Update Inventory Added, does not indicate whether the updates are in
real time or batched, or whether the updates occur on paper or as part of an auto-
mated system. Therefore, immediately entering shipment data into an automated
system is encompassed by Process 1.0. Similarly, Process 2.0, Generate Orders, does
not indicate whether Bob or a computer generates orders or whether the orders are
generated on a real-time or batch basis, so Bob’s request that orders be generated
automatically by the system is already represented by Process 3.0.

Using dAtA Flow diAgrAMMing in the
AnAlysis Process
Learning the mechanics of drawing DFDs is important because DFDs have proven
to be essential tools for the structured analysis process. Beyond the issue of drawing
mechanically correct DFDs, there are other issues related to process modeling with
which you, as an analyst, must be concerned. Such issues, including whether the
DFDs are complete and consistent across all levels, are dealt with in the next section,
which covers guidelines for drawing DFDs. Another issue to consider is how you can
use DFDs as a useful tool for analysis. In these final sections, we also illustrate how
DFDs can be used to support business process reengineering.

guidelines for drawing dFds
In this section, we will consider additional guidelines for drawing DFDs that extend
beyond the simple mechanics of drawing diagrams and making sure that the rules
listed in Tables 7-2 and 7-3 are followed. These guidelines include (1) completeness,
(2) consistency, (3) timing considerations, (4) the iterative nature of drawing DFDs,
and (5) primitive DFDs.

Completeness The concept of DFD completeness refers to whether you have in-
cluded in your DFDs all of the components necessary for the system you are model-
ing. If your DFD contains data flows that do not lead anywhere or data stores, pro-
cesses, or external entities that are not connected to anything else, your DFD is not
complete. Most CASE tools have built-in facilities that you can run to help you de-
termine if your DFD is incomplete. When you draw many DFDs for a system, it is not
uncommon to make errors. CASE tool analysis functions or walk-throughs with other
analysts can help you identify such problems.

Not only must all necessary elements of a DFD be present, each of the compo-
nents must be fully described in the project dictionary. With most CASE tools, the
project dictionary is linked with the diagram. That is, when you define a process, data
flow, source/sink, or data store on a DFD, an entry is automatically created in the
repository for that element. You must then enter the repository and complete the el-
ement’s description. Different descriptive information can be kept about each of the
four types of elements on a DFD, and each CASE tool or project dictionary standard
an organization adopts has different entry information. Data flow repository entries
typically include the following:

•	 The label or name for the data flow as entered on the DFDs (Note: Case and
punctuation of the label matter, but if exactly the same label is used on multiple
DFDs, whether nested or not, then the same repository entry applies to each
reference.)

•	 A short description defining the data flow
•	 A list of other repository objects grouped into categories by type of object
•	 The composition or list of data elements contained in the data flow
•	 Notes supplementing the limited space for the description that go beyond defin-

ing the data flow to explaining the context and nature of this repository object

DFD completeness
The extent to which all necessary
components of a DFD have been included
and fully described.

 Chapter 7 Structuring SyStem ProceSS requirementS 199

•	 A list of locations (the names of the DFDs) on which this data flow appears
and the names of the sources and destinations on each of these DFDs for the
data flow

By the way, it is this tight linkage between diagrams and the CASE repository
that creates much of the value of a CASE tool. Although very sophisticated drawing
tools, as well as forms and word-processing systems, exist, these stand-alone tools do
not integrate graphical objects with their textual descriptions as CASE tools do.

Consistency The concept of DFD consistency refers to whether or not the depic-
tion of the system shown at one level of a nested set of DFDs is compatible with
the depictions of the system shown at other levels. A gross violation of consistency
would be a level-1 diagram with no level-0 diagram. Another example of inconsis-
tency would be a data flow that appears on a higher-level DFD but not on lower levels
(also a violation of balancing). Yet another example of inconsistency is a data flow
attached to one object on a lower-level diagram but also attached to another object
at a higher level; for example, a data flow named Payment, which serves as input to
Process 1 on a level-0 DFD, appears as input to Process 2.1 on a level-1 diagram for
Process 2.

CASE tools also have analysis facilities that you can use to detect such inconsis-
tencies across nested DFDs. For example, when you draw a DFD using a CASE tool,
most tools will automatically place the inflows and outflows of a process on the DFD
you create when you inform the tool to decompose that process. In manipulating
the lower-level diagram, you could accidentally delete or change a data flow that
would cause the diagrams to be out of balance; thus, a consistency-check facility with
a CASE tool is quite helpful.

Timing You may have noticed in some of the DFD examples we have presented that
DFDs do not do a very good job of representing time. On a given DFD, there is no
indication of whether a data flow occurs constantly in real time, once per week, or
once per year. There is also no indication of when a system would run. For example,
many large, transaction-based systems may run several large, computing-intensive
jobs in batch mode at night, when demands on the computer system are lighter.
A DFD has no way of indicating such overnight batch processing. When you draw
DFDs, then, draw them as if the system you are modeling has never started and will
never stop.

Iterative Development The first DFD you draw will rarely capture perfectly the sys-
tem you are modeling. You should count on drawing the same diagram over and
over again, in an iterative fashion. With each attempt, you will come closer to a good
approximation of the system or aspect of the system you are modeling. Iterative DFD
development recognizes that requirements determination and requirements struc-
turing are interacting, not sequential, subphases of the analysis phase of the SDLC.

One rule of thumb is that it should take you about three revisions for each DFD
you draw. Fortunately, CASE tools make revising drawings a lot easier than it would
be if you had to draw each revision with a pencil and a template.

Primitive DFDs One of the more difficult decisions you need to make when draw-
ing DFDs is when to stop decomposing processes. One rule is to stop drawing when
you have reached the lowest logical level; however, it is not always easy to know what
the lowest logical level is. Other, more concrete rules for when to stop decomposing
include the following:

•	 When you have reduced each process to a single decision or calculation or to a
single database operation, such as retrieve, update, create, delete, or read

•	 When each data store represents data about a single entity, such as a customer,
employee, product, or order

DFD consistency
The extent to which information contained
on one level of a set of nested DFDs is also
included on other levels.

200 part iii AnAlySiS

•	 When the system user does not care to see any more detail or when you and
other analysts have documented sufficient detail to do subsequent systems devel-
opment tasks

•	 When every data flow does not need to be split further to show that different
data are handled in different ways

•	 When you believe that you have shown each business form or transaction, com-
puter online display, and report as a single data flow (this often means, for ex-
ample, that each system display and report title corresponds to the name of an
individual data flow)

•	 When you believe there is a separate process for each choice on all lowest-level
menu options for the system

Obviously, the iteration guideline discussed earlier and the various feedback
loops in the SDLC (see Figure 7-1) suggest that when you think you have met the
rules for stopping, you may later discover nuances to the system that require you to
further decompose a set of DFDs.

By the time you stop decomposing a DFD, it may be quite detailed. Seemingly
simple actions, such as generating an invoice, may pull information from several en-
tities and may also return different results depending on the specific situation. For
example, the final form of an invoice may be based on the type of customer (which
would determine such things as discount rate), where the customer lives (which would
determine such things as sales tax), and how the goods are shipped (which would de-
termine such things as the shipping and handling charges). At the lowest-level DFD,
called a primitive DFD, all of these conditions would have to be met. Given the amount
of detail called for in a primitive DFD, perhaps you can see why many experts believe
analysts should not spend their time completely diagramming the current physical
information system because much of the detail will be discarded when the current
logical DFD is created.

Using the guidelines presented in this section will help you to create DFDs that
are more than just mechanically correct. Your DFDs will also be robust and accurate
representations of the information system you are modeling. Primitive DFDs facili-
tate consistency checks with the documentation produced from other requirements
structuring techniques and make it easy for you to transition to system design steps.
Having mastered the skills of drawing good DFDs, you can now use them to support
the analysis process, the subject of the next section.

Using dFds as Analysis tools
We have seen that DFDs are versatile tools for process modeling and that they can be
used to model systems that are either physical or logical, current or new. DFDs can
also be used in a process called gap analysis. Analysts can use gap analysis to discover
discrepancies between two or more sets of DFDs, representing two or more states of
an information system, or discrepancies within a single DFD.

Once the DFDs are complete, you can examine the details of individual DFDs
for such problems as redundant data flows, data that are captured but are not used
by the system, and data that are updated identically in more than one location. These
problems may not have been evident to members of the analysis team or to other
participants in the analysis process when the DFDs were created. For example, re-
dundant data flows may have been labeled with different names when the DFDs were
created. Now that the analysis team knows more about the system it is modeling,
such redundancies can be detected. Such redundancies can be detected most easily
from CASE tool repository reports. For example, many CASE tools can generate a
report that lists all of the processes that accept a given data element as input (re-
member, a list of data elements is likely part of the description of each data flow).
From the labels of these processes, you can determine whether the data are captured

Primitive DFD
The lowest level of decomposition for a
DFD.

gap analysis
The process of discovering discrepancies
between two or more sets of DFDs or
discrepancies within a single DFD.

 Chapter 7 Structuring SyStem ProceSS requirementS 201

redundantly or if more than one process is maintaining the same data stores. In such
cases, the DFDs may well accurately mirror the activities occurring in the organi-
zation. Because the business processes being modeled took many years to develop,
sometimes with participants in one part of the organization adapting procedures
in isolation from other participants, redundancies and overlapping responsibilities
may well have resulted. The careful study of the DFDs created as part of analysis
can reveal these procedural redundancies and allow them to be corrected as part of
system design.

Inefficiencies can also be identified by studying DFDs, and there are a wide va-
riety of inefficiencies that might exist. Some inefficiencies relate to violations of DFD
drawing rules. For example, a violation of rule R from Table 7-3 could occur because
obsolete data are captured but never used within a system. Other inefficiencies are
due to excessive processing steps. For example, consider the correct DFD in item M
of Figure 7-1. Although this flow is mechanically correct, such a loop may indicate
potential delays in processing data or unnecessary approval operations.

Similarly, a set of DFDs that models the current logical system can be compared
with DFDs that model the new logical system to better determine which processes
systems developers need to add or revise when building the new system. Processes for
which inputs, outputs, and internal steps have not changed can possibly be reused
in the construction of the new system. You can compare alternative logical DFDs to
identify those few elements that must be discussed in evaluating competing opinions
on system requirements. The logical DFDs for the new system can also serve as the
basis for developing alternative design strategies for the new physical system. As we
saw with the Hoosier Burger example, a process on a DFD can be physically imple-
mented in several different ways.

Using dFds in Business Process reengineering
DFDs are also useful for modeling processes in business process reengineering
(BPR), which you read about in Chapter 6. To illustrate the usefulness of DFDs for
BPR, let’s look at an example from Hammer and Champy (1993). Hammer and
Champy use IBM Credit Corporation as an example of a firm that successfully reengi-
neered its primary business process. IBM Credit Corporation provides financing for
customers making large purchases of IBM computer equipment. Its job is to analyze
deals proposed by salespeople and write the final contracts governing those deals.

According to Hammer and Champy, IBM Credit Corporation typically took six
business days to process each financing deal. The process worked like this: First, the
salesperson called in with a proposed deal. The call was taken by one of a half dozen
people sitting around a conference table. Whoever received the call logged it and
wrote the details on a piece of paper. A clerk then carried the paper to a second per-
son, who initiated the next step in the process by entering the data into a computer
system and checking the client’s creditworthiness. This person then wrote the details
on a piece of paper and carried the paper, along with the original documentation, to
a loan officer. Then, in a third step, the loan officer modified the standard IBM loan
agreement for the customer. This step involved a separate computer system from the
one used in step two.

In the fourth step, details of the modified loan agreement, along with the other
documentation, were sent on to the next station in the process, where a different
clerk determined the appropriate interest rate for the loan. This step also involved its
own information system. In step five, the resulting interest rate and all of the paper
generated up to this point were then carried to the next stop, where the quote letter
was created. Once complete, the quote letter was sent via overnight mail back to the
salesperson.

Only reading about this process makes it seem complicated. We can use DFDs
to illustrate the overall process (see Figure 7-16). DFDs help us see that the process

202 part iii AnAlySiS

is not as complicated as it is tedious and wasteful, especially when you consider that
so many different people and computer systems were used to support the work at
each step.

According to Hammer and Champy, two IBM managers decided to see if they
could improve the overall process at IBM Credit Corporation. They took a call from a
salesperson and walked it through the system. These managers found that the actual
work being done on a contract only took 90 minutes. For much of the rest of the
six days it took to process the deal, the various bits of documentation were sitting in
someone’s in-basket waiting to be processed.

IBM Credit Corporation management decided to reengineer its entire process.
The five sets of task specialists were replaced with generalists. Now each call from
the field goes to a single clerk, who does all the work necessary to process the con-
tract. Instead of having different people check for creditworthiness, modify the basic
loan agreement, and determine the appropriate interest rate, one person does it all.
IBM Credit Corporation still has specialists for the few cases that are significantly
different from what the firm routinely encounters. In addition, the process is now
supported by a single computer system. The new process is modeled by the DFD
in Figure 7-17. The most striking difference between the DFD in Figure 7-16 and
the DFD in Figure 7-17, other than the number of process boxes in each one, is

Request

Supporting
Data

Rate

Status

Salesperson

Process
Contract

Credit FilesD2

Interest FilesD1

Contract

Specialists

Figure 7-17
IBM Credit Corporation’s primary work
process after BPR
(Source: Based on Hammer and Champy,
1993.)

Salesperson

Request

Documentation

Documentation

Documentation

Rate

Status

2.0

Check
Credit-

worthiness

3.0

Modify
Loan

Agreement

5.0

Create
Quote
Letter

Salesperson

1.0

Log
Request

4.0

Determine
Interest

Rate

Credit FilesD2

Interest FilesD1

Documentation

Contract

Figure 7-16
IBM Credit Corporation’s primary work
process before BPR
(Source: Based on Hammer and Champy,
1993.)

 Chapter 7 Structuring SyStem ProceSS requirementS 203

the lack of documentation flow in Figure 7-17. The resulting process is much sim-
pler and cuts down dramatically on any chance of documentation getting lost be-
tween steps. Redesigning the process from beginning to end allowed IBM Credit
Corporation to increase the number of contracts it can handle by 100-fold—not 100
percent, which would only be doubling the amount of work. BPR allowed IBM Credit
Corporation to handle 100 times more work in the same amount of time and with
fewer people!

Modeling logic with decision tABles
A decision table is a diagram of process logic where the logic is reasonably compli-
cated. All of the possible choices and the conditions the choices depend on are rep-
resented in tabular form, as illustrated in the decision table in Figure 7-18.

The decision table in Figure 7-18 models the logic of a generic payroll system.
The table has three parts: the condition stubs, the action stubs, and the rules. The
condition stubs contain the various conditions that apply to the situation the table
is modeling. In Figure 7-18, there are two condition stubs for employee type and
hours worked. Employee type has two values: “S,” which stands for salaried, and “H,”
which stands for hourly. Hours worked has three values: less than 40, exactly 40,
and more than 40. The action stubs contain all the possible courses of action that
result from combining values of the condition stubs. There are four possible courses
of action in this table: Pay Base Salary, Calculate Hourly Wage, Calculate Overtime,
and Produce Absence Report. You can see that not all actions are triggered by all
combinations of conditions. Instead, specific combinations trigger specific actions.
The part of the table that links conditions to actions is the section that contains
the rules.

To read the rules, start by reading the values of the conditions as specified in
the first column: Employee type is “S,” or salaried, and hours worked is less than
40. When both of these conditions occur, the payroll system is to pay the base sal-
ary. In the next column, the values are “H” and “<40,” meaning an hourly worker
who worked less than 40 hours. In such a situation, the payroll system calculates
the hourly wage and makes an entry in the Absence Report. Rule 3 addresses the
 situation when a salaried employee works exactly 40 hours. The system pays the
base salary, as was the case for rule 1. For an hourly worker who has worked exactly
40 hours, rule 4 calculates the hourly wage. Rule 5 pays the base salary for sala-
ried employees who work more than 40 hours. Rule 5 has the same action as rules
1 and 3 and governs behavior with regard to salaried employees. The number of
hours worked does not affect the outcome for rules 1, 3, or 5. For these rules, hours
worked is an indifferent condition in that its value does not affect the action taken.

Decision table
A matrix representation of the logic of a
decision; it specifies the possible conditions
for the decision and the resulting actions.

Condition stubs
The part of a decision table that lists the
conditions relevant to the decision.

Action stubs
The part of a decision table that lists
the actions that result for a given set of
conditions.

rules
The part of a decision table that specifies
which actions are to be followed for a
given set of conditions.

indifferent condition
In a decision table, a condition whose
value does not affect which actions are
taken for two or more rules.

Conditions/ Rules
Courses of Action

1 3 4 5 6

Condition Employee type S

2

H S H S H
Stubs

Hours worked <40 <40 40 40 >40 >40

Action Pay base salary X X X
Stubs

Calculate hourly wage X X X

XCalculate overtime

Produce absence report X

Figure 7-18
Complete decision table for payroll
system example

204 part iii AnAlySiS

Rule 6 calculates hourly pay and overtime for an hourly worker who has worked
more than 40 hours.

Because of the indifferent condition for rules 1, 3, and 5, we can reduce the
number of rules by condensing rules 1, 3, and 5 into one rule, as shown in Figure 7-19.
The indifferent condition is represented with a dash. Whereas we started with a deci-
sion table with six rules, we now have a simpler table that conveys the same informa-
tion with only four rules.

In constructing these decision tables, we have actually followed a set of basic
procedures:

1. Name the conditions and the values that each condition can assume. Determine all
of the conditions that are relevant to your problem and then determine all
of the values each condition can take. For some conditions, the values will
be simply “yes” or “no” (called a limited entry). For others, such as the condi-
tions in Figures 7-18 and 7-19, the conditions may have more values (called an
 extended entry).

2. Name all possible actions that can occur. The purpose of creating decision tables is to
determine the proper course of action given a particular set of conditions.

3. List all possible rules. When you first create a decision table, you have to create an
exhaustive set of rules. Every possible combination of conditions must be repre-
sented. It may turn out that some of the resulting rules are redundant or make
no sense, but these determinations should be made only after you have listed
every rule so that no possibility is overlooked. To determine the number of rules,
multiply the number of values for each condition by the number of values for ev-
ery other condition. In Figure 7-18, we have two conditions, one with two values
and one with three, so we need 2 × 3, or 6, rules. If we added a third condition
with three values, we would need 2 × 3 × 3, or 18, rules.

When creating the table, alternate the values for the first condition, as we
did in Figure 7-18 for type of employee. For the second condition, alternate the
values but repeat the first value for all values of the first condition, then repeat
the second value for all values of the first condition, and so on. You essentially
follow this procedure for all subsequent conditions. Notice how we alternated
the values of hours worked in Figure 7-18. We repeated “<40” for both values of
type of employee, “S” and “H.” Then we repeated “40,” and then “>40.”

4. Define the actions for each rule. Now that all possible rules have been identified,
provide an action for each rule. In our example, we were able to figure out what
each action should be and whether all of the actions made sense. If an action
doesn’t make sense, you may want to create an “impossible” row in the action
stubs in the table to keep track of impossible actions. If you can’t tell what the sys-
tem ought to do in that situation, place question marks in the action stub spaces
for that particular rule.

Conditions/ Rules
Courses of Action

1 2 3 4

Employee type S H H H

Hours worked – < 40 40 >40

Pay base salary X

Calculate hourly wage X X X

XCalculate overtime

Produce absence report X

Figure 7-19
Reduced decision table for payroll system
example

 Chapter 7 Structuring SyStem ProceSS requirementS 205

5. Simplify the decision table. Make the decision table as simple as possible by remov-
ing any rules with impossible actions. Consult users on the rules where system
actions aren’t clear and either decide on an action or remove the rule. Look
for patterns in the rules, especially for indifferent conditions. We were able to
reduce the number of rules in the payroll example from six to four, but greater
reductions are often possible.

Let’s look at an example from Hoosier Burger. The Mellankamps are trying
to determine how they reorder food and other items they use in the restaurant. If
they are going to automate the inventory control functions at Hoosier Burger, they
need to articulate their reordering process. In thinking through the problem, the
Mellankamps realize that how they reorder depends on whether the item is perish-
able. If an item is perishable, such as meat, vegetables, or bread, the Mellankamps
have a standing order with a local supplier stating that a prespecified amount of food
is delivered each weekday for that day’s use and each Saturday for weekend use. If
the item is not perishable, such as straws, cups, and napkins, an order is placed when
the stock on hand reaches a certain predetermined minimum reorder quantity. The
Mellankamps also realize the importance of the seasonality of their work. Hoosier
Burger’s business is not as good during the summer months when the students are
off campus as it is during the academic year. They also note that business falls off
during Christmas and spring break. Their standing orders with all their suppliers are
reduced by specific amounts during the summer and holiday breaks. Given this set of
conditions and actions, the Mellankamps put together an initial decision table (see
Figure 7-20).

Notice three things about Figure 7-20. First, notice how the values for the third
condition have been repeated, providing a distinctive pattern for relating the values
for all three conditions to each other. Every possible rule is clearly provided in this
table. Second, notice that we have 12 rules. Two values for the first condition (type
of item) times 2 values for the second condition (time of week) times 3 values for
the third condition (season of year) equals 12 possible rules. Third, notice how the

Conditions/ Rules
Courses of Action

1 2 3 4 6 85 7 9 10 11 12

Type of item P PN N N NP P P PN N

Time of week D D D D D DW W W W W W

Season of year A A A A S S S S H H H H

Standing daily order X X X

Standing weekend order X X X

Minimum order quantity X X X X

X X

X X

Holiday reduction

Summer reduction XX

Type of item: Season of year:
P = perishable D = weekday

Time of week:
A = academic year

N = nonperishable W = weekend S = summer
H = holiday

Figure 7-20
Complete decision table for Hoosier Burger’s inventory reordering

HOOSIER
BURGER

206 part iii AnAlySiS

action for nonperishable items is the same, regardless of day of week or time of year.
For nonperishable goods, both time-related conditions are indifferent. Collapsing
the decision table accordingly gives us the decision table in Figure 7-21. Now there
are only 7 rules instead of 12.

You have now learned how to draw and simplify decision tables. You can
also use decision tables to specify additional decision-related information. For ex-
ample, if the actions that should be taken for a specific rule are more complicated
than one or two lines of text can convey or if some conditions need to be checked
only when other conditions are met (nested conditions), you may want to use
separate, linked decision tables. In your original decision table, you can specify
an action in the action stub that says “Perform Table B.” Table B could contain
an action stub that returns to the original table, and the return would be the ac-
tion for one or more rules in Table B. Another way to convey more information
in a decision table is to use numbers that indicate sequence rather than Xs where
rules and action stubs intersect. For example, for rules 3 and 4 in Figure 7-21, it
would be important for the Mellankamps to account for the summer reduction
to modify the existing standing order for supplies. “Summer reduction” would
be marked with a “1” for rules 3 and 4, whereas “Standing daily order” would be
marked with a “2” for rule 3, and “Standing weekend order” would be marked
with a “2” for rule 4.

You have seen how decision tables can model the relatively complicated logic
of a process. As such, decision tables are compact; you can pack a lot of information
into a small table. Decision tables also allow you to check for the extent to which your
logic is complete, consistent, and not redundant.

electronic coMMerce APPlicAtion: Process
Modeling Using dAtA Flow diAgrAMs
Process modeling for an Internet-based electronic commerce application is no dif-
ferent than the process followed for other applications. In chapter 6, you read how
Pine Valley Furniture (PVF) determined the system requirements for their WebStore
project, a project to sell furniture products over the Internet. In this section, we ana-
lyze the WebStore’s high-level system structure and develop a level-0 DFD for those
requirements.

Conditions/ Rules
Courses of Action

1 2 3 4 5 6 7

Type of item P P P P P P N

Time of week D W D W D W –

Season of year A A S S H H –

Standing daily order X X X

Standing weekend order X X X

Minimum order quantity X

Holiday reduction X X

Summer reduction XX

Figure 7-21
Reduced decision table for Hoosier
Burger’s inventory reordering

 Chapter 7 Structuring SyStem ProceSS requirementS 207

Table 7-4 System Structure of the WebStore and Corresponding level-0 Processes
WebStore System Processes

❑❑ Main Page Information Display (minor/no processes)
•	 Product Line (Catalog) 1.0 Browse Catalog

❑✓ Desks 2.0 Select Item for Purchase
❑✓ Chairs
❑✓ Tables
❑✓ File Cabinets

•	 Shopping Cart 3.0 Display Shopping Cart
•	 Checkout 4.0 Check Out Process Order
•	 Account Profile 5.0 Add/Modify Account Profile
•	 Order Status/History 6.0 Order Status Request
•	 Customer Comments Information Display (minor/no processes)

❑❑ Company Information
❑❑ Feedback
❑❑ Contact Information

Process Modeling for Pine Valley Furniture’s webstore
After completing the Joint Application Design (JAD) session, senior systems analyst
Jim Woo went to work on translating the WebStore system structure into a DFD. His
first step was to identify the level-0—major system—processes. To begin, he care-
fully examined the outcomes of the JAD session that focused on defining the system
structure of the WebStore system. From this analysis, he identified six high-level
processes that would become the foundation of the level-0 DFD. These processes,
listed in Table 7-4, were the “work” or “action” parts of the website. Note that each
of these processes corresponds to the major processing items listed in the system
structure.

Next, Jim determined that it would be most efficient if the WebStore system
exchanged information with existing PVF systems rather than capture and store re-
dundant information. This analysis concluded that the WebStore should exchange
information with the Purchasing Fulfillment System (a system for tracking orders
[see Chapter 3]) and the Customer Tracking System (a system for managing cus-
tomer information). These two existing systems will be “sources” (providers) and
“sinks” (receivers) of information for the WebStore system. When a customer opens
an account, his or her information will be passed from the WebStore system to the
Customer Tracking System. When an order is placed, information will be stored in
the Purchasing Fulfillment System. When a customer requests status information
on a prior order, information will be retrieved from the Purchase Fulfillment System.

Finally, Jim found that the system would need to access two additional data
sources. First, in order to produce an online product catalog, the system would need
to access the inventory database. Second, to store the items a customer wanted to
purchase in the Webstore’s shopping cart, a temporary database would need to be
created. Once a transaction is completed, the shopping cart data can be deleted.
With this information, Jim was able to develop the level-0 DFD for the Webstore sys-
tem, which is shown in Figure 7-22. He then felt that he had a good understanding of
how information would flow through the Webstore, of how a customer would inter-
act with the system, and of how the Webstore would share information with existing
PVF systems. Each of these high-level processes would eventually need to be further
decomposed before system design could proceed. Yet, before doing that, he wanted
to get a clear picture of exactly what data were needed throughout the entire system.
We will discover the outcomes of this analysis activity—conceptual data modeling—
in Chapter 8.

208 part iii AnAlySiS

Summary

PURCHASING
FULFILLMENT

SYSTEMCUSTOMER
TRACKING

SYSTEM

D1 Inventory D2 Shopping Cart

CUSTOMER

CUSTOMER

Cart ID/
Item Profile

Item
Profile Purchase

Request
Product

Item

Product
Item

Request

InvoiceCheck Out/
Customer

ID

Item
Profile

Item
Profile

Cart ID/
Item Profile

Order Number/
Return Code

Order
Number

Order
Number

Order
Status

Information

Order
Status

Information

Remove Item/
Product Item

Remove
Item

Items in
Cart

Item
Profile

View
Cart

Customer
ID

Customer
Information

Customer
Information/ID

Customer
Information

Customer
Information

Order

6.0

5.0

2.0

3.01.0

4.0

Add/Modify
Account
Profile

Browse
Catalog

Check Out
Process
Order

Order
Status

Request

Display
Shopping

Cart

Select
Item for

Purchase

Figure 7-22
Level-0 DFD for the WebStore

Processes can be modeled in many different ways, but this
chapter has focused on data flow diagrams, or DFDs. DFDs
are very useful for representing the overall data flows into,
through, and out of an information system. DFDs rely
on four symbols to represent the four conceptual com-
ponents of a process model: data flows, data stores, pro-
cesses, and sources/sinks. DFDs are hierarchical in nature,
and each level of a DFD can be decomposed into smaller,
simpler units on a lower-level diagram. You begin process

modeling by constructing a context diagram, which shows
the entire system as a single process. The next step is to
generate a level-0 diagram, which shows the most impor-
tant high-level processes in the system. You then decom-
pose each process in the level-0 diagram, as warranted,
until it makes no sense to go any further. When decompos-
ing DFDs from one level to the next, it is important that
the diagrams be balanced; that is, inputs and outputs on
one level must be conserved on the next level.

 Chapter 7 Structuring SyStem ProceSS requirementS 209

DFDs should be mechanically correct, but they
should also accurately reflect the information system
being modeled. To that end, you need to check DFDs for
completeness and consistency and draw them as if the sys-
tem being modeled were timeless. You should be willing to
revise DFDs several times. Complete sets of DFDs should
extend to the primitive level, where every component re-
flects certain irreducible properties; for example, a pro-
cess represents a single database operation and every data
store represents data about a single entity. Following these
guidelines, you can produce DFDs that can be used to ana-
lyze the gaps between existing and desired procedures and
between current and new systems.

Decision tables are a graphical method of repre-
senting process logic. In decision tables, conditions are

listed in the condition stubs, possible actions are listed
in the action stubs, and rules link combinations of con-
ditions to the actions that should result. Analysts reduce
the complexity of decision tables by eliminating rules that
do not make sense and by combining rules with different
conditions.

Although analysts have been modeling processes for
information systems for over 30 years, dating back at least
to the beginnings of the philosophy of structured analysis
and design, it is just as important for electronic commerce
applications as it is for more traditional systems. Future
chapters will show, as this one did, how traditional tools
and techniques developed for structured analysis and de-
sign provide powerful assistance for electronic commerce
development.

Key TermS

 7.1 Action stubs
 7.2 Balancing
 7.3 Condition stubs
 7.4 Context diagram
 7.5 Data flow diagram (DFD)
 7.6 Data store

 7.7 Decision table
 7.8 DFD completeness
 7.9 DFD consistency
 7.10 Functional decomposition
 7.11 Gap analysis
 7.12 Indifferent condition

 7.13 Level-0 diagram
 7.14 Level-n diagram
 7.15 Primitive DFD
 7.16 Process
 7.17 Rules
 7.18 Source/sink

Match each of the key terms above with the definition that best fits it.

____ A picture of the movement of data between external enti-
ties and the processes and data stores within a system.

____ The part of a decision table that lists the actions that result
for a given set of conditions.

____ The conservation of inputs and outputs to a DFD process
when that process is decomposed to a lower level.

____ A DFD that represents a system’s major processes, data
flows, and data stores at a high level of detail.

____ The origin and/or destination of data; sometimes referred
to as external entities.

____ In a decision table, a condition whose value does not affect
which actions are taken for two or more rules.

____ An overview of an organizational system that shows the sys-
tem boundary, external entities that interact with the sys-
tem, and the major information flows between the entities
and the system.

____ The lowest level of decomposition for a DFD.

____ The extent to which all necessary components of a DFD
have been included and fully described.

____ A matrix representation of the logic of a decision; it speci-
fies the possible conditions for the decision and the result-
ing actions.

____ The extent to which information contained on one
level of a set of nested DFDs is also included on other
levels.

____ A DFD that is the result of n nested decompositions
of a series of subprocesses from a process on a level-0
diagram.

____ The part of a decision table that lists the conditions rel-
evant to the decision.

____ The work or actions performed on data so that they are
transformed, stored, or distributed.

____ Data at rest, which may take the form of many different
physical representations.

____ The process of discovering discrepancies between two or
more sets of DFDs or discrepancies within a single DFD.

____ The part of a decision table that specifies which actions are
to be followed for a given set of conditions.

____ An iterative process of breaking the description of a sys-
tem down into finer and finer detail, which creates a set of
charts in which one process on a given chart is explained
in greater detail on another chart.

210 part iii AnAlySiS

revIew QueSTIonS
 7.19 What is a DFD? Why do systems analysts use DFDs?

 7.20 Explain the rules for drawing good DFDs.

 7.21 What is decomposition? What is balancing? How can you
determine if DFDs are not balanced?

 7.22 Explain the convention for naming different levels of
DFDs.

 7.23 Why do analysts draw multiple sets of DFDs?

 7.24 How can DFDs be used as analysis tools?

 7.25 Explain the guidelines for deciding when to stop decom-
posing DFDs.

 7.26 How do you decide if a system component should be repre-
sented as a source/sink or as a process?

 7.27 What unique rules apply to drawing context diagrams?

 7.28 What are the steps in creating a decision table? How do
you reduce the size and complexity of a decision table?

 7.29 What does the term limited entry mean in a decision table?

 7.30 What is the formula that is used to calculate the number of
rules a decision table must cover?

ProblemS and exercISeS
 7.31 Using the example of a retail clothing store in a mall, list

relevant data flows, data stores, processes, and sources/
sinks. Observe several sales transactions. Draw a context di-
agram and a level-0 diagram that represent the selling sys-
tem at the store. Explain why you chose certain elements as
processes versus sources/sinks.

 7.32 Choose a transaction that you are likely to encounter, per-
haps ordering a cap and gown for graduation, and develop
a high-level DFD or a context diagram. Decompose this to
a level-0 diagram.

 7.33 Evaluate your level-0 DFD from Problem and Exercise 7-32
using the rules for drawing DFDs in this chapter. Edit your
DFD so that it does not break any of these rules.

 7.34 Choose an example like the one in Problem and Exercise
7-32 and draw a context diagram. Decompose this diagram
until it does not make sense to continue. Be sure that your
diagrams are balanced.

 7.35 Refer to Figure 7-23, which contains drafts of a context and
level-0 DFD for a university class registration system. Iden-
tify and explain potential violations of rules and guidelines
on these diagrams.

 7.36 What is the relationship between DFDs and entries in the
project dictionary or CASE repository?

 7.37 Consider the DFD in Figure 7-24. List three errors (rule
violations) on this DFD.

 7.38 Consider the three DFDs in Figure 7-25. List three errors
(rule violations) on these DFDs.

 7.39 Starting with a context diagram, draw as many nested DFDs
as you consider necessary to represent all the details of the
employee hiring system described in the following narra-
tive. You must draw at least a context and a level-0 diagram.
If you discover while drawing these diagrams that the nar-
rative is incomplete, make up reasonable explanations to
complete the story. Supply these extra explanations along
with the diagrams.

Projects, Inc., is an engineering firm with approxi-
mately 500 engineers of different types. The company
keeps records on all employees, their skills, assigned
projects, and the departments they work in. New em-
ployees are hired by the personnel manager based on

data in an application form and evaluations collected
from other managers who interview the job candi-
dates. Prospective employees may apply at any time.
Engineering managers notify the personnel manager
when a job opens and list the characteristics necessary
to be eligible for the job. The personnel manager com-
pares the qualifications of the available pool of appli-
cants with the characteristics of an open job and then
schedules interviews between the manager in charge
of the open position and the three best candidates
from the pool. After receiving evaluations on each
interview from the manager, the personnel manager
makes the hiring decision based upon the evaluations
and applications of the candidates and the character-
istics of the job and then notifies the interviewees and
the manager about the decision. Applications of re-
jected applicants are retained for one year, after which
time the application is purged. When hired, a new en-
gineer completes a nondisclosure agreement, which is
filed with other information about the employee.

 7.40 Starting with a context diagram, draw as many nested DFDs
as you consider necessary to represent all of the details of
the system described in the following narrative. In drawing
these diagrams, if you discover that the narrative is incom-
plete, make up reasonable explanations to make the story
complete. Supply these extra explanations along with the
diagrams.

Maximum Software is a developer and supplier of soft-
ware products to individuals and businesses. As part
of their operations, Maximum provides a 1-800 help
desk line for clients who have questions about soft-
ware purchased from Maximum. When a call comes
in, an operator inquires about the nature of the call.
For calls that are not truly help desk functions, the op-
erator redirects the call to another unit of the com-
pany (such as Order Processing or Billing). Because
many customer questions require in-depth knowledge
of a product, help desk consultants are organized by
product. The operator directs the call to a consul-
tant skilled on the software that the caller needs help
with. Because a consultant is not always immediately
available, some calls must be put into a queue for the

 Chapter 7 Structuring SyStem ProceSS requirementS 211

DF2

DF5

DF4

DF1

DF2

DF3DF6
DS1

1.0

P2

2.0

P1

E1

E2

Figure 7-24
DFD for Problem and Exercise 7-37

Class Schedule

Class
Schedule

Course Request

Course
Request

List of Courses

Course
Request

List of
Courses

Possible Classes

Possible
Classes

Scheduled
Classes

Scheduled
Classes

Context Diagram

Level-0 Diagram

To
Student

From
Student

From
Department

0

Class
Registration

System

Student

Department Roster
of ClassesD1

1

Receive
Course
Request

3

Check
for

Availability

2

Receive
Course

Lists

Class
RosterD2

Figure 7-23
Class registration system for Problem and
Exercise 7-35

next available consultant. Once a consultant answers
the call, the consultant determines if this is the first
call from this customer about a particular problem. If
it is, the consultant creates a new call report to keep
track of all information about the problem. If it is not
the first call about a problem, the consultant asks the

customer for a call report number and retrieves the
open call report to determine the status of the inquiry.
If the caller does not know the call report number,
the consultant collects other identifying information
such as the caller’s name, the software involved, or the
name of the consultant who has handled the previous

212 part iii AnAlySiS

calls on the problem in order to conduct a search for
the appropriate call report. If a resolution of the cus-
tomer’s problem has been found, the consultant in-
forms the client as to what that resolution is, indicates
on the report that the customer has been notified,
and closes out the report. If resolution has not been
discovered, the consultant finds out if the consultant
who handled the previous call for this problem is on
duty. If so, he or she transfers the call to the other con-
sultant (or puts the call into the queue of calls waiting
to be handled by that consultant). Once the proper
consultant receives the call, that consultant records
any new details the customer may have. For continu-
ing problems and for new call reports, the consultant
tries to discover an answer to the problem by using

the relevant software and looking up information in
reference manuals. If the consultant can now resolve
the problem, the consultant tells the customer how
to deal with the problem and closes the call report.
Otherwise, the consultant files the report for contin-
ued research and tells the customer that someone at
Maximum will get back to him or her, and that if the
customer discovers new information about the prob-
lem, he or she should call Maximum with the infor-
mation, identifying the problem with a specified call
report number.

Analyze the DFDs you created in the first part of this ques-
tion. What recommendations for improvements in the
help desk system at Maximum can you make based on
this analysis? Draw new logical DFDs that represent the

DF2

DF5

DF4DF1

DF3

DF3

DF6

Level 0

Level 1

Level 2

E2

DF7

DF9DF1 DF2

DF8

DF6

DF9

DF8
DF10

DF11 DF12

DF2

DS1

DS2

P2P1

P3

E1

DS2

P1.2P1.1

P1.4.1 P1.4.3

P1.3

P1.4.2

P1.4

Figure 7-25
DFD for Problem and Exercise 7-38

 Chapter 7 Structuring SyStem ProceSS requirementS 213

requirements you would suggest for an improved help desk
system. Remember, these are to be logical DFDs, so con-
sider improvements independent of technology that can
be used to support the help desk.

 7.41 Develop a context diagram and level-0 diagram for the
hospital pharmacy system described in the following narra-
tive. If you discover that the narrative is incomplete, make
up reasonable explanations to complete the story. Supply
these extra explanations along with the diagrams.

The pharmacy at Mercy Hospital fills medical pre-
scriptions for all hospital patients and distributes these
medications to the nurse stations responsible for the
patients’ care. Prescriptions are written by doctors
and sent to the pharmacy. A pharmacy technician re-
views each prescription and sends it to the appropriate
pharmacy station. Prescriptions for drugs that must be
formulated (made on-site) are sent to the lab station,
prescriptions for off-the-shelf drugs are sent to the
shelving station, and prescriptions for narcotics are
sent to the secure station. At each station, a pharma-
cist reviews the order, checks the patient’s file to deter-
mine the appropriateness of the prescription, and fills
the order if the dosage is at a safe level and it will not
negatively interact with the other medications or aller-
gies indicated in the patient’s file. If the pharmacist
does not fill the order, the prescribing doctor is con-
tacted to discuss the situation. In this case, the order
may ultimately be filled, or the doctor may write an-
other prescription depending on the outcome of the
discussion. Once filled, a prescription label is gener-
ated listing the patient’s name, the drug type and dos-
age, an expiration date, and any special instructions.
The label is placed on the drug container, and the
order is sent to the appropriate nurse station. The pa-
tient’s admission number, the drug type and amount
dispensed, and the cost of the prescription are then
sent to the Billing department.

 7.42 Develop a context diagram and a level-0 diagram for the
contracting system described in the following narrative. If
you discover that the narrative is incomplete, make up rea-
sonable explanations to complete the story. Supply these
extra explanations along with the diagrams.

Government Solutions Company (GSC) sells com-
puter equipment to federal government agencies.
Whenever a federal agency needs to purchase equip-
ment from GSC, it issues a purchase order against
a standing contract previously negotiated with the
company. GSC holds several standing contracts with
various federal agencies. When a purchase order is re-
ceived by GSC’s contracting officer, the contract num-
ber referenced on the purchase order is entered into
the contract database. Using information from the da-
tabase, the contracting officer reviews the terms and
conditions of the contract and determines whether
the purchase order is valid. The purchase order is
valid if the contract has not expired, the type of equip-
ment ordered is listed on the original contract, and
the total cost of the equipment does not exceed a pre-
determined limit. If the purchase order is not valid,
the contracting officer sends the purchase order back

to the requesting agency with a letter stating why the
purchase order cannot be filled, and a copy of the let-
ter is filed. If the purchase order is valid, the contract-
ing officer enters the purchase order number into the
contract database and flags the order as outstanding.
The purchase order is then sent to the Order Fulfill-
ment department. Here the inventory is checked for
each item ordered. If any items are not in stock, the
Order Fulfillment department creates a report listing
the items not in stock and attaches it to the purchase
order. All purchase orders are forwarded to the ware-
house, where the items in stock are pulled from the
shelves and shipped to the customer. The warehouse
then attaches to the purchase order a copy of the ship-
ping bill listing the items shipped and sends it to the
contracting officer. If all items were shipped, the con-
tracting officer closes the outstanding purchase order
record in the database. The purchase order, shipping
bill, and exception report (if attached) are then filed
in the contracts office.

 7-43. Develop a context diagram and as many nested DFDs as
you consider necessary to represent all the details of the
training logistics system described in the following narra-
tive. If you discover that the narrative is incomplete, make
up reasonable explanations to complete the story. Supply
these extra explanations along with the diagrams.

Training, Inc., conducts training seminars in major
US cities. For each seminar, the Logistics department
must make arrangements for the meeting facilities,
the training consultant’s travel, and the shipment of
any seminar materials. For each scheduled seminar,
the Bookings department notifies the logistics coordi-
nator of the type of seminar, the dates and city loca-
tion, and the name of the consultant who will conduct
the training. To arrange for meeting facilities, the
logistics coordinator gathers information on possible
meeting sites in the scheduled city. The meeting site
location decision is made based on date availability,
cost, type of meeting space available, and convenience
of the location. Once the site decision is made, the co-
ordinator speaks with the sales manager of the meet-
ing facility to reserve the meeting room(s), plan the
seating arrangement(s), and reserve any necessary
audiovisual equipment. The coordinator estimates the
number and size of meeting rooms, the type of seat-
ing arrangements, and the audiovisual equipment
needed for each seminar from the information kept
in a logistics database on each type of seminar offered
and the number of anticipated registrants for a par-
ticular booking. After negotiations are conducted by
the logistics coordinator and the sales manager of the
meeting facility, the sales manager creates a contract
agreement specifying the negotiated arrangements
and sends two copies of it to the logistics coordinator.
The coordinator reviews the agreement and approves
it if no changes are needed. One copy of the agree-
ment is filed and the other copy is sent back to the
sales manager. If changes are needed, the agreement
copies are changed and returned to the sales manager
for approval. This approval process continues until

214 part iii AnAlySiS

both parties have approved the agreement. The co-
ordinator must also contact the training consultant
to make travel arrangements. First, the coordinator
reviews the consultant’s travel information in the lo-
gistics database and researches flight schedules. Then
the consultant is contacted to discuss possible travel
arrangements; subsequently, the coordinator books
a flight for the consultant with a travel agency. Once
the consultant’s travel arrangements have been com-
pleted, a written confirmation and itinerary are sent to
the consultant. Two weeks before the date of the semi-
nar, the coordinator determines what, if any, seminar
materials (e.g., transparencies, training guides, pam-
phlets, etc.) need to be sent to the meeting facility.
Each type of seminar has a specific set of materials as-
signed to it. For some materials, the coordinator must
know how many participants have registered for the
seminar in order to determine how many to send. A
request for materials is sent to the Materials-handling
department, where the materials are gathered, boxed,
and sent to the meeting address listed on the request.
Once the requested materials have been shipped, a
notification is sent to the logistics coordinator.

 7.44 Look at the set of DFDs created in this chapter for Hoo-
sier Burger’s food-ordering system. Represent the decision
logic of one or more of the processes as decision tables.

 7.45 What types of questions need to be asked during require-
ments determination in order to gather the information
needed for logic modeling? Give examples.

 7.46 In one company, the rules for buying personal comput-
ers specify that if the purchase is over $15,000, it has to go
out for bid, and the Request for Proposals (RFP) must be
approved by the Purchasing department. If the purchase
is under $15,000, the personal computers can simply be
bought from any approved vendor; however, the Purchase
Order must still be approved by the Purchasing depart-
ment. If the purchase goes out for bid, there must be at
least three proposals received for the bid. If not, the RFP
must go out again. If there are still not enough proposals,
then the process can continue with the one or two ven-
dors that have submitted proposals. The winner of the bid
must be on an approved list of vendors for the company
and must not have any violations against them for affirma-
tive action or environmental matters. At this point, if the
proposal is complete, the Purchasing department can issue
a Purchase Order. Draw a decision table to represent the
logic in this process. Notice the similarities between the
text in this question and the format of your answer.

 7.47 In a relatively small company that sells thin, electronic key-
pads and switches, the rules for selling products specify
that sales representatives are assigned to unique regions of
the country. Sales come either from cold calling, referrals,
or current customers with new orders. A sizable portion of
their business comes from referrals from larger competi-
tors who send their excess and/or “difficult” projects to
this company. The company tracks these referrals and re-
turns the favors to these competitors by sending business
their way. The sales reps receive a 10 percent commission
on actual purchases, not on orders, in their region. They
can collaborate on a sale with reps in other regions and
share the commissions, with 8 percent going to the “home”

rep and 2 percent going to the “visiting” rep. For any sales
beyond the rep’s previously stated and approved individual
annual sales goals, he or she receives an additional 5 per-
cent commission, an additional end-of-the-year bonus de-
termined by management, and a special vacation for his or
her family. Customers receive a 10 percent discount for any
purchases over $100,000 per year, which are factored into
the rep’s commissions. In addition, the company focuses
on customer satisfaction with the product and service, so
there is an annual survey of customers in which they rate
the sales rep. These ratings are factored into the bonuses
such that a high rating increases the bonus amount, a mod-
erate rating does nothing, and a low rating can lower the
bonus amount. The company also wants to ensure that the
reps close all sales. Any differences between the amount of
orders and actual purchases are also factored into the rep’s
bonus amount. As best you can, present the logic of this
business process using a decision table. Write down any as-
sumptions you have to make.

 7.48 The following is an example that demonstrates the rules of
the tenure process for faculty at many universities. Present
the logic of this business using a decision table. Write down
any assumptions you have to make.

A faculty member applies for tenure in his or her
sixth year by submitting a portfolio summarizing his
or her work. In rare circumstances, a faculty member
can come up for tenure earlier than the sixth year, but
only if the faculty member has the permission of the
department chair and college dean. New professors
who have worked at other universities before taking
their current jobs rarely, if ever, start their new jobs
with tenure. They are usually asked to undergo one
probationary year during which they are evaluated;
only then can they be granted tenure. Top adminis-
trators coming to a new university job, however, can
often negotiate for retreat rights that enable them
to become a tenured faculty member should their
administrative post end. These retreat arrangements
generally have to be approved by faculty. The tenure
review process begins with an evaluation of the can-
didate’s portfolio by a committee of faculty within the
candidate’s department. The committee then writes a
recommendation on tenure and sends it to the depart-
ment’s chairperson, who then makes a recommenda-
tion and passes the portfolio and recommendation to
the next level, a college-wide faculty committee. This
committee does the same as the department commit-
tee and passes its recommendation, the department’s
recommendation, and the portfolio to the next level,
a university-wide faculty committee. This committee
does the same as the other two committees and passes
everything to the provost (or sometimes the academic
vice president). The provost then writes his or her own
recommendation and passes everything to the presi-
dent, the final decision maker. This process, from the
time the candidate creates his or her portfolio until
the time the president makes a decision, can take an
entire academic year. The focus of the evaluation is on
research, which could be grants, presentations, and
publications, though preference is given for empiri-
cal research that has been published in top-ranked,

 Chapter 7 Structuring SyStem ProceSS requirementS 215

refereed journals and where the publication makes a
contribution to the field. The candidate must also do
well in teaching and service (i.e., to the university, the
community, or the discipline), but the primary em-
phasis is on research.

 7.49 An organization is in the process of upgrading microcom-
puter hardware and software for all employees. Hardware
will be allocated to each employee in one of three pack-
ages. The first hardware package includes a standard mi-
crocomputer with a color monitor of moderate resolution
and moderate storage capabilities. The second package
includes a high-end microcomputer with a high-resolution
color monitor and a great deal of RAM and ROM. The
third package is a high-end notebook-sized microcom-
puter. Each computer comes with a network interface card
so that it can be connected to the network for printing and
e-mail. The notebook computers come with a modem for
the same purpose. All new and existing employees will be
evaluated in terms of their computing needs (e.g., the types
of tasks they perform, how much and in what ways they can
use the computer). Light users receive the first hardware
package. Heavy users receive the second package. Some
moderate users will receive the first package and some will
receive the second package, depending on their needs.
Any employee who is deemed to be primarily mobile (e.g.,
most of the sales force) will receive the third package. Each
employee will also be considered for additional hardware.
For example, those who need scanners and/or printers
will receive them. A determination will be made regard-
ing whether the user receives a color or black-and-white
scanner and whether they receive a slow or fast or color
or black-and-white printer. In addition, each employee will
receive a suite of software that includes a word processor,
a spreadsheet, and a presentation maker. All employees
will be evaluated for additional software needs. Depend-
ing on their needs, some will receive a desktop publishing
package, some will receive a database management system
(some will also receive a developer’s kit for the DBMS),
and some will receive a programming language. Every 18
months, those employees with the high-end systems will re-
ceive new hardware, and their old systems will be passed on
to those who previously had the standard systems. All those
employees with the portable systems will receive new note-
book computers. Present the logic of this business process
using a decision table. Write down any assumptions you
have to make.

 7.50 Read the narratives below and follow the directions for
each. If you discover that the narrative is incomplete, make
up reasonable explanations to complete the story. Supply
these extra explanations along with your answers.

a. Samantha must decide which courses to register for this
semester. She has a part-time job, and she is waiting to
find out how many hours per week she will be working
during the semester. If she works 10 hours or less per
week, she will register for three classes, but if she works
more than 10 hours per week, she will register for only
two classes. If she registers for two classes, she will take
one class in her major area and one elective. If she reg-
isters for three classes, she will take two classes in her
major area and one elective. Use a decision table to rep-
resent this logic.

b. Jerry plans on registering for five classes this semester:
English Composition, Physics, Physics Lab, Java, and
Music Appreciation. However, he is not sure if these
classes are being offered this semester or if there will
be timing conflicts. Also, two of the classes, Physics and
Physics Lab, must be taken together during the same
semester. Therefore, if he can register for only one of
them, he will not take either class. If, for any reason,
he cannot register for a class, he will identify and regis-
ter for a different class to take its place and that fits his
time schedule. Use a decision table that shows all rules
to represent this logic.

 7.51 Mary is trying to decide which graduate programs she will
apply to. She wants to stay in the southeastern region of
the United States, but if a program is considered one of
the top 10 in the country, she is willing to move to another
part of the United States. Mary is interested in both the
MBA and Master of MIS programs. An MBA program must
have at least one well-known faculty member and meet her
location requirements before she will consider applying to
it. Additionally, any program she applies to must offer fi-
nancial aid, unless she is awarded a scholarship. Use a deci-
sion table to represent this logic.

 7.52 At a local bank, loan officers must evaluate loan applica-
tions before approving or denying them. During this evalu-
ation process, many factors regarding the loan request and
the applicant’s background are considered. If the loan is
for less than $2000, the loan officer checks the applicant’s
credit report. If the credit report is rated good or excel-
lent, the loan officer approves the loan. If the credit report
is rated fair, the officer checks to see if the applicant has
an account at the bank. If the applicant holds an account,
the application is approved; otherwise, the application is
denied. If the credit report is rated poor, the application is
denied. Loan applications for amounts between $2000 and
$200,000 are divided into four categories: car, mortgage,
education, and other. For car, mortgage, and other loan re-
quests, the applicant’s credit report is reviewed and an em-
ployment check is made to verify the applicant’s reported
salary income. If the credit report rating is poor, the loan
is denied. If the credit report rating is fair, good, or excel-
lent and the salary income is verified, the loan is approved.
If the salary income is not verifiable, the applicant is con-
tacted and additional information is requested. In this case,
the loan application, along with the additional informa-
tion, is sent to the vice president for review and a final loan
decision. For educational loans, the educational institution
the applicant will attend is contacted to determine the es-
timated cost of attendance. This amount is then compared
to the amount of the loan requested in the application.
If the requested amount exceeds the cost of attendance,
the loan is denied. Otherwise, education loan requests for
amounts between $2000 and $34,999 are approved if the
applicant’s credit rating is fair, good, or excellent. Educa-
tion loan applications requesting amounts from $35,000 to
$200,000 are approved only if the credit rating is good or
excellent. All loan applications for amounts greater than
$200,000 are sent to the vice president for review and ap-
proval. Use a decision table to represent this logic.

216 part iii AnAlySiS

FIeld exercISeS
 7.53 Talk with a systems analyst who works at an organization.

Ask the analyst to show you a complete set of DFDs from a
current project. Interview the analyst about his or her views
concerning DFDs and their usefulness for analysis.

 7.54 Interview several people in an organization about a par-
ticular system. What is the system like now and what would
they like to see changed? Create a complete set of DFDs
for the system. Show your DFDs to some of the people you
interviewed and ask for their reactions. What kinds of com-
ments do they make? What kinds of suggestions?

 7.55 Talk with a systems analyst who uses a CASE tool. Investi-
gate what capabilities the CASE tool has for automatically
checking for rule violations in DFDs. What reports can the
CASE tool produce with error and warning messages to
help analysts correct and improve DFDs?

 7.56 Find out which, if any, drawing packages, word processors,
forms design, and database management systems your

university or company supports. Research these packages
to determine how they might be used in the production
of a project dictionary. For example, do the drawing pack-
ages include a set of standard DFD symbols in their graphic
symbol palette?

 7.57 At an organization with which you have contact, ask one
or more employees to draw a “picture” of the business
process they interact with at that organization. Ask them
to draw the process using whatever format suits them. Ask
them to depict in their diagram each of the components of
the process and the flow of information among these com-
ponents at the highest level of detail possible. What type of
diagram have they drawn? In what ways does it resemble
(and not resemble) a DFD? Why? When they have finished,
help the employees to convert their diagram to a standard
DFD. In what ways is the DFD stronger and/or weaker than
the original diagram?

reFerenceS
Celko, J. 1987. “I. Data Flow Diagrams.” Computer Language 4

(January): 41–43.
DeMarco, T. 1979. Structured Analysis and System Specification. Up-

per Saddle River, NJ: Prentice Hall.
Gane C., and T. Sarson. 1979. Structured Systems Analysis. Upper

Saddle River, NJ: Prentice Hall.
Hammer, M., and J. Champy. 1993. Reengineering the Corporation.

New York: Harper Business.
Vessey, I., and R. Weber. 1986. “Structured Tools and Condi-

tional Logic.” Communications of the ACM 29(1): 48–57.

Wieringa, R. 1998. “A Survey of Structured and Object-Oriented
Software Specification Methods and Techniques.” ACM
Computing Surveys 30(4): 459–527.

Yourdon, E. 1989. Managing the Structured Techniques, 4th ed. Up-
per Saddle River, NJ: Prentice Hall.

Yourdon, E., and L. L. Constantine. 1979. Structured Design. Up-
per Saddle River, NJ: Prentice Hall.

217

7a.3 discuss process modeling with use cases for
electronic commerce applications.

Learning Objectives

After studying this section, you should be able to

7a.1 explain use cases and use case diagrams and how
they can be used to model system functionality,

7a.2 present the basic aspects of how to create written
use cases, and

object-oriented Analysis
and design
Use cases*7a

Appendix

Here we will introduce you to use cases and use case
diagrams. Use cases are a different way to model the
functionality of a business process that facilitates the
development of information systems to support that
process. Although common in object-oriented sys-
tems analysis and design, use case modeling can also
be used with more traditional methods for modeling
business processes. After learning the basics about use
cases, including use case diagrams and written use cases,
you will also learn how process modeling can be done
with use cases for the analysis of electronic commerce
applications.

Use cAses
As Chapter 7 has shown, DFDs are powerful modeling
tools that you can use to show a system’s functionality and
the flow of data necessary for the system to perform its
functions. DFDs are not the only way to show functional-
ity, of course. Another way is use case modeling. Use case
modeling helps analysts analyze the functional require-
ments of a system. Use case modeling helps developers
understand the functional requirements of the system
without worrying about how those requirements will be

Introduction

implemented. The process is inherently iterative—ana-
lysts and users work together throughout the model de-
velopment process to further refine their use case models.
Although use case modeling is most often associated with
object-oriented systems analysis and design, the concept is
flexible enough that it can also be used within more tradi-
tional approaches. In this section of the chapter, you will
learn about use cases, use case diagrams and their constit-
uent parts, and written use cases.

what is a Use case?
A use case shows the behavior or functionality of a system
(see Figure 7-26). It consists of a set of possible sequences
of interactions between a system and a user in a particular
environment, possible sequences that are related to a par-
ticular goal. A use case describes the behavior of a system
under various conditions as the system responds to requests
from principal actors. A principal actor initiates a request of
the system, related to a goal, and the system responds. A use
case can be stated as a present-tense verb phrase, containing
the verb (what the system is supposed to do) and the ob-
ject of the verb (what the system is to act on). For example,
use case names would include Enter Sales Data, Compute
Commission, Generate Quarterly Report. As with DFDs, use

* The original version of this appendix was written by Professor Atish P. Sinha.

218 part iii AnAlySiS

cases do not reflect all of the system requirements; they must be augmented by docu-
ments that detail requirements, such as business rules, data fields and formats, and com-
plex formulas.

A use case model consists of actors and use cases. An actor is an external entity
that interacts with the system. It is someone or something that exchanges information
with the system. For the most part, a use case represents a sequence of related actions
initiated by an actor to accomplish a specific goal; it is a specific way of using the system
(Jacobson et al., 1992). Note that there is a difference between an actor and a user. A
user is anyone who uses the system. An actor, on the other hand, represents a role that
a user can play. The actor’s name should indicate that role. An actor is a type or class of
users; a user is a specific instance of an actor class playing the actor’s role. Note that the
same user can play multiple roles. For example, if William Alvarez plays two roles, one
as an instructor and the other as an adviser, we represent him as an instance of an actor
called Instructor and as an instance of another actor called Adviser. Because actors are
outside the system, you do not need to describe them in detail. The advantage of iden-
tifying actors is that it helps you to identify the use cases they carry out.

For identifying use cases, Jacobson et al. (1992) recommend that you ask the
following questions:

•	 What are the main tasks performed by each actor?
•	 Will the actor read or update any information in the system?
•	 Will the actor have to inform the system about changes outside the system?
•	 Does the actor have to be informed of unexpected changes?

Use case diagrams
Use cases help you capture the functional requirements of a system. As you saw in
Chapter 6, during the requirements analysis stage, the analyst sits down with the in-
tended users of a system and makes a thorough analysis of what functions they desire
from the system. When it comes time to structure these requirements, the identified
system functions are represented as use cases. For example, a university registration
system has a use case for class registration and another for student billing. These use
cases, then, represent the typical interactions the system has with its users.

A use case diagram is depicted diagrammatically, as in Figure 7-26. It is a picture
that shows system behavior, along with the key actors that interact with the system. The
use case diagram in Figure 7-26 is for a university registration system, which is shown

use case
A depiction of a system’s behavior or
functionality under various conditions as the
system responds to requests from users.

Actor
An external entity that interacts with a
system.

use case diagram
A picture showing system behavior, along
with the key actors that interact with the
system.

Student Registration
Clerk

Bursar’s
O�ce

Instructor

Register for
Classes

Identify Prerequisite
Courses Not Completed

<<extend>><<extend>>

Register for
Special Class

Bill Student

Figure 7-26
A use case diagram for a university
registration system

 Chapter 7 Structuring SyStem ProceSS requirementS 219

as a box. Outside the box are four actors—Student, Registration Clerk, Instructor,
and Bursar’s Office—that interact with the system. An actor is shown using a stick-
figure symbol with its name below it. Inside the box are four use cases—Register for
Classes, Register for Special Class, Identify Prereq Courses Not Completed, and Bill
Student—which are shown as ellipses with their names underneath. These use cases
are performed by the actors outside the system.

Typically, a use case is initiated by an actor. For example, Bill Student is initiated
by the Bursar’s Office. A use case can interact with actors other than the one that
initiated it. The Bill Student use case, although initiated by the Bursar’s Office, inter-
acts with the Students by mailing them tuition invoices. Another use case, Register
for Classes, is carried out by two actors, Student and Registration Clerk. This use
case performs a series of related actions aimed at registering a student for a class.
Although use cases are typically initiated by actors, in some circumstances a use case
is initiated by another use case. Such use cases are called abstract use cases. We will
discuss these in more detail later in this appendix.

A use case represents complete functionality. You should not represent an indi-
vidual action that is part of an overall function as a use case. For example, although
submitting a registration form and paying tuition are two actions performed by users
(students) in the university registration system, we do not show them as use cases
because they do not specify a complete course of events; each of these actions is
executed only as part of an overall function or use case. You can think of Submit
Registration Form as one of the actions of the Register for Classes use case and of Pay
Tuition as one of the actions of the Bill Student use case.

definitions and symbols
Use case diagramming is relatively simple because it involves only a few symbols.
However, like DFDs and other relatively simple diagramming tools, these few sym-
bols can be used to represent quite complex situations. Mastering use case diagram-
ming takes a lot of practice. The key symbols in a use case diagram are illustrated in
Figure 7-26 and explained below:

•	 Actor. As explained earlier, an actor is a role, not an individual. Individuals are
instances of actors. One particular individual may play many roles simultane-
ously. An actor is involved with the functioning of a system at some basic level.
Actors are represented by stick figures.

•	 Use case. Each use case is represented as an ellipse. Each use case represents a
single system function. The name of the use case can be listed inside the ellipse
or just below it.

•	 System boundary. The system boundary is represented as a box that includes all of
the relevant use cases. Note that actors are outside the system boundary.

•	 Connections. In Figure 7-26, note that the actors are connected to use cases
with lines, and that use cases are connected to each other with arrows. A
solid line connecting an actor to a use case shows that the actor is involved in
that particular system function. The solid line does not mean that the actor
is sending data to or receiving data from the use case. Note that all of the
actors in a use case diagram are not involved in all the use cases in the system.
The dotted-line arrows that connect use cases also have labels (there is an
<<extend>> label on the arrows in Figure 7-26). These use case connections and
their labels are explained next. Note that use cases do not have to be connected
to other use cases. The arrows between use cases do not illustrate data or
process flows.

•	 Extend relationship. An extend relationship extends a use case by adding new
behaviors or actions. It is shown as a dotted-line arrow pointing toward the use
case that has been extended and labeled with the <<extend>> symbol. The

extend relationship
An association between two use cases
where one adds new behaviors or actions
to the other.

220 part iii AnAlySiS

dotted-line arrow does not indicate any kind of data or process flow between use
cases. In Figure 7-26, for example, the Register for Special Class use case extends
the Register for Classes use case by capturing the additional actions that need
to be performed in registering a student for a special class. Registering for a
special class requires prior permission of the instructor, in addition to the other
steps carried out for a regular registration. You may think of Register for Classes
as the basic course, which is always performed—independent of whether the
extension is performed or not—and Register for Special Class as an alternative
course, which is performed only under special circumstances.

Note also that the Instructor actor is needed for Register for Special Class. The
Instructor is not needed for Register for Classes, which involves the Student and
Registration Clerk actors only. The reason for not including the Instructor for nor-
mal registration but including him or her for registering for special classes is that
certain additional actions are required from the Instructor for a special class. The
Instructor’s approval is likely needed just to create an instance of a special class, and
there may be other special requirements that need to be met for the class to be cre-
ated. None of these special arrangements are necessary for normal registration, so
the Instructor is not needed under normal circumstances.

Another example of an extend relationship is that between the Identify Prereq
Courses Not Completed and Register for Classes use cases. The former extends the
latter in situations where a student registering for a class has not taken the prerequi-
site courses.

•	 Include relationship. Another kind of relationship between use cases is an include
relationship, which arises when one use case uses another use case. An include
relationship is shown diagrammatically as a dotted-line arrow pointed toward the
use case that is being used. The line is labeled with the <<include>> symbol.
The dotted-line arrow does not indicate any kind of data or process flow
between use cases. An include relationship implies that the use case where the
arrow originates uses the use case where the arrow ends while it is executing.
Typically, the use case that is “included” represents a generic function that is
common to many business functions. Rather than reproduce that functionality
within every use case that needs it, the functionality is factored out into a sepa-
rate use case that can then be used by other use cases. An example of an include
relationship is shown in Figure 7-27.

Figure 7-27 shows a generic use case diagram for any business that needs to
reorder supplies on a regular basis, such as a retail establishment or a restaurant.
Because this is a generic use case diagram, its use cases are high level. Three differ-
ent use cases are identified in the figure: Reorder Supplies, Produce Management

include relationship
An association between two use cases
where one use case uses the functionality
contained in the other.

<<include>>
<<inc

lud
e>

>

Supplier

Manager

Reorder
Supplies

Produce
Management

Reports
Track Sales and
Inventory Data

Figure 7-27
A use case diagram featuring an include
relationship

 Chapter 7 Structuring SyStem ProceSS requirementS 221

Reports, and Track Sales and Inventory Data. Two actors have been identified:
Supplier and Manager. Reorder Supplies involves the Manager and Supplier actors.
A manager initiates the use case, which then sends requests to suppliers for various
items. The Produce Management Reports use case involves only the Manager actor.
In Figure 7-27, the include relationship between the Reorder Supplies and Track
Sales and Inventory Data use cases implies that the former uses the latter while ex-
ecuting. Simply put, when a manager reorders supplies, the sales and inventory data
are tracked. The same data are also tracked when management reports are produced,
so there is another include relationship between the Produce Management Reports
and Track Sales and Inventory Data use cases.

The Track Sales and Inventory Data is a generalized use case, representing the
common behavior among the specialized use cases Reorder Supplies and Produce
Management Reports. When Reorder Supplies or Produce Management Reports is
performed, the entire Track Sales and Inventory Data use case is used. Note, however,
that it is used only when one of the specialized use cases is performed. Such a use
case, which is never performed by itself, is called an abstract use case (Eriksson and
Penker, 1998; Jacobson et al., 1992). An abstract case does not interact directly with
an actor.

Figure 7-28 shows a use case diagram for Hoosier Burger. Several actors and
use cases can be identified. The actor that first comes to mind is Customer, which
represents the class of all customers who order food at Hoosier Burger; Order food
is therefore represented as a use case. The other actor that is involved in this use
case is Service Person. A specific scenario would represent a customer (an instance
of Customer) placing an order with a service person (an instance of Service Person).
At the end of each day, the manager of Hoosier Burger reorders supplies by calling
suppliers. We represent this by a use case called Reorder Supplies, which involves
the Manager and Supplier actors. A manager initiates the use case, which then sends
requests to suppliers for various items.

Customer Service
Person

Applicant

Supplier

Manager

Order Food

Hire Employee

Reorder
Supplies

Track Sales and
Inventory Data

Produce Management
Reports

<<include>>

<<include>>

Figure 7-28
Use case diagram for Hoosier Burger

222 part iii AnAlySiS

Hoosier Burger also hires employees from time to time. Therefore, we have
identified a use case, called Hire employee, in which two actors, Manager and
Applicant, are involved. When a person applies for a job at Hoosier Burger, the man-
ager makes a hiring decision.

Figure 7-28 provides another example of an include relationship, shown dia-
grammatically as a dashed line pointing toward the use case that is being used; the
line is labeled with the <<include>> symbol. In Figure 7-28, for example, the include
relationship between the Reorder Supplies and Track Sales and Inventory Data use
cases implies that the former uses the latter while executing. When a manager re-
orders supplies, the sales and inventory data are tracked. The same data are also
tracked when management reports are produced, so there is another include rela-
tionship between the Produce Management Reports and Track Sales and Inventory
Data use cases.

Track Sales and Inventory Data is a generalized use case, representing the
common behavior among the specialized use cases Reorder Supplies and Produce
Management Reports. When a task like Reorder Supplies or Produce Management
Reports is performed, the entire Track Sales and Inventory Data case is used. Note,
however, that it is used only when one of the specialized use cases is performed. As
you will recall, such a use case, which is never performed by itself, is called an abstract
use case (Eriksson and Penker, 1998; Jacobson et al., 1992).

written Use cAses
Use case diagrams can represent the functionality of a system by showing use case
names and the actors who are involved with them. The names of the use cases alone
do not provide much of the information that is necessary to continue with analysis
and to move on to the design phase. We also need to know what goes on inside each
use case. The contents of a use case can be written in simple text, as was explained
before for the Register for Classes use case in Figure 7-26. Others recommend tem-
plates that force consideration of all of the important information one needs to have
about use cases.

Cockburn (2001) recommends a specific template for writing use cases
(Figure 7-29). Templates can be simpler than the one Cockburn recommends or
more complicated. The point is not the format of the template so much as it is
how the template encourages analysts to write complete use cases. Each heading
reminds the analyst of the information that needs to be provided. In the template
in Figure 7-29, it should be clear what information is being sought. The use case
title and the name of the primary actor role, both of which were featured in the

Use Case Title:

Primary Actor:

Level:

Stakeholders:

Precondition:

Minimal Guarantee:

Success Guarantee:

Trigger:

Main Success Scenario:

Extensions:

Figure 7-29
A template for writing use cases
(Source: Cockburn, Alistair, Writing Effec-
tive Use Cases, 1st ed., © 2001. Reprinted
and Electronically reproduced by permis-
sion of Pearson Education, Inc. Upper
Saddle River, New Jersey

 Chapter 7 Structuring SyStem ProceSS requirementS 223

discussion of use case diagrams, can be found on the use case diagram. The other
information asked for in the template is new and will be discussed in more detail.
The next section will deal exclusively with an important concept, the level of the use
case. The following section will deal with the rest of the terms in the template.

level
Level has to do with the level of detail at which the use case is being described. Level
can range from high to low, where high is general and abstract, and low is detailed.
Cockburn suggests five different levels of detail:

•	 White: As seen from the clouds, as if flying in a plane at 35,000 feet.
•	 Kite: You’re still in the air, but more detail than at cloud level.
•	 Blue: Also known as sea level.
•	 Fish: This is below sea level with a lot of detail. The detail increases deeper

down, just like air pressure.
•	 Black: This is the bottom of the sea where the maximum amount of detail is

provided.

Both the white and kite levels provide a summary of the use case goals. These
goals are at a very high level. Goals at the white level are enterprise-wide, whereas at the
kite level, the goals are those of a single business unit. Use cases at the white and kite
levels are sometimes called summary use cases. Summary use cases do not include func-
tional requirements. Use cases written at the blue level, or sea level, focus on user goals:
What is the user trying to achieve in interacting with the system? Use cases written at
the fish and black levels (sometimes called the clam level) are much more detailed and
focus on subfunction goals. To see how the levels relate to each other, think about the
view of the Caribbean Sea you would get if you were flying over it in a big plane like a
757. You can’t see the bottom of the sea, and at this altitude, you can’t even see much
detail about the surface of the water. This would be the white level. Then think about
how the same stretch of the Caribbean would look from about 100 feet up. This is the
kite level. From the kite level, you would be able to see a lot more detail on the surface,
compared to being in the 757 jet, but you still can’t see a lot of detail on the sea bottom,
even with the water as clear as it is in a lot of the Caribbean. Now imagine the view of
the same place from a rowboat. This is the user goal or sea level view. You can see the
bottom much more clearly now, but it’s still not completely clear. Now dive under the
water and go down about 50 feet. You are a lot closer to the bottom—the fish level—
and so now you can see a lot more detail at the bottom of the sea. But you don’t see the
most detail possible until you are sitting on the bottom itself—the black or clam level.

To put all this into a business function perspective, let’s imagine five levels of
use cases written for the Ford Motor Company. The white level use cases would serve
an enterprise-wide goal (“Buy parts to build cars”), whereas a kite level use case
would serve one business unit (“Buy parts to build Escorts”). If a system user has the
role of procurement manager for the Escort model, the user goals at sea level might
be “Order Escort parts from suppliers” and “Pay bills.” A fish level goal for the pro-
curement system might include “Choose supplier for a part.” A black or clam level
goal for the same system might include “Establish a secure connection.” Figure 7-30
shows the relationships among the levels.

the rest of the template
Next in the use case template is the list of stakeholders: those people who have some
key interest in the development of the system. They would include the system’s users
as well as the manager, other managers in the company, customers, stockholders, the
vendors that supply the company, and so on. Stakeholders are important to identify

Level
Perspective from which a use case
description is written, typically ranging from
high level to extremely detailed.

Stakeholder
People who have a vested interest in the
system being developed.

224 part iii AnAlySiS

because they typically have some impact on what the system does and on how it is
designed. It should be obvious that some stakeholders have more of a stake than oth-
ers, and the most involved stakeholders are the ones that probably should be listened
to first.

The next term in Cockburn’s template (Figure 7-29) is preconditions, which
are those things the system must ensure are true before the use case can start. For
example, in Figure 7-26, for the use case Register for Classes, students would not
be allowed to register if they had any outstanding debts due to the university. No
outstanding debts would be listed under preconditions for Register for Classes in its
written use case template.

Next is minimal guarantee. According to Cockburn, the minimal guarantee is
the least amount promised by the use case to the stakeholder. One way to determine
what this should be is to ask, “What would make the stakeholder unhappy?” For
some use cases, the minimal guarantee might be simply that nothing happens. The
stakeholder would be unhappy because the system does not do what it is supposed
to. However, no detrimental effects result either; no bad data are entered into the
system, no data are lost, and the system does not crash. For many use cases, the best
thing to offer for a minimal guarantee is to roll back the transaction to its original
starting place; nothing is gained but no harm is done either.

A success guarantee lists what it takes to satisfy stakeholders if the use case is
completed successfully. For example, in Figure 7-26, for the use case Bill Student, a
success guarantee would involve the successful compilation of charges due from the
student and the successful creation of an accurate invoice that reflects those charges.
This does not imply that the student is happy with the result; he or she might think
the charges are too high or too low (although rarely the latter). What is important is
that the use case functioned correctly and achieved its goals.

Next is the slot in the template for trigger, the thing that initiates the use case.
A trigger could be a phone call, a letter, or even a call from another use case. In the
example of Bill Student, the trigger could be a message indicating that the class reg-
istration process was complete.

The last item in Cockburn’s written use case template is extensions. Maybe the
best way to think about an extension is as the “else statement” that follows an “if
statement.” An extension is invoked only if its associated condition is encountered.
In a written use case, the conditions that invoke extensions usually refer to some
type of system failure. For example, if a use case involves access through the Internet
and a network failure occurs so that the Internet connection is lost, what happens?
If the system requires a log-in and the user provides the wrong account name, what
happens? If the user provides the wrong password, what happens? All of the ac-
tions that would follow these conditions would be listed in the use case template as
extensions.

Preconditions
Things that must be true before a use case
can start.

Minimal guarantee
The least amount promised to the
stakeholder by a use case.

Success guarantee
What a use case must do effectively in
order to satisfy stakeholders.

Trigger
Event that initiates a use case.

extension
The set of behaviors or functions in a use
case that follow exceptions to the main
success scenario.

Buy parts to build cars

Buy parts to build Escorts

Order Escort parts from suppliers

Choose supplier for part

Encrypt data for secure transmission

Figure 7-30
Use case levels and detail when moving
from top to bottom
(Source: George, Joey F.; Batra, Dinesh;
Valacich, Joseph S.; Hoffer, Jeffrey A.,
Object-Oriented Systems Analysis and Design,
2nd Ed., ©2007, pp. 174, 168, 175, 172,
176, 177. Reprinted and Electronically
reproduced by permission of Pearson
Education, Inc., New York, NY

 Chapter 7 Structuring SyStem ProceSS requirementS 225

Figure 7-31 shows a use case diagram for a reservation system. Figure 7-32 shows
a finished, written use case, based on the reservation use case diagram. This use case
description is written at the kite level, or summary level, which means that it shows
only the user goals rather than the functional requirements. You’ll notice that five
user goals are described, four of which are carried out by the customer, and this
reflects the content of the use case diagram in Figure 7-31. Although Figure 7-31 is
generic to any system that handles reservations, the written use case in Figure 7-32 is
specific to hotel reservations. For hotel reservations made on the web, certain simpli-
fying assumptions particular to hotel reservations have been made, such as custom-
ers being required to provide one night’s deposit in order to hold the reservation.
You’ll also notice that there is a list of extensions at the end of the written use case.
There is at least one extension for each user goal, although the first function, search-
ing for a room for a desired time period at a specific hotel, has two extensions. There
is no set number of extensions required for a user goal. In fact, there is no require-
ment that a user goal has an extension at all.

electronic coMMerce APPlicAtion: Process
Modeling Using Use cAses
Jim Woo decided to try to model the functionality of the PVF WebStore application
with a use case diagram. He identified six high-level functions that would be included
in his use case diagram. Jim created a table that listed the main characteristics of
the WebStore website in one column and the corresponding system functions in an-
other column (Table 7-5). Note how these functions correspond to the major website
characteristics listed in the system structure. These functions represent the “work”
or “action” parts of the website. Jim noted that all the functions listed in his table
involved the customer, so Jim realized that Customer would be a key actor in his use
case diagram.

Request
Confirmation

Purchase
Reservations

Authorize Credit
Card Use

Make
Reservations

Search
Schedules

Reservation System

<<include>>

Customer

Figure 7-31
A use case diagram for a reservation
system
(Source: George, Joey F.; Batra, Dinesh;
Valacich, Joseph S.; Hoffer, Jeffrey A.,
Object-Oriented Systems Analysis and Design,
2nd Ed., ©2007, pp. 174, 168, 175, 172,
176, 177. Reprinted and Electronically
reproduced by permission of Pearson
Education, Inc., New York, NY

226 part iii AnAlySiS

In looking at the table, however, Jim realized that one of the key functions iden-
tified in the JAD, Fill Order, was not represented in his table. He had to include it
in the use case diagram, but it was clear to him that it was a back-office function and
that it required adding another actor to the use case diagram. This actor would be
the Shipping Clerk. Jim added Shipping Clerk to the right-hand side of his use case
diagram. The finished diagram is shown in Figure 7-33.

Use Case Title: Browse catalog

Primary Actor: Customer

Level: Kite (summary)

Stakeholders: Customer, credit bureau

Precondition: Customer accesses the hotel website

Minimal Guarantee: Rollback of any uncompleted transaction

Success Guarantees: Reservation held with one night’s deposit

Trigger: Customer accesses hotel homepage

Main Success Scenario:

Extensions:

1a. Hotel property search function is not available.
 1a1. Customer quits site
1b. Specific hotel room not available for desired time period.
 1b1. Customer quits site.
 1b2. Customer searches for di�erent hotel for desired time period.
 1b3. Customer searches for same hotel for di�erent time period
2a. Making reservation transaction is interrupted.
 2a1. Transaction rolled back. Customer starts again.
 2a2. Transaction rolled back. Customer quits site.
3a. Holding reservation transaction is interrupted.
 3a1. Transaction rolled back. Customer starts again.
 3a2. Transaction rolled back. Customer quits site.
4a. Credit bureau cannot verify that customer has necessary credit.
 4a1. Customer notified of issue. Transaction rolled back. Customer quits site.
 4a2. Customer notified of issue. Transaction rolled back. Customer
 begins reservation process again with di�erent credit card.
5a. Confirmation of transaction is interrupted.
 5a1. Customer seeks other means of confirmation.
 5a2. Customer quits site.

1. Customer searches for hotel location and room availability for desired time period.
2. Customer makes reservation for desired room for desired time period.
3. Customer holds reservation by authorizing a deposit for one night’s stay.
4. Credit bureau verifies that customer has necessary credit for deposit.
5. Customer requests confirmation of reservations.

Figure 7-32
Kite Level Written Use Case for Making a Hotel Room Reservation
(Source: George, Joey F.; Batra, Dinesh; Valacich, Joseph S.; Hoffer, Jeffrey A., Object-Oriented Systems Analysis and Design,
2nd Ed., ©2007, pp. 174, 168, 175, 172, 176, 177. Reprinted and Electronically reproduced by permission of Pearson
Education, Inc., New York, NY

 Chapter 7 Structuring SyStem ProceSS requirementS 227

writing Use cAses For Pine VAlley
FUrnitUre’s weBstore
Jim Woo was pleased with the use case diagram he created for the WebStore
(Figure 7-33). Now that he had identified all of the use cases necessary (he thought),
he was ready to go back and start writing the use cases. The management in Pine
Valley’s Information Systems department mandated that analysts use a standard tem-
plate for writing use cases. Given his use case diagram, Jim decided to create two
types of written use cases. The first would deal with the entire process of buying a
PVF product on the WebStore, as depicted in his use case diagram. This written use

Fill Order

Place Order

Maintain Account

Browse Catalog

Customer Shipping
Clerk

Check Order

Figure 7-33
WebStore use case diagram
Source: George, Joey F.; Batra, Dinesh;
Valacich, Joseph S.; Hoffer, Jeffrey A.,
Object-Oriented Systems Analysis and Design,
2nd Ed., ©2007, pp. 174, 168, 175, 172,
176, 177. Reprinted and Electronically
reproduced by permission of Pearson
Education, Inc., New York, NY

Table 7-5 System Structure of the WebStore and Corresponding Functions
WebStore System Functions

❑❑ Main Page Browse Catalog
•	 Product Line (catalog)

❑✓ Desks
❑✓ Chairs
❑✓ Tables
❑✓ File Cabinets

•	 Shopping Cart Place Order
•	 Checkout Place Order
•	 Account Profile Maintain Account
•	 Order Status/History Check Order
•	 Customer Comments

❑❑ Company Information
❑❑ Feedback
❑❑ Contact Information

228 part iii AnAlySiS

case would be at the kite level. It would be a summary use case and would not include
functional requirements. The finished product is shown in Figure 7-34.

After finishing the kite level use case, Jim went on to create a couple of
written use cases for individual use cases in his diagram. Jim wanted to write these
use cases at the sea level or user goal level. He started with the first use case in his
diagram, Browse catalog. Figure 7-35 shows the template Jim completed for this first
use case.

Jim was amazed at how much detail he could generate for something as seem-
ingly simple as a customer browsing a web catalog. Yet he knew that he had left out

Use Case Title: Making a hotel room reservation

Primary Actor: Customer

Level: Kite (summary)

Stakeholders: Customer, credit bureau

Precondition: Customer accesses the hotel website

Minimal Guarantee: Rollback of any uncompleted transaction

Success Guarantees: Reservation held with one night’s deposit

Trigger: Customer accesses hotel homepage

Main Success Scenario:

Extensions:

1a. Hotel property search function is not available.
 1a1. Customer quits site
1b. Specific hotel room not available for desired time period.
 1b1. Customer quits site.
 1b2. Customer searches for di�erent hotel for desired time period.
 1b3. Customer searches for same hotel for di�erent time period
2a. Making reservation transaction is interrupted.
 2a1. Transaction rolled back. Customer starts again.
 2a2. Transaction rolled back. Customer quits site.
3a. Holding reservation transaction is interrupted.
 3a1. Transaction rolled back. Customer starts again.
 3a2. Transaction rolled back. Customer quits site.
4a. Credit bureau cannot verify that customer has necessary credit.
 4a1. Customer notified of issue. Transaction rolled back. Customer quits site.
 4a2. Customer notified of issue. Transaction rolled back. Customer begins reservation
 process again with di�erent credit card.
5a. Confirmation of transaction is interrupted.
 5a1. Customer seeks other means of confirmation.
 5a2. Customer quits site.

1. Customer searches for hotel location and room availability for desired time period.
2. Customer makes reservation for desired room for desired time period.
3. Customer holds reservation by authorizing a deposit for one night’s stay.
4. Credit bureau verifies that customer has necessary credit for deposit.
5. Customer requests confirmation of reservations.

Figure 7-34
Jim Woo’s Kite Level Written Use Case for Buying a Product at PVF’s WebStore
(Source: George, Joey F.; Batra, Dinesh; Valacich, Joseph S.; Hoffer, Jeffrey A., Object-Oriented Systems Analysis
and Design, 2nd Ed., ©2007, pp. 174, 168, 175, 172, 176, 177. Reprinted and Electronically reproduced by
permission of Pearson Education, Inc., New York, NY

 Chapter 7 Structuring SyStem ProceSS requirementS 229

many details, details that could be specified in a use case at different levels, such as
fish level or below. Still, Jim was happy with the progress he had made on this use
case for catalog browsing. Now he turned his attention to the other four use cases he
had identified for the WebStore (Figure 7-33) and wrote sea level use cases for them.
Once he finished, he called a couple of other analysts at PVF so they could review
his work.

Use Case Title: Browse catalog

Primary Actor: Customer

Level: Sea level (user goal)

Stakeholders: Customer

Precondition: Customer must be online with Web access

Minimal Guarantee: Rollback of any uncompleted transaction; system logs progress until failure

Success Guarantees: Files customer desires load correctly

Trigger: Customer accesses WebStore homepage

Main Success Scenario:

Extensions:

1.a. Cookie cannot be created.
 1.a.1. Message created indicates to customer that browsing is not possible because his
 or her Web browser does not allow for the creation of cookies.
 1.a.2. Customer either adjusts the browser’s cookie settings and tries again or leaves the site.
6.a. Full-sized photo does not load.
 6.a.1. Customer gets a broken-link symbol.
 6.a.2. Customer hits the refresh button and the photo loads successfully.
 6.a.3. Customer hits the refresh button and the photo does not load successfully; customer
 leaves the site.
2-7.a. The requested Web page does not load or cannot be found.
 2-7.a.1. Customer gets a “page not found” error page in browser.
 2-7.a.2. Customer hits the refresh button and the requested page loads successfully.
 2-7.a.3. Customer hits the refresh button and the requested page does not load successfully;
 customer leaves the site.

1. Cookie created on customer hard drive.
2. Customer selects category of item to view from list (e.g., home, o�ce, patio).
3. Customer selects subcategory of item to view from list (e.g., home is subdivided into
 kitchen, dining room, bedroom, living room, den, etc.).
4. Customer selects specific item from list in subcategory to view (e.g., TV stand in den).
5. Customer selects specific item from list of products (e.g., Smith & Wesson TV stand).
6. Customer clicks on thumbnail photo of item to get regular-sized photo to view.
7. Customer selects “Product Specifications” to get detailed information on product.
8. Customer uses Web browser “Back” button to go back to see other products or
 other rooms or other types of furniture.
9. Customer selects from choices on menu bar to go elsewhere, either “Other Types of Furniture,”
 “WebStore Home,” or “PVF Home.”

Figure 7-35
Jim Woo’s completed template for PVF’s Browse catalog use case
(Source: George, Joey F.; Batra, Dinesh; Valacich, Joseph S.; Hoffer, Jeffrey A., Object-Oriented Systems Analy-
sis and Design, 2nd Ed., ©2007, pp.174, 168, 175, 172, 176, 177. Reprinted and Electronically
reproduced by permission of Pearson Education, Inc., New York, NY.

230 part iii AnAlySiS

Summary

Use case modeling, featuring use case diagrams and writ-
ten use cases, is another method you can use to model
business processes. Use cases focus on system functional-
ity and business processes, and they provide little, if any,

information about how data flow through a system. In
many ways, use case modeling complements DFD model-
ing. The use case approach provides another tool for ana-
lysts to use in structuring system requirements.

Key TermS

 7A.1 Actor
 7A.2 Extend relationship
 7A.3 Extension
 7A.4 Include relationship

 7A.5 Level
 7A.6 Minimal guarantee
 7A.7 Preconditions
 7A.8 Stakeholder

 7A.9 Success guarantee
 7A.10 Trigger
 7A.11 Use case
 7A.12 Use case diagram

Match each of the key terms above with the definition that best
fits it.

____ People who have a vested interest in the system being
developed.

____ The least amount promised to the stakeholder by a
use case.

____ An association between two use cases where one adds new
behaviors or actions to the other.

____ An external entity that interacts with a system.

____ Event that initiates a use case.

____ A depiction of a system’s behavior or functionality under
various conditions as the system responds to requests from
users.

____ The set of behaviors or functions in a use case that follow
exceptions to the main success scenario.

____ A picture showing system behavior, along with the key ac-
tors that interact with the system.

____ What a use case must do effectively in order to satisfy
stakeholders.

____ An association between two use cases where one use case
uses the functionality contained in the other.

____ Things that must be true before a use case can start.

____ Perspective from which a use case description is written,
typically ranging from high level to extremely detailed.

revIew QueSTIonS
 7A.13 What are use cases?

 7A.14 What is use case modeling?

 7A.15 What is a use case diagram?

 7A.16 What is a written use case and how does it compare to a
use case diagram?

 7A.17 Explain an include relationship.

 7A.18 Explain an extend relationship.

 7A.19 Compare DFDs with use case diagrams.

 7A.20 What can a written description of a use case provide that
a use case diagram cannot?

 7A.21 Describe Cockburn’s template for a written use case.

 7A.22 List and explain the five levels from which use case de-
scriptions can be written.

 7A.23 What is the difference between a minimal guarantee and
a success guarantee?

 7A.24 What are extensions?

ProblemS and exercISeS
 7A.25 Draw a use case diagram for the situation described in

Problem and Exercise 7-39, page 210.

 7A.26 Draw a use case diagram for the situation described in
Problem and Exercise 7-40, page 210.

 7A.27 Draw a use case diagram for the situation described in
Problem and Exercise 7-41 page 213.

 7A.28 Draw a use case diagram for the situation described in
Problem and Exercise 7-42, page 213.

 7A.29 Draw a use case diagram for the situation described in
Problem and Exercise 7-43, page 213.

 7A.30 Draw a use case diagram based on the level-0 diagram
in Figure 7-23. How does your use case diagram for
 Figure 7-23 differ from the one in Figure 7-26, which is
also about registering for classes? To what do you attri-
bute the differences?

 7A.31 Develop a use case diagram for using an ATM machine to
withdraw cash.

 Chapter 7 Structuring SyStem ProceSS requirementS 231

 7A.32 Develop a written use case for using an ATM machine to
withdraw cash.

 7A.33 Choose a transaction that you are likely to encounter,
perhaps ordering a cap and gown for graduation, and de-
velop a use case diagram for it.

 7A.34 Choose a transaction that you are likely to encounter and
develop a written use case for it.

 7A.35 The diagram in Figure 7-33 includes five use cases. In
this chapter, Jim Woo wrote descriptions for one of them,
Browse catalog. Prepare written descriptions for the
other use cases in Figure 7-33.

 7A.36 An auto rental company wants to develop an automated
system that can handle car reservations, customer billing,

and car auctions. Usually a customer reserves a car, picks it
up, and then returns it after a certain period of time. At the
time of pickup, the customer has the option to buy or waive
collision insurance on the car. When the car is returned,
the customer receives a bill and pays the specified amount.
In addition to renting cars, every six months or so, the auto
rental company auctions the cars that have accumulated
over 20,000 miles. Draw a use case diagram for capturing
the requirements of the system to be developed. Include
an abstract use case for capturing the common behavior
among any two use cases. Extend the diagram to capture
corporate billing, where corporate customers are not
billed directly; rather, the corporations they work for are
billed and payments are made sometime later.

FIeld exercISe
 7A.37 At an organization with which you have contact, find an

analyst who uses use case modeling. Find out how long he
or she has been writing use cases and how he or she feels
about use cases compared with DFDs.

reFerenceS
Cockburn, A. 2001. Writing Effective Use Cases. Reading, MA:

Addison-Wesley.
Eriksson, H., and M. Penker. 1998. UML Toolkit. New York: Wiley.

Jacobson, I., M. Christerson, P. Jonsson, and G. Overgaard.
1992. Object-Oriented Software Engineering: A Use-Case-Driven
Approach. Reading, MA: Addison-Wesley.

232

line, which has two arrows coming out of it. When the par-
allel activities are done, they come back together in a join.
The join is shown as a horizontal line with two arrows com-
ing in and one arrow leaving. After the join, the overall
process continues.

Figure 7-37 shows a simple activity diagram that il-
lustrates conditional logic. A user wants to log in to a sys-
tem, which could be a website or some other information
system. If the user has already registered, then the flow
of activities shifts to the left-hand side. If the user has not
registered, the flow shifts to the right-hand side. First, the

An activity diagram shows the conditional logic for
the sequence of system activities needed to accomplish a
business process. An individual activity may be manual or
automated. Further, each activity is the responsibility of a
particular organizational unit.

The basic activity diagram notation contains only
a few symbols (Figure 7-36). Each activity is represented
with a rounded rectangle, with the action performed by
that activity written inside it. The diagram itself represents
an overall process that is made up of a series of activities.
The beginning of the process is indicated with a filled in
circle. An arrow connects the circle with the first activity.
The end of the process is also indicated with a filled in
circle, but it is surrounded by another circle. An activity
diagram is designed to show conditional logic. The symbol
that illustrates a choice that must be made is a diamond,
and it is called a branch. The diamond follows one activity,
so there is an arrow coming into it. Two activities follow it,
so an arrow leaves the diamond for each possible course of
action. These arrows are labeled with the conditions that
cause each branch to be followed. The different courses
of possible action end at some point, so they join together,
and the overall process continues. The point at which they
join is called a merge, and the symbol for it is also a dia-
mond. For a merge diamond, two arrows come into the
diamond but only one leaves. An activity diagram can also
show parallel activities. We show where the parallel activi-
ties begin with a fork. The fork is shown with a horizontal

Introduction

Learning Objectives

After studying this section, you should be able to

7b.1 understand how to represent system logic with
activity diagrams.

object-oriented Analysis
and design
Activity diagrams*7B

Appendix

* The original version of this appendix was written by Professor Atish P. Sinha.

Start End

Activity

Fork

Join

Branch

Merge

Figure 7-36
Basic notation for activity diagrams.

 Chapter 7 Structuring SyStem ProceSS requirementS 233

Browse menu

Call to order pizza

Take delivery

Return pizza

Pay for pizza

[Order not OK]

[Order OK]

Figure 7-38
A simple activity diagram for ordering
pizza.

Click on
‘Register’Login

Complete
registration

form

Submit
registration

form

[User has registered] [User has not registered]

[Form OK]

[Form not OK]

Figure 7-37
Simple activity diagram showing conditional logic.

user has to click on the ‘Register’ button. A registration form will then open, which
the user must complete. The system then checks to see if the form has been com-
pleted correctly. If so, the action proceeds to the merge point. If not, the user must
complete the registration form again. Once the user has successfully logged in, the
flow of the action moves to the end of the activity diagram. In practice, this activity
diagram would illustrate only one small part of a larger process involving a system.
There would typically be activities before the log-in branch, and there would be other
activities following the merge at the bottom of the diagram.

Another simple activity diagram is shown in Figure 7-38. This activity diagram
shows how you might order a pizza. The process starts with the first activity, browsing
the menu of your favorite pizza restaurant or take-out place. The next step is to call
and order the pizza. The third step is to take delivery. But if the pizza is not what you
ordered, you don’t want it. So there is a conditional branch included. If the order
is correct, then you pay for the pizza. If the pizza is not what you wanted, then you
return it. Note how both of the activities that follow the branch lead to the end of the
activity diagram.

Both of the activity diagrams you have seen so far have been relatively simple
and have involved only one participant. But organizational processes are rarely so
simple, and they almost always involve multiple actors, typically located in differ-
ent organizational departments. Figure 7-39 illustrates one such process: A typical
customer ordering process for a stock-to-order business, such as a catalog or an
Internet sales company. Interactions with other business processes, such as replen-
ishing inventory, forecasting sales, or analyzing profitability, are not shown.

In Figure 7-39, each column, called a swimlane, represents the organizational
unit responsible for certain activities. The vertical axis is time, but without a time
scale (i.e., the distance between symbols implies nothing about the absolute amount
of time passing). As usual, the process starts at the filled in circle. This activity dia-
gram includes a fork, which means that several parallel, independent sequences of

Activity diagram
Shows the conditional logic for the
sequence of system activities needed to
accomplish a business process.

234 part iii AnAlySiS

Purchasing Fulfillment Customer Service Accounting

Prepare
Invoice

Receive
Order

Activity

Branch

Merge

Join

End

Fork

Start

Close
Order

Pull
Available
Inventory

[missing some items]

[request express] [else]

Send
Order

Send
Express

Mail

Send
Regular

Mail

Prepare
Back
Order

Pull
Back Order
Inventory

Send
Invoice

Receive
Payment

Figure 7-39
Activity diagram for a customer order process

 Chapter 7 Structuring SyStem ProceSS requirementS 235

activities are initiated (such as after the Receive Order activity), and a join (such as
before the Send Invoice activity) signifies that independent streams of activities now
must all reach completion to move on to the next step.

The branch in the Fulfillment swimlane indicates conditional logic. After avail-
able inventory is pulled from stock, it must be determined if all ordered items were
found. If they were not, Purchasing must prepare a back order. After either the back-
order inventory arrives and is pulled or the original order is filled completely, the
process flow merges to continue to the Send Order activity.

This multi-actor activity diagram clearly shows parallel and alternative behaviors
(Fowler and Scott, 1999). It provides a good way to document work or flows through
an organization. However, objects are obscured and the links between objects are not
shown. An activity diagram can be used to show the logic of a use case.

when to Use An ActiVity diAgrAM
An activity diagram is a flexible tool that can be used in a variety of situations. It can
be used at a high level as well as at a low level of abstraction. It should be used only
when it adds value to the project. Our recommendation is to use it sparingly. Ask the
following question: Does it add value or is it redundant? Specifically, an activity dia-
gram can be used to accomplish the following tasks:

1. Depict the flow of control from activity to activity.
2. Help in use case analysis to understand what actions need to take place.
3. Help in identifying extensions in a use case.
4. Model work flow and business processes.
5. Model the sequential and concurrent steps in a computation process.

The interpretation of the term activity depends on the perspective from which
one is drawing the diagram. At a conceptual level, an activity is a task that needs to be
done, whether by a human or a computer (Fowler and Scott, 1999). At an implemen-
tation level, an activity is a method or a class.

ProblemS and exercISeS
 7B.1 Draw an activity diagram that models the following em-

ployee reimbursement process.

Employees of West Nile Valley University have to fol-
low a specific procedure to get reimbursed for travel
they undertake on behalf of the university. First, they
have to gather and prepare all of the receipts the uni-
versity requires for reimbursement. At the same time,
they complete the official reimbursement form. They
then submit both the receipts and the form to their
departmental secretary. If something on the form is
incorrect, the secretary returns the form to the em-
ployee for correction. If the form is correct, the em-
ployee is asked to review the reimbursement amounts,
which are determined by an analysis of the reimburse-
ment request. If the amount shown is not correct, the
employee must indicate that this is the case. If the
amount shown is correct, then the employee’s respon-
sibilities for reimbursement are complete.

 7A.2 Draw an activity diagram that models the reimbursement
process described below. Use one swimlane for each of the
three actors in the process.

The travel reimbursement process for employees of
West Nile Valley University involves three different ac-
tors: the employee, the employee’s departmental sec-
retary, and the treasurer’s office. First, the employee
has to gather and prepare all of the receipts the uni-
versity requires for reimbursement. At the same time,
she completes the official reimbursement form. She
then submits both the receipts and the form to the
departmental secretary. If something on the form is
incorrect, the secretary returns the form to the em-
ployee for correction. If the form is correct, the secre-
tary prepares a form required by the university. That
form is then submitted to the treasurer’s office. The
treasurer’s office then enters the amount to be reim-
bursed into the university’s system. The employee is
then asked to review the reimbursement amounts. If
the amount shown is not correct, the employee must
indicate that this is the case. If the amount shown is
correct, then the treasurer’s office sends the reim-
bursement to the employee’s bank, completing the
process.

236 part iii AnAlySiS

 7B.3 Draw an activity diagram for the following employee hiring
process.

Projects, Inc., is an engineering firm with approximately
500 engineers in different specialties. New employees
are hired by the personnel manager, based on data in an
application form and evaluations collected from other
managers who interview the job candidates. Prospective
employees may apply at any time. Engineering manag-
ers notify the personnel manager when a job opens and
list the characteristics necessary to be eligible for the job.
The personnel manager compares the qualifications of
the available pool of applicants with the characteristics
of an open job and then schedules interviews between
the manager in charge of the open position and the
three best candidates from the pool. After receiving eval-
uations on each interview from the manager, the person-
nel manager makes the hiring decision based upon the
evaluations and applications of the candidates and the
characteristics of the job, and then notifies the interview-
ees and the manager about the decision. Applications of
rejected applicants are retained for one year, after which
time the application is purged. When hired, a new en-
gineer completes a nondisclosure agreement, which is
filed with other information about the employee.

 7B.4 Draw an activity diagram for the following case.

Maximum Software develops and supplies software
products to individuals and businesses. As part of its
operations, Maximum provides a 1-800 telephone
number help desk for clients with questions about soft-
ware purchased from Maximum. When a call comes
in, an operator inquires about the nature of the call.
For calls that are not truly help desk functions, the op-
erator redirects the call to another unit of the com-
pany (such as order processing or billing). Because
many customer questions require in-depth knowledge
of a product, help desk consultants are organized by
product. The operator directs the call to a consultant

skilled on the software that the caller needs help with.
Because a consultant is not always immediately avail-
able, some calls must be put into a queue for the next
available consultant.

Once a consultant answers the call, he or she
determines whether this is the first call from this cus-
tomer about this problem. If so, a new call report is
created to keep track of all information about the
problem. If not, the customer is asked for a call report
number so the consultant can retrieve the open call re-
port to determine the status of the inquiry. If the caller
does not know the call report number, the consultant
collects other identifying information such as the call-
er’s name, the software involved, or the name of the
consultant who has handled the previous calls on the
problem in order to conduct a search for the appropri-
ate call report. If a resolution of the customer’s prob-
lem has been found, the consultant informs the client
what that resolution is, indicates on the report that the
customer has been notified, and closes out the report.
If a resolution has not been discovered, the consultant
finds out whether the consultant previously handling
this problem is on duty. If so, the call is transferred to
the other consultant (or the call is put into the queue
of calls waiting to be handled by that consultant).

Once the proper consultant receives the call, any
new details the customer may have are recorded. For
continuing problems and for new call reports, the
consultant tries to discover an answer to the problem
by using the relevant software and looking up infor-
mation in reference manuals. If the problem can be
resolved, the customer is told how to deal with the
problem, and the call report is closed. Otherwise, the
consultant files the report for continued research and
tells the customer that someone at Maximum will be
in touch, or if the customer discovers new information
about the problem, he or she can call back, identifying
the problem with a specified call report number.

reFerence

Fowler, M., and K. Scott. 1999. UML Distilled, 2nd ed. Reading,
MA: Addison-Wesley.

237

A sequence diagram may be presented either in a
generic form or in an instance form. The generic form
shows all possible sequences of interactions, that is, the se-
quences corresponding to all the scenarios of a use case.
For example, a generic sequence diagram for the Class
registration use case (see Figure 7-26) would capture the
sequence of interactions for every valid scenario of that
use case. The instance form, on the other hand, shows
the sequence for only one scenario. A scenario in UML
refers to a single path, among many possible different
paths, through a use case (Fowler, 2003). A path repre-
sents a specific combination of conditions within the use
case. In Figure 7-40, a sequence diagram is shown, in in-
stance form, for a scenario in which a student registers for
a course that specifies one or more prerequisite courses as
requirements.

The vertical axis of the diagram represents time, and
the horizontal axis represents the various participating ob-
jects. Time increases as we go down the vertical axis. The
diagram has six objects, from an instance of Registration
Window on the left to an instance of Registration called
“a New Registration” on the right. The ordering of the
objects has no significance. However, you should try to ar-
range the objects so that the diagram is easy to read and
understand. Each object is shown as a vertical dashed line
called the lifeline; the lifeline represents the object’s exis-
tence over a certain period of time. An object symbol—a
box with the object’s name underlined—is placed at the
head of each lifeline.

In this section on object-oriented analysis and design,
we will introduce you to sequence diagrams. We will first
show how to design some of the use cases we identified
earlier in the analysis phase (Chapter 7) using sequence
diagrams. A use case design describes how each use case is
performed by a set of communicating objects (Jacobson
et al., 1992). In UML, an interaction diagram is used to
show the pattern of interactions among objects for a par-
ticular use case. There are two types of interaction dia-
grams: sequence diagrams and collaboration diagrams
(Object Management Group, 2008). Both express similar
information, but they do so in different ways. Whereas
sequence diagrams show the explicit sequencing of mes-
sages, collaboration diagrams show the relationships
among objects. In the next section, we will show you how
to design use cases using sequence diagrams.

dynAMic Modeling: seqUence
diAgrAMs
A sequence diagram depicts the interactions among objects
during a certain period of time. Because the pattern of inter-
actions varies from one use case to another, each sequence
diagram shows only the interactions pertinent to a specific
use case. It shows the participating objects by their lifelines
and the interactions among those objects—arranged in time
sequence—by the messages they exchange with one another.

object-oriented Analysis
and design
sequence diagrams*7C

Appendix

* The original version of this appendix was written by Professor Atish P. Sinha.

Learning Objectives

After studying this section, you should be able to

7c.2 understand how to represent system logic with
sequence diagrams.

Introduction

238 part iii AnAlySiS

A thin rectangle superimposed on the lifeline of an object represents an activa-
tion of the object. An activation shows the time period during which an object per-
forms an operation, either directly or through a call to some subordinate operation.
The top of the rectangle, which is at the tip of an incoming message, indicates the
initiation of the activation; the bottom indicates its completion.

Objects communicate with one another by sending messages. A message is
shown as a solid arrow from the sending object to the receiving object. For example,
the checkIfOpen message is represented by an arrow from the Registration Entry ob-
ject to the Course Offering object. When the arrow points directly into an object box,
a new instance of that object is created. Normally the arrow is drawn horizontally, but
in some situations (discussed later), you may have to draw a sloping message line.

Messages can be of different types (Object Management Group, 2008). Each
type is indicated in a diagram by a particular type of arrowhead. A synchronous mes-
sage, shown as a full, solid arrowhead, is one where the caller has to wait for the
receiving object to complete execution of the called operation before it itself can
resume execution. An example of a synchronous message is checkIfOpen. When a
Registration Entry object sends this message to a Course Offering object, the latter re-
sponds by executing an operation called checkIfOpen (same name as the message).
After the execution of this operation is complete, control is transferred back to the
calling operation within Registration Entry with a return value of “true” or “false.”

Sequence diagram
Depicts the interactions among objects
during a certain period of time.

Activation
The time period during which an object
performs an operation.

Synchronous message
A type of message in which the caller has
to wait for the receiving object to finish
executing the called operation before it can
resume execution itself.

:Course
O�ering

:Course :Student

open ()
enterClass
(stud,
class)

Confirmed
Registration

:Registration
Window

a New Registration
:Registration

checkIfOpen ()

:Registration
Entry

Prereqs

[existsPrereqs=“true”] checkPrereqs (prereqs)

[checkPrereqs=“true”] new ()

incrementClassSize ()

[isClassFull=“false”]

isClassFull ()

[checkIfOpen=“true”]
existsPrereqs ()

Figure 7-40
Sequence diagram for a class registration
scenario with prerequisites

 Chapter 7 Structuring SyStem ProceSS requirementS 239

A synchronous message always has an associated return message. The message
may provide the caller with some return value(s) or simply acknowledge to the caller
that the operation called has been successfully completed. We have not shown the
return for the checkIfOpen message; it is implicit. We have explicitly shown the re-
turn for the existsPrereqs message from Registration Entry to Course. The tail of the
return message is aligned with the base of the activation rectangle for the existsPre-
reqs operation. The message returns the list of prerequisites, if any, for the course in
question. Return messages, if shown, unnecessarily clutter the diagram; you can show
only the ones that help in understanding the sequence of interactions.

A simple message simply transfers control from the sender to the recipi-
ent without describing the details of the communication. In a diagram, the ar-
rowhead for a simple message is drawn as a transverse tick mark. As we have seen,
the return of a synchronous message is a simple message. The “open” message in
Figure 7-40 is also a simple message; it simply transfers control to the Registration
Window object.

An asynchronous message, shown as a half arrowhead in a sequence diagram,
is one where the sender does not have to wait for the recipient to handle the mes-
sage. The sender can continue executing immediately after sending the message.
Asynchronous messages are common in concurrent, real-time systems, in which sev-
eral objects operate in parallel. We do not discuss asynchronous messages further in
Appendix 7C.

designing A Use cAse with A seqUence
diAgrAM
Let us now see how we can design use cases. We will draw a sequence diagram for an
instance of the Class registration use case, one in which the course has prerequisites.
A description of this scenario is provided below.

1. Registration Clerk opens the registration window and enters the registration in-
formation (student and class).

2. Check if the class is open.
3. If the class is open, check if the course has any prerequisites.
4. If the course has prerequisites, then check if the student has taken all of those

prerequisites.
5. If the student has taken those prerequisites, then register the student for the

class and increment the class size by one.
6. Check if the class is full; if not, do nothing.
7. Display the confirmed registration in the registration window.

The diagram of Figure 7-40 shows the sequence of interactions for this sce-
nario. In response to the “open” message from Registration Clerk (external actor),
the registration window pops up on the screen and the registration information is en-
tered. This creates a new Registration Entry object, which then sends a checkIfOpen
message to the Course Offering object (representing the class the student wants to
register for). There are two possible return values: “true” or “false.” In this scenario,
the assumption is that the class is open. We have therefore placed a guard condition,
checkIfOpen =“true,” on the message existsPrereqs. The guard condition ensures
that the message will be sent only if the class is open. The return value is a list of pre-
requisites; the return is shown explicitly in the diagram.

For this scenario, the fact that the course has prerequisites is captured by the
guard condition existsPrereqs = “true.” If this condition is satisfied, the Registration
Entry object sends a checkPrereqs message, with “prereqs” as an argument, to the
Student object to determine if the student has taken those prerequisites. If the stu-
dent has taken all the prerequisites, the Registration Entry object creates an object
called “a New Registration,” which denotes a new registration.

Simple message
A message that transfers control from the
sender to the recipient without describing
the details of the communication.

Asynchronous message
A message in which the sender does not
have to wait for the recipient to handle the
message.

240 part iii AnAlySiS

Next, “a New Registration” sends a message called incrementClassSize to
Course Offering in order to increase the class size by one. The incrementClassSize
operation within Course Offering then calls upon isClassFull, another operation
within the same object; this is known as self-delegation (Fowler, 2003). Assuming that
the class is not full, the isClassFull operation returns control to the calling operation
with a value of “false.” Next, the incrementClassSize operation completes and relin-
quishes control to the calling operation within “a New Registration.”

Finally, on receipt of the return message from “a New Registration,” the
Registration Entry object destroys itself (the destruction is shown with a large X)
and sends a confirmation of the registration to the registration window. Note that
Registration Entry is not a persistent object; it is created on the fly to control the
sequence of interactions and is deleted as soon as the registration is completed. In
between, it calls several other operations within other objects by sequencing the
following messages: checkIfOpen, existsPrereqs, checkPrereqs, and new. Hence,
Registration Entry may be viewed as a control object (Jacobson et al., 1992).

Apart from the Registration Entry object, “a New Registration” is also created dur-
ing the time period captured in the diagram. The messages that created these objects
are represented by arrows pointing directly toward the object symbols. For example,
the arrow representing the message called “new” is connected to the object symbol for
“a New Registration.” The lifeline of such an object begins when the message that cre-
ates it is received (the dashed vertical line is hidden behind the activation rectangle).

As we discussed before, the Registration Entry object is destroyed at the point
marked by X. The lifeline of this object, therefore, extends from the point of creation
to the point of destruction. For objects that are neither created nor destroyed during
the time period captured in the diagram—for example, Course Offering, Course,
and Student—the lifelines extend from the top to the bottom of the diagram.

Figure 7-41 shows the sequence diagram for a slightly different scenario—when
a student registers for a course without any prerequisites. Notice that the guard con-
dition to be satisfied for creating “a New Registration,” existsPrereqs =“false,” is dif-
ferent from that in the previous scenario. Also, because there is no need to check if
the student has taken the prerequisites, there is no need to send the checkPrereqs
message to Student. Thus, the Student object does not participate in this scenario.

There is another difference between this scenario and the previous one. In this
scenario, when the incrementClassSize operation within Course Offering calls isClass-
Full, the value returned is “true.” Before returning control to “a New Registration,”
the incrementClassSize operation self-delegates again, this time calling setStatus to
set the status of the class to “closed.”

Both of the sequence diagrams we have seen so far are in instance form. In
Figure 7-42, we present a sequence diagram in generic form. This diagram encom-
passes all possible combinations of conditions for the Prereq courses not completed
use case (see Figure 7-26). Because this use case is an extension of the Class registra-
tion use case, we have not shown the Registration Window object. It is assumed that
the Registration Entry object has already been created by the original use case. To
improve coherency, we have provided a textual description in the left margin. You
may provide such descriptions in either the left or the right margins, but try to align
the text horizontally with the corresponding element in the diagram. The contents
of the use case are described as follows:

1. If the student has not taken one or more of the prerequisites for the course he or
she wants to register for, check if the student has been granted a waiver for each
of those prerequisites.

2. If a waiver was not granted for one or more of the prerequisites not taken, then
check if the student tested out of each of those prerequisites by taking an exam.

3. If the student did not test out of any of those prerequisites, then deny registra-
tion. Otherwise, register the student for the class and provide a confirmation.

 Chapter 7 Structuring SyStem ProceSS requirementS 241

Because this use case extension pertains only to those registration situations
where a student has not taken the prerequisite courses, we have placed a guard con-
dition, checkPrereqs = “false,” on the checkWaiver message from Registration Entry
to Student. This message invokes the checkWaiver operation within Student to find
out if the student has been granted waivers on all the prerequisites he or she has
not taken. Note that the operation has to be applied to each of the prerequisites not
taken. The iteration is described in the text in the left margin.

The diagram also exhibits branching, with multiple arrows leaving a single
point. Each branch is labeled by a guard condition. The first instance of branch-
ing is based on the value returned by the checkWaiver operation. If checkWaiver
=“true,” the system creates “a New Registration” object, bypassing other opera-
tions. If checkWaiver =“false”—meaning that some of the prerequisites in ques-
tion were not waived—Registration Entry sends another message, checkExam, to
Student to check if he or she tested out of each of the prerequisite courses not
waived.

There is another instance of branching at this point. If checkExam =“false,”
Registration Entry sends a message (to Registration Window), denying the registra-
tion and exiting the system. We have deliberately bent the message line downward
to show that none of the other remaining interactions take place. If checkExam =
“true,” then “a New Registration” is created.

open () enterClass
(stud, class)

checkIfOpen ()

Confirmed
Registration

:Registration
Window

:Course
O�ering

:Course

Prereqs

[existsPrereqs=“false”] new ()

incrementClassSize ()

[isClassFull=“true”]
setStatus(“closed”)

isClassFull ()

[checkIfOpen=“true”]
existsPrereqs ()

a New Registration
:Registration

:Registration
Entry

Figure 7-41
Sequence diagram for a class registration
scenario without prerequisites

242 part iii AnAlySiS

A seqUence diAgrAM For hoosier BUrger
In Figure 7-43, we show another sequence diagram, in generic form, for Hoosier Burger’s
Hire employee use case (see Figure 7-28). The description of the use case follows:

1. On receipt of an application for a job at Hoosier Burger, the data relating to the
applicant are entered through the application entry window.

2. The manager opens the Application Review Window and reviews the application.
3. If the initial review is negative, the manager discards the application and conveys

the rejection decision to the applicant. No further processing of the application
is involved.

4. If the initial review is positive, then the manager sets up a date and time to in-
terview the applicant. The manager also requests that the references specified in
the application provide recommendation letters.

5. The manager interviews the candidate and enters the additional information
gathered during the interview into the application file.

6. When the recommendation letters come in, the manager is ready to make a deci-
sion. First, he or she prepares a summary of the application. Based on the sum-
mary, he or she then makes a decision. If the decision is to reject the candidate,
the application is discarded and the decision is conveyed to the applicant. The
processing of the application comes to an end.

7. If the decision is to hire the candidate, a potential employee file is created and
all relevant information about the candidate (e.g., name, Social Security num-
ber, birth date, address, phone number, etc.) is entered into this file. The hiring
decision is conveyed to the applicant.

Student

a New Registration
:Registration

Prereqs not waived

Prereqs not tested out

[checkWaiver=“false”]
checkExam(prereqNotWaived)

[checkWaiver=“true”]

new ()

[checkPrereqs=“false”]
checkWaiver(prereqNotTaken)

[checkExam
=“true”]

[checkExam=“false”]
Deny registration and exit

Confirmed
Registration

If student has not taken some of the
prereqs, check if he/she was granted
waiver for each of those prereqs.

If he/she was granted waiver for each
of them, then register student for class.
Otherwise, check if he/she tested out
of each prereq not waived.

If student tested out of each of those
prereqs, then register student for class.
Otherwise, deny registration.

:Registration
Entry

Figure 7-42
A generic sequence diagram for the Prereq courses not completed use case

HOOSIER
BURGER

 Chapter 7 Structuring SyStem ProceSS requirementS 243

In the sequence diagram for this use case, we have explicitly shown Manager
as an external actor. The branching after the return value from the review message
is received represents the two options the Manager has. If review equals “+ve,” then
an object called “an Interview” is created through the setup message shown in the
upper branch. We have shown the arguments to the message—date and time—be-
cause their values are required to set up an interview. Notice that if review equals
“–ve” (lower branch), the discard message is sent to destroy the Application. The
operations in between, for example, enterInfo, prepareSummary, and so forth, are
completely bypassed.

Note that within the “an Interview” object created by the setup operation,
there is another operation called collectInfo, which is invoked when the object re-
ceives the collectInfo message from the Application Review Window. The operation
collects all of the relevant information during the interview and enters this informa-
tion into an Application. After “an Interview” receives a successful return message
(not shown) from “an Application,” it self-destructs because there is no longer a
need for it.

Next, Manager sends a makeDecision message, which invokes a corresponding
operation within Application Review Window. This operation first sends a prepare-
Summary message to “an Application,” followed by another called “decision” to the

open ()

open ()

request
references

decision

enter
(data) an Application

:Application

:Potential
Employee

review ()

[review=“+ve”]
setup(date, time)

[review=“–ve”]

collectInfo ()
interview ()

makeDecision
(references)

enterInfo
(data)

prepareSummary ()

decision ()

discard ()

new(applicantData) [decision=“hire”]

[decision=“reject”]

an Interview

:Application
Review Window

:Application
Entry Window

Manager

Figure 7-43
Sequence diagram for Hoosier Burger’s
Hire employee use case

244 part iii AnAlySiS

same object. There is branching again at this point, depending on the return value.
If decision equals “hire,” then a message called “new” is sent to create an instance
of Potential Employee, which stores the relevant applicant data. If decision equals
“reject,” the discard operation destroys “an Application.” In either case, the decision
is conveyed to the applicant.

Summary

In this appendix, we showed you how to design use cases
by drawing sequence diagrams. A sequence diagram is an
invaluable tool for specifying and understanding the flow
of control. When coding the system, sequence diagrams

help you to effectively and easily capture the dynamic as-
pects of the system by implementing the operations, mes-
sages, and the sequencing of those messages in the target
programming language.

Key TermS

 7C.1 Activation
 7C.2 Asynchronous message

 7C.3 Sequence diagram
 7C.4 Simple message

 7C.5 Synchronous message

Match each of the key terms above with the definition that best
fits it.

____ Depicts the interactions among objects during a certain
period of time.

____ The time period during which an object performs an
operation.

____ A type of message in which the caller has to wait for the
receiving object to finish executing the called operation
before it can resume execution.

____ A message that transfers control from the sender to
the recipient without describing the details of the
communication.

____ A message in which the sender does not have to wait for
the recipient to handle the message.

revIew QueSTIonS
 7C.6 Contrast the following terms (you will have to use what

you learned in the object-oriented sections of Chapters 7
and 8 to contrast all of these terms):

a. Actor; use case
b. Extends relationship; uses relationship
c. Object class; object
d. Attribute; operation
e. Operation; method
f. Query operation; update operation
g. Abstract class; concrete class
h. Class diagram; object diagram
i. Association; aggregation

j. Generalization; aggregation
k. Aggregation; composition
l. Generic sequence diagram; instance sequence diagram

m. Synchronous message; asynchronous message
n. Sequence diagram; activity diagram

 7C.7 State the activities involved in each of the following
phases of the object-oriented development life cycle: ob-
ject-oriented analysis, object-oriented design, and object-
oriented implementation.

 7C.8 Compare and contrast the object-oriented analysis and
design models with the structured analysis and design
models.

ProblemS and exercISeS

 7C.9 Draw a use case diagram for the following situation (state
any assumptions you believe you have to make in order to
develop a complete diagram). Then convert the use case
diagram into a sequence diagram.

Stillwater Antiques buys and sells one-of-a-kind an-
tiques of all kinds (e.g., furniture, jewelry, china, and

clothing). Each item is uniquely identified by an item
number and is also characterized by a description, an
asking price, and a condition as well as open-ended
comments. Stillwater works with many different in-
dividuals, called clients, who sell items to and buy
items from the store. Some clients only sell items to

 Chapter 7 Structuring SyStem ProceSS requirementS 245

Booch, G., R. A. Maksimchuk, M. W. Engel, B. J. Young, J. Col-
lallen, and K. A. Houston. 2007. Object-Oriented Analysis and
Design with Applications, 3rd ed. Redwood City, CA: Addison-
Wesley Professional.

Coad, P., and E. Yourdon. 1991a. Object-Oriented Analysis, 2nd ed.
Upper Saddle River, NJ: Prentice Hall.

Coad, P., and E. Yourdon. 1991b. Object-Oriented Design. Upper
Saddle River, NJ: Prentice Hall.

Erikson, H., M. Penker, B. Lyons, and D. Fado. 2003. UML 2 Tool-
kit. New York: John Wiley.

Fowler, M. 2003. UML Distilled: A Brief Guide to the Standard Object
Modeling Language, 3rd ed. Reading, MA: Addison-Wesley.

Jacobson, I., M. Christerson, P. Jonsson, and G. Overgaard. 1992.
Object-Oriented Software Engineering: A Use-Case Driven Ap-
proach. Reading, MA: Addison-Wesley.

Object Management Group. 2008. Unified Modeling Language
Notation Guide. Version 2.0. Available at www.omg.org. Ac-
cessed on February 17, 2009.

Object Management Group. 2009. Unified Modeling Language
Document Set. Version 2.2. Available at www.omg.org/
spec/UML/2.2/. Accessed on February 17, 2009.

Rumbaugh, J., M. Blaha, W. Premerlani, F. Eddy, and W. Lo-
rensen. 1991. Object-Oriented Modeling and Design. Upper
Saddle River, NJ: Prentice Hall.

Stillwater, some only buy items, and others both sell
and buy. A client is identified by a client number and
is also described by a client name and client address.
When Stillwater sells an item in stock to a client, the
owners want to record the commission paid, the actual
selling price, the sales tax (tax of zero indicates a tax-
exempt sale), and the date the item sold. When Still-
water buys an item from a client, the owners want to
record the purchase cost, the purchase date, and the
condition of the item at the time of purchase.

 7C.10 Draw a use case diagram for the following situation (state
any assumptions you believe you have to make in order to
develop a complete diagram). Then convert the use case
diagram into a sequence diagram.

The H. I. Topi School of Business operates interna-
tional business programs in ten locations throughout
Europe. The school had its first class of 9000 graduates
in 1965. The school keeps track of each graduate’s stu-
dent number, name, country of birth, current country
of citizenship, current name, current address, and the
name of each major the student completed (each stu-
dent has one or two majors). To maintain strong ties
to its alumni, the school holds various events around

the world. Events have a title, date, location, and type
(e.g., reception, dinner, or seminar). The school
needs to keep track of which graduates have attended
which events. When a graduate attends an event, a
comment is recorded about the information school of-
ficials learned from that graduate at that event. The
school also keeps in contact with graduates by mail,
e-mail, telephone, and fax interactions. As with events,
the school records information learned from the grad-
uate from each of these contacts. When a school of-
ficial knows that he or she will be meeting or talking
to a graduate, a report is produced showing the latest
information about that graduate and the information
learned during the past two years from that graduate
from all contacts and events the graduate attended.

 7C.11 See Problem and Exercise 7-93 in Appendix 7A. One of
the use cases for the auto rental system in this exercise is
“Car reservation.” Draw a sequence diagram, in instance
form, to describe the sequence of interactions for each of
the following scenarios of this use case:

a. Car is available during the specified time period.
b. No car in the desired category (e.g., compact, midsize,

etc.) is available during the specified time period.

FIeld exercISe
 7C.12 Interview a systems analyst at a local company that uses

object-oriented programming and system development
tools. Ask to see any analysis and design diagrams he
or she has drawn of their databases and applications.

Compare these diagrams to the ones in this chapter.
What differences do you see? What additional features
and notations are used, and what are their purposes?

reFerenceS

http://www.omg.org
http://www.omg.org/spec/UML/2.2/
http://www.omg.org/spec/UML/2.2/

246

BAsic notAtion
Business Process Modeling Notation is much more com-
plicated than data flow diagrams notation; it is made up of
many more symbols, and each symbol has numerous varia-
tions. (The interested reader is referred to the BPMN stan-
dards and numerous other documents to learn about all of
the various aspects of the complete BPMN standard. See
the reference list at the end of the appendix.) However,
there are four basic concepts in BPMN, each of which has
its own basic symbol. These basic concepts are events, ac-
tivities, gateways, and flows. Their symbols are as follows:

At the heart of just about any information system de-
veloped for organizations, there is a business process. A
business process is a standard method for accomplish-
ing a particular task necessary for an organization to
function. A business process can come from any busi-
ness function, from accounting to supply chain man-
agement to after-sales service. It can cross business
functions as well. A business process can be simple or
complex, but the more complex it is, the harder it is to
automate. Complexity also makes a process more diffi-
cult to understand for those who are not familiar with
it. Communication tools are needed to describe business
processes to those who need to know about them, such as
systems analysts, but who have no firsthand knowledge of
the processes. There are many ways to represent business
processes, from data flow diagrams to activity diagrams.
The Object Management Group (OMG), the same group
that is responsible for standards for object-oriented pro-
gramming, has established a specific modeling approach
for business processes. It is called Business Process
Modeling Notation (BPMN). This appendix provides a
very brief introduction to BPMN. First, we will introduce
you to the basic notation in BPMN, and second, we will
provide a couple of examples. If you are interested in
mastering BPMN, there are many materials available (see
the reference list).

Learning Objective

After studying this section, you should be able to

7d.1 understand how to represent business processes
with business process diagrams.

Business Process
Modeling7D

Appendix

Introduction

Event

Activity

Gateway

Flow

 Chapter 7 Structuring SyStem ProceSS requirementS 247

All business processes begin and end with an event. The symbol for an event
is a circle. For a starting event, the walls of the circle are thin. For the ending event,
the walls are thicker. A starting event can be colored green, and an ending event can
be colored red. An activity is some action that must take place for the process to be
completed. An activity can be completed by people or by a computerized system. The
symbol for an activity is a rectangle with rounded edges. A gateway, symbolized by a
diamond, is a decision point. The final primary concept is flow, represented by an
arrow. Flow shows sequence, the order in which activities occur. A simple example,
without content, of a process represented by BPMN, is as follows:

event
In business process modeling, a trigger that
initiates the start of a process.

Activity
In business process modeling, an action
that must take place for a process to be
completed.

gateway
In business process modeling, a decision
point.

Flow
In business process modeling, it shows the
sequence of action in a process.

In this simple example, you see that the business process starts with some event,
shown with an event symbol on the left. BPMN diagrams are always read from left to
right. The event is followed by the first activity. An arrow symbolizing flow connects
the event to the activity. The first activity is followed by a gateway. This is a deci-
sion point, indicated by two choices: “Yes” and “No.” Some condition is associated
with the gateway, and that condition can either be met (Yes) or not (No). Whether
the condition is met or not determines where the flow goes next in the diagram.
Both conditions lead to an additional activity. If the flow goes through the top of
the diagram, there is one more activity that takes place before the process ends at its
ending event. If the flow goes through the bottom part of the diagram, the process
concludes after just one activity is completed. Note how the walls of the circle that
represents the final event are much thicker than those of the circle representing the
beginning event.

Typically gateways are exclusive, which is to say that flow must follow only one
path out of the gateway and only one downstream activity can take place. However, a
gateway may be inclusive, which means that more than one downstream activity can
occur. If a gateway is inclusive, the downstream activities that follow it must also be
followed by a merge gateway, where all the flows come back together. Such a situation
would look like this:

In this example, both or either of the activities that follow the gateway could
occur. The merge gateway follows the activities, reuniting the two possible flows into
a single flow. Note that the symbol for an inclusive gateway adds a circle inside the
diamond. If it is necessary to indicate an exclusive gateway, you can add an “X” to the
inside of the diamond.

In fact, there are three different types of gateways in BPMN. The gateway with
an X inside is called an exclusive OR gateway (XOR), meaning that only one of the
paths that exit the gateway can be followed. The gateway with a ‘plus’ sign inside
is an AND gateway. This means that all of the paths that follow the gateway can be
followed in parallel. The third type of gateway is the OR gateway, symbolized by

248 part iii AnAlySiS

an O inside the diamond. An OR gateway means that at least one path out of the
gateway must be followed, but many or even all of the paths that leave the gateway
can be engaged.

Figure 7-44 shows a process that includes an XOR gateway. After activity N is
finished, there is an exclusive choice of which action to undertake. Based on the
notation, if the value found at the gateway is ‘a,’ then activity A is performed. If the
value at the gateway is ‘b,’ then activity B is performed. If the value is ‘c,’ then activity
C is performed. But only one of these paths can be followed. Once activity A or B or
C is performed, all of the paths merge together at the second gateway, and activity D
can be performed.

Figure 7-45 illustrates a process that includes an AND gateway and an XOR
gateway. We again read the BPMN diagram from left to right. After activity N is com-
plete, we come to an AND gateway. This means that both of the paths that follow the
gateway must be followed. The top path leads to an XOR gateway. As we have seen,
the XOR gateway means only one path that leads from it can be followed. If the value
found at the XOR gateway is ‘a,’ activity A is performed. If the value at the gateway is
‘b,’ then activity B is performed. Activity C is performed in parallel with either activ-
ity A or B. After either A or B is performed, the paths merge to the closing XOR gate-
way. The path that leaves the XOR gateway and the path that leaves activity C then
both merge at the next AND gateway. Now activity D can be performed, completing
the process.

Although it is beyond the scope of this appendix to introduce all of the special-
ized varieties of the four basic concepts in BPMN, it is useful to present a few variet-
ies of some of the concepts. For example, here are the symbols for a couple of types
of events. They both feature the basic circle as a symbol for an event, but each one
has something inside. The first has an envelope inside, and the envelope stands for
a message. An event shown like this, at the beginning of a process, means that the
process starts with a message. A message is a basic flow of information, such as the re-
ceipt of an order or of a customer inquiry. The other event symbol has a clock inside.

�

DoneStart
N A

B

C

Action?
a

b

c

D�

Figure 7-44
An XOR gateway.

Done

A

Action?
a

b

D� �

Start

N

C

�

B

�

Figure 7-45
A process featuring an AND
gateway and an XOR gateway.

 Chapter 7 Structuring SyStem ProceSS requirementS 249

If a process starts with this type of event, it means the process starts at a particular
time. In both cases, the starting event is triggered by an action outside the process
itself, either a message or a particular time.

Another example of variations in a basic concept appears below, for flow. You
have seen the basic symbol for flow, the arrow. The next symbol for flow includes a
slashing line near its beginning. This indicates a default flow, and you will usually see
this symbol after a gateway. It shows that flow through a gateway typically follows one
path out of those available. The third flow symbol is a little different. The arrow line is
dotted, and it begins with a circle. This symbol is used to signify the flow of a message
rather than the flow of sequence from one activity to the next.

We have presented just a few of the many variations in BPMN available for the
basic concepts. There are many more, and all of them are designed to address very
specific circumstances. Having all of these variations available makes BPMN very precise
and therefore very powerful. However, all of the variations also make BPMN relatively
complex and harder to learn than diagramming notations that employ less variety.

We present a simple example of a BPMN diagram in Figure 7-46. It is a process
for ordering a pizza. The first activity involves browsing the menu for your favorite pizza
source, whether it is a restaurant or a delivery service. Once you know what you want,
you call to order the pizza. Then the delivery person comes to your apartment, and you
take delivery of the pizza. Next, there is an XOR gateway, so you can do only one of the
two things that follow. You want to know if the pizza that was delivered is the same as the
one that you ordered. If it is, you pay for the pizza. If not, then you return it to the de-
livery person. After one or the other of these activities has been performed, both paths
end at the XOR merge gateway. And then the overall process ends.

Before we leave this section on notation, we need to address one other concept:
swimlanes. A process diagram can be depicted with or without a swimlane, which is a
way to visually encapsulate a process. Swimlanes can be depicted either vertically or
horizontally. Whether a swimlane is used or not, the diagram shows only one process
with one actor. If more than one actor is part of the process, then the process diagram
is shown in a pool. A pool is made up of at least two swimlanes, each of which focuses
on the actions of one participant. The participant need not be a single person; it can
be a team or a department that participates in a part of the process. Pools can also be
depicted vertically or horizontally. When a pool is used in a business process diagram,
it is called a collaboration diagram.

Swimlane
In business process modeling, a way to
visually encapsulate a process.

Pool
In business process modeling, a way to
encapsulate a process that has two or more
participants.

Flow: sequence

Flow: default

Flow: massage

�
Browse
menu

Call to
order
pizza

Take
delivery

Pay for
pizza

Return
pizza

[OK]

[Order not OK]

�

Figure 7-46
A simple BPMN example.

LA
N

E LANE

250 part iii AnAlySiS

BUsiness Process exAMPle
An example of a business process diagram that features both swimlanes and a pool
is shown in Figure 7-47. The process depicted is recruiting. There are three partici-
pants: the job applicant (shown in a swimlane), a manager, and a Human Resources
(HR) department. The manager and HR department are in the same company and
so are both shown in a pool. All communication between the company (pool) and
the applicant (swimlane) is done through messaging. Note the lines indicating com-
munication between the applicant and the organization are dotted lines and feature
envelopes at midline. The envelopes symbolize messages, or information.

To read the diagram, start at the top left, with the event symbol in the manager’s
lane in the company pool. Then continue to read from left to right. Follow the arrows,
which indicate flow up, down, and across. The manager needs to recruit someone for
a job, so she creates an advertisement for the job. Flow control then passes to the HR
department, where the ad is reviewed and then posted. At this point, a job applicant
sees the ad and completes and returns an application. The application is received by
HR, where it is evaluated and passed on to the manager. The manager evaluates the
application and then must decide whether or not to interview the applicant. This
decision is indicated by the gateway symbol. There are two possible outcomes: yes,
interview the applicant, or no, don’t interview the applicant. If the decision is “no,”
then the manager notifies HR. HR notifies the applicant, and the applicant must
decide what to do next. The process ends for both the company and the applicant.
If the decision is “yes,” then the applicant takes part in an interview. The results are
evaluated by the manager. At this point, whether the manager decides to hire the ap-
plicant or not, she notifies HR of her decision, and HR then notifies the applicant.
The applicant must decide on his next step, and the process ends for all involved.

Obviously, the recruiting process has been simplified for this example. Many
more activities are typically involved in recruiting, such as conducting credit and
background checks of the applicant. Much of the detail was removed to make the
example easier to understand and depict.

Complete
Application

Take Part in
Interview

Notify
Applicant

Notify
HR

Review
ResponsePost ad

Create ad Evaluate
Applicant

Evaluate
Applicant

Interview?
No

Yes

H
R

A
p

p
lic

an
t

C
om

p
an

y

M
an

ag
er

Review ad

Decide on
Next Step

Notify
Manager

Figure 7-47
Depicting a recruiting process with BPMN

 Chapter 7 Structuring SyStem ProceSS requirementS 251

Summary
In this appendix, we introduced you to Business Process
Modeling Notation (BPMN). BPMN is a standardized
way of depicting business processes. It is overseen by the
Object Management Group (OMG), the same group that
oversees notation for object-orientation. We introduced
you to the four basic concepts of BPMN—event, activity,

gateway, and flow—and the symbols for each of them. We
also introduced you to swimlanes and pools. BPMN is a
very precise and complex modeling notation, but that
makes it very powerful. Because BPMN is not technical in
nature, it can be used effectively for communications be-
tween systems analysts and systems users.

Key TermS
 7D.1 Activity
 7D.2 Event

 7D.3 Flow
 7D.4 Gateway

 7D.5 Pool
 7D.6 Swimlane

Match each of the key terms above with the definition that best
fits it.

____ A way to visually encapsulate a process.

____ A trigger that initiates the start of a process.

____ A way to encapsulate a process that has two or more
participants.

____ A decision point.

____ Shows the sequence of action in a process.

____ An action that must take place for a process to be
completed.

revIew QueSTIonS
 7D.7 What is a business process? Why is business process dia-

gramming important?

 7D.8 What is BPMN? Who is responsible for it?

 7D.9 List and define the four main concepts that are part of
BPMN.

 7D.10 What is the difference between a swimlane and a pool?
When do you use each one?

 7D.11 BPMN includes many different variations on its key con-
cepts. You were introduced to three different variations
of the symbol for flow. Explain each one of them.

ProblemS and exercISeS
 7D.12 BPMN includes many different varieties of its key con-

cepts. Go to www.bpmn.org (and some of the other
BPMN sites listed in the reference list) and look up all
of the many variations that are possible for each concept.
Prepare a report on six possible variations for each of the
four major concepts.

 7D.13 The appendix features two BPMN examples that showed
symbols but lacked content. Think of actual processes
that can be described with the “empty” process diagrams
in the chapter. These processes will have to be pretty sim-
ple, given how small and simple the diagrams are.

 7D.14 Use BPMN to depict Hoosier Burger’s food-ordering sys-
tem from Figure 7-5 as a business process model.

 7D.15 Use BPMN to depict Hoosier Burger’s inventory control
system from Figure 7-15 as a business process model.

 7D.16 Draw a BPMN diagram that models the employee’s reim-
bursement process described below.

Employees of West Nile Valley University have to fol-
low a specific procedure to get reimbursed for travel
they undertake on behalf of the university. First, they

have to gather and prepare all of the receipts the uni-
versity requires for reimbursement. At the same time,
they complete the official reimbursement form. They
then submit both the receipts and the form to their
departmental secretary. If something on the form is
incorrect, the secretary returns the form to the em-
ployee for correction. If the form is correct, then
the employee is asked to review the reimbursement
amounts, which are determined by an analysis of the
reimbursement request. If the amount shown is not
correct, the employee must indicate that this is the
case. If the amount shown is correct, then the employ-
ee’s responsibilities for reimbursement are complete.

 7D.17 Draw a BPMN diagram that models the reimbursement
process described below. Use one swimlane for each of
the three actors in the process.

The travel reimbursement process for employees of
West Nile Valley University involves three different ac-
tors: the employee, the employee’s departmental secre-
tary, and the treasurer’s office. First, the employee has
to gather and prepare all of the receipts the university

http://www.bpmn.org

252 part iii AnAlySiS

requires for reimbursement. At the same time, she
completes the official reimbursement form. She then
submits both the receipts and the form to the depart-
mental secretary. If something on the form is incorrect,
the secretary returns the form to the employee for cor-
rection. If the form is correct, the secretary prepares a
form required by the university. That form is then sub-
mitted to the treasurer’s office. The treasurer’s office

then enters the amount to be reimbursed into the uni-
versity’s system. The employee is then asked to review
the reimbursement amounts. If the amount shown is
not correct, the employee must indicate that this is the
case. If the amount shown is correct, then the treasur-
er’s office sends the reimbursement to the employee’s
bank, completing the process.

FIeld exercISeS

 7D.18 Find a company in your area that uses BPMN. Interview
analysts and users about this business process modeling
approach. What do they think of it? How useful is it? Ask
for some examples of diagrams they have created.

 7D.19 Think of several business processes you take part in regu-
larly as a customer. For example, think about withdrawing

cash from an ATM. Think about ordering a movie and
downloading a movie online. Consider purchasing some-
thing with a credit card from a big-box store. Use BPMN
to depict each of the processes you can think of.

reFerenceS
Freund, J., and B. Rucker. 2104. Real-Life BPMN: Using BPMN 2.0

to Analyze, Improve, and Automate Processes in Your Company.
Create Space Independent Publishing Platform.

http://www.bpmn.org/
http://en.wikipedia.org/wiki/Business_Process_Modeling_

Notation

http://www.omg.org/spec/BPMN/1.2/
http://www.omg.org/spec/BPMN/2.0/
http://www.omg.org/spec/BPMN/2.0/examples/PDF/
http://www.sparxsystems.com/platforms/business_process_modeling.

html.

http://www.bpmn.org/
http://en.wikipedia.org/wiki/Business_Process_Modeling_Notation
http://www.omg.org/spec/BPMN/1.2/
http://www.omg.org/spec/BPMN/2.0/
http://www.omg.org/spec/BPMN/2.0/examples/PDF/
http://www.sparxsystems.com/platforms/business_process_modeling.html

 Chapter 6 Structuring SyStem ProceSS requirementS 253

petrie eLeCtrOniCs

Chapter 7: Structuring System Process
Requirements

Jim and Sanjay chatted in Jim’s office while they waited
for Sally to arrive.

“Good work on researching those alternatives,” Jim
said.

“Thanks,” replied Sanjay. “There are a lot of alternatives
out there. I think we found the best three, considering
what we are able to pay.”

Just then Sally walked in. “Sorry I’m late. Things are
getting really busy in Marketing right now. I’ve been put-
ting out fires all morning.”

Sally sat down at the table across from Jim.
“I understand,” Jim said. “But to stay on schedule, we

need to start focusing on the specifics of what we want
our system to do. Remember when you wanted more de-
tails on what the system would do? Well, now we start to
spend some serious energy on getting that done.”

“Awesome,” replied Sally, as she pulled a Red Bull out
of her oversized bag and popped it open.

“I’ve got a list here of four core functions the system
must perform,” said Sanjay, pulling copies of a list from
a folder on the table (PE Table 7-1). “Let’s look at these.”

After reviewing the list Sanjay had given them, Jim said,
“Nice job, Sanjay. But we need to put this in graphical for-
mat, so that everyone can see what the inputs and outputs
are for each function and how they are related to each
other. We also need to see how the new system fits in with
our existing data sources. We need …”

“Some data flow diagrams,” Sanjay interrupted.
“Exactly,” said Jim.
“They are already done,” replied Sanjay, handing dia-

grams to both Jim and Sally. “I’ve already created a first
draft of the context diagram (PE Figure 7-1) and a level-1
diagram (PE Figure 7-2). You can see how I’ve defined the
boundaries of our system, and I’ve included our existing
product and marketing databases.”

“What can I say?” Jim said. “Again, a nice job on your
part. These diagrams are both good places for us to start.
Let’s get copies of all of this to the team.”

“I’ll be right back,” Sally said, standing up. “I need to get
some coffee.”

Pe Table 7-1 Four Core Functions of Petrie’s Customer loyalty
System

Function Description
Record customer

activities
When a customer makes a purchase, the

transaction must be recorded in the customer
loyalty system, as the rewards the system
generates are driven by purchases. Similarly,
when a customer uses a coupon generated by
the system, it must also be recorded, so that
the customer activity records can be updated
to show that the coupon has been used and is
now invalid.

Send
promotions

Data about customer activities provide
information about what types of products
customers tend to buy and in what quantities.
This information helps determine what sales
promotion materials are best targeted at
what customers. Customers who buy lots of
video games should receive promotions about
games, game platforms, and HD TVs, for
example.

Generate point
redemption
coupons

Data about customer activities is used to
generate coupons for future purchases.
Those coupons must be made available to
customers, either as paper coupons sent in
the mail or online, in the customer’s private
account area. Once created, the customer
activity database needs to be updated to
show the creation of the coupon. The loyalty
points needed to create the coupon must be
deducted from the customer’s total points.

Generate
customer
reports

From time to time, either in the mail or
electronically, customers need to be sent
account reports that show their recent
purchases, the coupons they have been issued
that have not yet been redeemed, and the
total points they have amassed from their
purchases.

254 part iii AnAlySiS

Case Questions

 7.58 Are the DFDs in PE Figures 7-1 and 7-2 balanced?
Show that they are or are not. If they are not bal-
anced, how can they be fixed?

 7.59 Decompose each of the core processes in PE Fig-
ure 7-2 and draw a new DFD for each core process.

 7.60 Has the team overlooked any core processes in the
system that should be in PE Table 7-1 and PE Fig-
ure 7-2? What would they be? Add them to PE Table
7-1 and PE Figure 7-2.

Reports

Tailored Promotions

Coupons
Customer Customer

Purchases

Coupons

No Customer
Escapes
System

Pe Figure 7-1
Context diagram

Customer

PromotionsMarketing
Database

Send
Promotions

Coupons

Purchases

Customer Generate
Customer Reports

Coupons

Reports

Transactions
Customer Activity Records

Customer Activities

Product
Database

Generate Point
Redemption

Coupons

Record
Customer
Activities

Tailored Promotions

Coupon Info
Customer Activities

Product Info

Customer Activity Info

Pe Figure 7-2
Level-1 DFD

 7.61 Redesign PE Figures 7-1 and 7-2 so that they are
easier to understand, more efficient, and more
comprehensive.

 7.62 Why is it important for the team to create DFDs if
they are not going to write the actual system code
themselves?

255

In Chapter 7, you learned how to model and analyze two
important views of an information system: (1) the flow
of data between manual or automated steps and (2) the
decision logic of processing data. None of the techniques
discussed so far, however, has concentrated on the data
that must be retained in order to support the data flows
and processing described. For example, you learned
how to show data stores, or data at rest, in a data flow di-
agram (DFD). The natural structure of data, however, was
not shown. DFDs, use cases, and various processing logic
techniques show how, where, and when data are used or
changed in an information system, but these techniques
do not show the definition, structure, and relationships
within the data. Data modeling develops these missing,
and crucial, descriptive pieces of a system.

In fact, some systems developers believe that a
data model is the most important part of the statement
of information system requirements. This belief is based
on the following reasons. First, the characteristics of data
captured during data modeling are crucial in the design
of databases, programs, computer screens, and printed
reports. For example, facts such as these—a data element
is numeric, a product can be in only one product line at a
time, a line item on a customer order can never be moved

to another customer order, customer region name is
 limited to a specified set of values—are all essential pieces
of information in ensuring data integrity in an informa-
tion system.

Second, data, not processes, are the most complex
aspects of many modern information systems and hence
require a central role in structuring system requirements.
Transaction processing systems can have considerable
process complexity in validating data, reconciling errors,
and coordinating the movement of data to various data-
bases. Current systems development focuses more on
management information systems (such as sales tracking),
 decision support systems (such as short-term cash invest-
ment), and business intelligence systems (such as market
basket analysis). Such systems are more data intensive.
The exact nature of processing is also more ad hoc than
with transaction processing systems, so the details of pro-
cessing steps cannot be anticipated. Thus, the goal is to
provide a rich data resource that might support any type
of information inquiry, analysis, and summarization.

Third, the characteristics about data (e.g., length,
format, and relationships with other data) are reason-
ably permanent and have significant similarity for differ-
ent organizations in the same business. In contrast, the

8.4 distinguish among unary, binary, and ternary
relationships as well as associative entities,
providing an example of each;

8.5 define supertypes and subtypes, showing how to
represent these entity types with entity-relationship
diagramming notation;

8.6 define four basic types of business rules in a
conceptual data model; and

8.7 explain the role of prepackaged database models
(patterns) in data modeling.

Learning Objectives

After studying this chapter, you should be able to

8.1 explain the role of conceptual data modeling in the
overall analysis and design of an information
system;

8.2 describe the information gathering process for
conceptual data modeling;

8.3 describe how to represent an entity-relationship
model and be able to define the terms: entity type,
attribute, identifier, multivalued attribute, and
relationship;

Structuring System
Data Requirements8

Chapter

Introduction

256 Part III AnAlysis

paths and design of data flow are quite dynamic. A data model explains the inherent
nature of the organization, not its transient form. Therefore, an information system
design based on a data orientation, rather than a process or logic orientation, should
have a longer useful life and should have common features for the same applications
or domains in different organizations. Finally, structural information about data is
essential for automatic program generation. For example, the fact that a customer
order has many line items on it instead of just one line item affects the automatic
design of a computer screen for entry of customer orders. Although a data model
specifically documents the file and database requirements for an information sys-
tem, the business meaning, or semantics, of data included in the data model has a
broader effect on the design and construction of a system.

The most common format used for data modeling is entity-relationship (E-R) dia-
gramming. A similar format used with object-oriented analysis and design methods
is class diagramming, which is included in a special section at the end of this chapter
on the object-oriented development approach to data modeling. Data models that
use E-R and class diagram notations explain the characteristics and structure of data
independent of how the data may be stored in computer memory. A data model is
usually developed iteratively, either from scratch or from a purchased data model
for the industry or business area to be supported. Information system (IS) planners
use this preliminary data model to develop an enterprise-wide data model with very
broad categories of data and little detail. Next, during the definition of a project, a
specific data model is built to help explain the scope of a particular systems analysis
and design effort. During requirements structuring, a data model represents con-
ceptual data requirements for a particular system. Then, after system inputs and
outputs are fully described during logical design, the data model is refined before
it is translated into a logical format (typically a relational data model) from which
database definition and physical database design are done. A data model represents
certain types of business rules that govern the properties of data. Business rules are
important statements of business policies that ideally will be enforced through the
database and database management system ultimately used for the application you
are designing. Thus, you will use E-R and class diagramming in many systems devel-
opment project steps, and most IS project members need to know how to develop
and read data model diagrams. Therefore, mastery of the requirements structuring
methods and techniques addressed in this chapter is critical to your success on a sys-
tems development project team.

ConCeptual Data MoDeling
A conceptual data model is a representation of organizational data. The purpose of a
conceptual data model is to show as many rules about the meaning and interrelation-
ships among data as are possible.

Conceptual data modeling is typically done in parallel with other requirements
analysis and structuring steps during systems analysis (see Figure 8-1), as outlined in
prior chapters. On larger systems development teams, a subset of the project team
concentrates on data modeling while other team members focus attention on pro-
cess or logic modeling. Analysts develop (or use from prior systems development) a
conceptual data model for the current system and then build or refine a purchased
conceptual data model that supports the scope and requirements for the proposed
or enhanced system.

The work of all team members is coordinated and shared through the project
dictionary or repository. This repository is often maintained by a common Computer-
Aided Software Engineering (CASE) or data modeling software tool, but some orga-
nizations still use spreadsheets and other types of files to store data descriptions and
other important information. No matter how the information is stored, it is essen-
tial that the process, logic, and data model descriptions of a system are consistent

Conceptual data model
A detailed model that captures the overall
structure of organizational data that is
independent of any database management
system or other implementation
considerations.

 ChaPter 8 structuring system DAtA requirements 257

and complete because each describes different, but complementary, views of the
same information system. For example, the names of data stores on the primitive-
level DFDs often correspond to the names of data entities in E-R diagrams, and the
data elements associated with data flows on DFDs must be accounted for by attributes
of entities and relationships in E-R diagrams.

the Conceptual Data Modeling process
The process of conceptual data modeling begins with developing a conceptual data
model for the system being replaced, if a system already exists. This is essential for
planning the conversion of the current files or database into the database of the
new system. Further, this is a good, but not a perfect, starting point for your under-
standing of the data requirements of the new system. Then, a new conceptual data
model is built (or a standard one is purchased) that includes all of the data require-
ments for the new system. You discovered these requirements from the fact-finding
methods employed during requirements determination. Today, given the popularity
of rapid development methodologies, such as the use of predefined patterns, these
requirements often evolve through various iterations from some starting point in a
purchased application or database design. Even when developed from scratch, data
modeling is an iterative process with many checkpoints.

Conceptual data modeling is one kind of data modeling and database design car-
ried out throughout the systems development process. Figure 8-2 shows the different
kinds of data modeling and database design that go on during the whole systems devel-
opment life cycle (SDLC). The conceptual data modeling methods we discuss in this
chapter are suitable for the planning and analysis phases; these methods can be used
with either a data model developed from scratch or based on a purchased data model.
The planning phase of the SDLC addresses issues of system scope, general require-
ments, and content independent of technical implementation. E-R and class diagram-
ming are suited for this phase because these diagrams can be translated into a wide
variety of technical architectures for data, such as relational, network, and hierarchi-
cal architectures. A data model evolves from the early stages of planning through the
analysis phase as it becomes more specific and is validated by more detailed analyses of
system needs.

In the design phase, the final data model developed in analysis is matched with
designs for systems inputs and outputs and is translated into a format from which
physical data storage decisions can be made. After specific data storage architec-
tures are selected, then files and databases are defined as the system is coded during
implementation. Through the use of the project repository, a field in a physical data

DesignImplementation

Planning

Maintenance Analysis Requirements Determination
Requirements Structuring

Figure 8-1
Systems development
life cycle with analysis
phase highlighted

258 Part III AnAlysis

record can, for example, be traced back to the conceptual data attribute that repre-
sents it on a data model diagram. Thus, the data modeling and design steps in each
of the SDLC phases are linked through the project repository.

Deliverables and outcomes
Most organizations today do conceptual data modeling using E-R modeling, which
uses a special notation to represent as much meaning about data as possible. Because
of the rapidly increasing interest in object-oriented methods, class diagrams using
unified modeling language (UML) drawing tools such as IBM’s Rational products
or Microsoft Visio are also popular. We will focus first on E-R diagramming and then
later show how it differs from class diagramming.

The primary deliverable from the conceptual data modeling step within the
analysis phase is an E-R diagram, similar to the one shown in Figure 8-3. This figure
shows the major categories of data (rectangles on the diagram) and the business
relationships between them (lines connecting rectangles). For example, Figure 8-3
shows that, for the business represented by this diagram, a SUPPLIER sometimes
Supplies ITEMs to the company, and an ITEM is always Supplied by one to four
SUPPLIERS. The fact that a supplier only sometimes supplies items implies that the
business wants to keep track of some suppliers without designating what they can
supply. This diagram includes two names on each line so that a relationship can
be read in each direction. For simplicity, we will not typically include two names
on lines in E-R diagrams in this book; however, this is a standard used in many
organizations.

The other deliverable from conceptual data modeling is a full set of entries
about data objects that will be stored in the project dictionary, repository, or data
modeling software. The repository is the mechanism that links the data, processes,
and logic models of an information system. For example, there are explicit links
between a data model and a DFD. Some important links are explained briefly here.

•	 Data elements included in data flows also appear in the data model, and vice versa.
You must include in the data model any raw data captured and retained in a data
store, and a data model can include only data that have been captured or that have

DesignImplementation

Planning

Maintenance Analysis

• Enterprise-wide data model (E-R with only entities)

• Conceptual data model (E-R with only entities for
 specific project)

• Data model
 evolution

• Database and file definitions
 (DBMS-specific code)

• Logical data model (relational)
 and physical file and database
 design (file organizations)

• Conceptual data
 models (E-R with
 attributes)

Figure 8-2
Relationship between data
modeling and the SDLC

 ChaPter 8 structuring system DAtA requirements 259

been computed from captured data. Because a data model is a general business
picture of data, both manual and automated data stores will be included.

•	 Each data store in a process model must relate to business objects (what we will
call data entities) represented in the data model. For example, in Figure 7-5, the
Inventory File data store must correspond to one or several data objects on a data
model.

You can use an automated repository to verify these linkages.

gatheRing infoRMation foR ConCeptual
Data MoDeling
Requirements determination methods must include questions and investigations that
take a data, not only a process and logic, focus. For example, during interviews with
potential system users—during Joint Application Design (JAD) sessions or through
requirements interviews—you must ask specific questions in order to gain the per-
spective on data that you need to develop or tailor a purchased data model. In later
sections of this chapter, we will introduce some specific terminology and constructs
used in data modeling. Even without this specific data modeling language, you can
begin to understand the kinds of questions that must be answered during require-
ments determination. These questions relate to understanding the rules and policies
by which the area to be supported by the new information system operates. That is,
a data model explains what the organization does and what rules govern how work is
performed in the organization. You do not, however, need to know (and often can’t
fully anticipate) how or when data are processed or used to do data modeling.

You typically do data modeling from a combination of perspectives. The first
perspective is generally called the top-down approach. This perspective derives the
business rules for a data model from an intimate understanding of the nature of
the business, rather than from any specific information requirements in computer
displays, reports, or business forms. It is this perspective that is typically the basis
for a purchased data model. Several very useful sources of typical questions to elicit
the business rules needed for data modeling can be found in Gottesdiener (1999),

SUPPLIER ORDER

PRODUCTSHIPMENT

ENTITY
TYPE

CUSTOMER

ITEM

Relationship

Key

Sends

Supplies Submits

4
Submitted_by

Requests

Requested_on

Used_in

Uses

Sent_by

Supplied_by

Includes

Included_on

Cardinalities

Mandatory One Optional One

Mandatory Many Optional Many

Figure 8-3
Sample conceptual data model

260 Part III AnAlysis

Herbst (2013), and Witt (2012). Table 8-1 summarizes a few key questions you should
ask system users and business managers so that you can develop an accurate and
complete data model tailored to the particular situation. The questions in this table
are purposely posed in business terms. You can ask these questions whether you start
with a clean sheet of paper or a purchased data model, but typically the questions are
more obvious and thorough when you begin the data modeling project with a pur-
chased data model for the industry or application under development. In this chapter,
you will learn the more technical terms included in bold at the end of each set of ques-
tions. Of course, these technical terms do not mean much to a business manager, so
you must learn how to frame your questions in business terms for your investigation.

You can also gather the information you need for data modeling by review-
ing specific business documents—computer displays, reports, and business forms—
handled within the system. This process of gaining an understanding of data is often
called a bottom-up approach. These items will appear as data flows on DFDs and will
show the data processed by the system and, hence, probably the data that must be
maintained in the system’s database. Consider, for example, Figure 8-4, which shows
a customer order form used at Pine Valley Furniture (PVF). From this form, we deter-
mine that the following data must be kept in the database:

ORDER NO CUSTOMER NO
ORDER DATE NAME
PROMISED DATE ADDRESS
PRODUCT NO CITY-STATE-ZIP
DESCRIPTION
QUANTITY ORDERED
UNIT PRICE

Table 8-1 Requirements Determination Questions for Data Modeling

1. What are the subjects/objects of the business? What types of people, places, things,
materials, events, etc. are used or interact in this business, about which data must be
maintained? How many instances of each object might exist?—data entities and their
descriptions

2. What unique characteristic (or characteristics) distinguishes each object from other
objects of the same type? Might this distinguishing feature change over time or is it
permanent? Might this characteristic of an object be missing even though we know the
object exists?—primary key

3. What characteristics describe each object? On what basis are objects referenced, selected,
qualified, sorted, and categorized? What must we know about each object in order to run
the business?—attributes and secondary keys

4. How do you use these data? That is, are you the source of the data for the organization, do
you refer to the data, do you modify it, and do you destroy it? Who is not permitted to use
these data? Who is responsible for establishing legitimate values for these data?—security
controls and understanding who really knows the meaning of data

5. Over what period of time are you interested in these data? Do you need historical trends,
current “snapshot” values, and/or estimates or projections? If a characteristic of an object
changes over time, must you know the obsolete values?—cardinality and time dimensions
of data

6. Are all instances of each object the same? That is, are there special kinds of each object
that are described or handled differently by the organization? Are some objects summaries
or combinations of more detailed objects?—supertypes, subtypes, and aggregations

7. What events occur that imply associations among various objects? What natural activities
or transactions of the business involve handling data about several objects of the same
or a different type?—relationships and their cardinality and degree

8. Is each activity or event always handled the same way or are there special circumstances?
Can an event occur with only some of the associated objects, or must all objects be
involved? Can the associations between objects change over time (for example, employees
change departments)? Are values for data characteristics limited in any way?—integrity
rules, minimum and maximum cardinality, time dimensions of data

 ChaPter 8 structuring system DAtA requirements 261

We also see that each order is from one customer and that an order can have
multiple line items, one for each product. We will use this understanding of an orga-
nization’s operation to develop data models.

intRoDuCtion to e-R MoDeling
The basic E-R modeling notation uses three main constructs: data entities, relation-
ships, and their associated attributes. Several different E-R notations exist, and many
CASE and E-R drawing programs support multiple notations. For simplicity, we have
adopted one common notation for this book; this notation uses the so-called crow’s
foot symbols and places data attribute names within entity rectangles. This notation
is very similar to that used by many E-R drawing tools, including Microsoft Visio®. If
you use another notation in courses or at work, you should be able to easily translate
between notations.

An entity-relationship data model (E-R model) is a detailed, logical representation
of the data for an organization or for a business area. The E-R model is expressed in
terms of entities in the business environment, the relationships or associations among
those entities, and the attributes or properties of both the entities and their relation-
ships. An E-R model is normally expressed as an entity-relationship diagram (E-R
 diagram), which is a graphical representation of an E-R model. The notation we will use
for E-R diagrams appears in Figure 8-5, and subsequent sections explain this notation.

entities
An entity (see the first question in Table 8-1) is a person, place, object, event, or
concept in the user environment about which the organization wishes to maintain
data. An entity has its own identity that distinguishes it from each other entity. Some
examples of entities follow:

•	 Person: EMPLOYEE, STUDENT, PATIENT
•	 Place: STORE, WAREHOUSE, STATE
•	 Object: MACHINE, BUILDING, AUTOMOBILE, PRODUCT
•	 Event: SALE, REGISTRATION, RENEWAL
•	 Concept: ACCOUNT, COURSE, WORK CENTER

There is an important distinction between entity types and entity instances.
An entity type (sometimes called an entity class) is a collection of entities that share
common properties or characteristics. Each entity type in an E-R model is given a
name. Because the name represents a class or set, it is singular. Also, because an
entity is an object, we use a simple noun to name an entity type. We use capital letters

entity-relationship data
model (e-r model)
A detailed, logical representation of the
entities, associations, and data elements for
an organization or business area.

entity-relationship diagram
(e-r diagram)
A graphical representation of an E-R model.

entity type
A collection of entities that share common
properties or characteristics.

PVF CUSTOMER ORDER
ORDER NO: 61384 CUSTOMER NO: 1273

NAME: Contemporary Designs
ADDRESS: 123 Oak St.
CITY-STATE-ZIP: Austin, TX 28384

ORDER DATE: 11/04/2014 PROMISED DATE: 11/21/2017

PRODUCT QUANTITY UNIT
PRICENO DESCR IPTION ORDERED

M128 Bookcase 4 200.00
B381 Cabinet 2 150.00
R210 Table 1 500.00

Figure 8-4
Sample customer form

262 Part III AnAlysis

in naming an entity type and, in an E-R diagram, the name is placed inside a rect-
angle representing the entity, as shown in Figure 8-6a.

An entity instance (also known simply as an instance) is a single occurrence of
an entity type. An entity type is described just once in a data model, whereas many
instances of that entity type may be represented by data stored in the database. For
example, there is one EMPLOYEE entity type in most organizations, but there may be
hundreds (or even thousands) of instances of this entity type stored in the database.

A common mistake many people make when they are just learning to draw
E-R diagrams, especially if they already know how to do data flow diagramming, is
to confuse data entities with sources/sinks or system outputs and relationships with
data flows. A simple rule to avoid such confusion is that a true data entity will have
many possible instances, each with a distinguishing characteristic, as well as one or
more other descriptive pieces of data. Consider the entity types that might be associ-
ated with a sorority expense system, as represented in Figure 8-6b. In this situation,
the sorority treasurer manages accounts and records expense transactions against
each account. However, do we need to keep track of data about the treasurer and her
supervision of accounts as part of this accounting system? The treasurer is the per-
son entering data about accounts and expenses and making inquiries about account
balances and expense transactions by category. Because there is only one treasurer,
TREASURER data do not need to be kept. On the other hand, if each account has an
account manager (e.g., a sorority officer) who is responsible for assigned accounts,

entity instance
A single occurrence of an entity type. Also
known as an instance.

Mandatory One Mandatory Many Optional One Optional Many

Identifier
Partial identifier

ENTITY NAME
Strong

Associative

Entity Types

Relationship Degrees

Relationship Cardinality

Unary
Binary

Weak

Attributes

Ternary

Optional
[Derived]
{Multivalued}
Composite(, ,)

Figure 8-5
Basic E-R notation

Figure 8-6
Representing entity types
(a) Three entity types
(b) Questionable entity types

EMPLOYEE COURSE ACCOUNT

(a)

TREASURER ACCOUNT EXPENSE

(b)

 ChaPter 8 structuring system DAtA requirements 263

then we may wish to have an ACCOUNT MANAGER entity type with pertinent attri-
butes as well as relationships to other entity types.

In this same situation, is an expense report an entity type? Because an expense
report is computed from expense transactions and account balances, it is a data
flow, not an entity type. Even though there will be multiple instances of expense
reports over time, the report contents are already represented by the ACCOUNT and
EXPENSE entity types.

Often when we refer to entity types in subsequent sections, we will simply say
entity. This is common among data modelers. We will clarify that we mean an entity
by use of the term entity instance.

Naming and Defining Entity Types Clearly naming and defining data, such as
entity types, are important tasks during requirements determination and structuring.
When naming and defining entity types, you should use the following guidelines:

•	 An entity type name is a singular noun (such as CUSTOMER, STUDENT, or
AUTOMOBILE).

•	 An entity type name should be descriptive and specific to the organization.
For example, a PURCHASE ORDER for orders placed with suppliers is distinct
from CUSTOMER ORDER for orders placed by customers. Both of these entity
types cannot be named ORDER.

•	 An entity type name should be concise. For example, in a university database, use
REGISTRATION for the event of a student registering for a class rather than
STUDENT REGISTRATION FOR CLASS.

•	 Event entity types should be named for the result of the event, not the activity or
process of the event. For example, the event of a project manager assigning an
employee to work on a project results in an ASSIGNMENT.

Some specific guidelines for defining entity types follow:

•	 An entity type definition should include a statement of what the unique characteristic(s)
is (are) for each instance of the entity type.

•	 An entity type definition should make clear what entity instances are included and
not included in the entity type. For example, “A customer is a person or organiza-
tion that has placed an order for a product from us or that we have contacted
to advertise or promote our products. A customer does not include persons or
organizations that buy our products only through our customers, distributors,
or agents.”

•	 An entity type definition often includes a description of when an instance of the
entity type is created and deleted.

•	 For some entity types, the definition must specify when an instance might change
into an instance of another entity type; for example, a bid for a construction company
becomes a contract once it is accepted.

•	 For some entity types, the definition must specify what history is to be kept about
entity instances. Statements about keeping history may have ramifications about
how we represent the entity type on an E-R diagram and eventually how we store
data for the entity instances.

attributes
Each entity type has a set of attributes (see the third question in Table 8-1) associated
with it. An attribute is a property or characteristic of an entity that is of interest to the
organization (relationships may also have attributes, as we will see in the section on
relationships). Following are some typical entity types and associated attributes:

STUDENT: Student_ID, Student_Name, Home_Address, Phone_Number,
Major
AUTOMOBILE: Vehicle_ID, Color, Weight, Horsepower
EMPLOYEE: Employee_ID, Employee_Name, Payroll_Address, Skill

Attribute
A named property or characteristic of an
entity that is of interest to the organization.

264 Part III AnAlysis

We use an initial capital letter, followed by lowercase letters, and nouns in nam-
ing an attribute; underscores may or may not be used to separate words. In E-R dia-
grams, we represent an attribute by placing its name inside the rectangle for the
associated entity (see Figure 8-5). We use different notations for attributes to distin-
guish between different types of attributes, which we describe below. Our notation is
similar to that used by many CASE and E-R drawing tools, such as Microsoft Visio or
Oracle’s Designer. Precisely how different types of attributes are shown varies by tool.

Naming and Defining Attributes Often several attributes have approximately the
same name and meaning. Thus, it is important to carefully name attributes using the
following guidelines:

•	 An attribute name is a noun (such as Customer_ID, Age, or Product_Minimum_
Price).

•	 An attribute name should be unique. No two attributes of the same entity type
may have the same name, and it is desirable, for clarity, that no two attributes
across all entity types have the same name.

•	 To make an attribute name unique and for clarity, each attribute name should follow
a standard format. For example, your university may establish Student_GPA, as
opposed to GPA_of_Student, as an example of the standard format for attribute
naming.

•	 Similar attributes of different entity types should use similar but distinguishing names; for
example, the city of residence for faculty and students should be, respectively,
Faculty_Residence_City_Name and Student_Residence_City_Name.

Some specific guidelines for defining attributes follow:

•	 An attribute definition states what the attribute is and possibly why it is important.
•	 An attribute definition should make it clear what is included and what is not included

in the attribute’s value; for example, “Employee_Monthly_ Salary_ Amount is the
amount of money paid each month in the currency of the country of residence
of the employee exclusive of any benefits, bonuses, reimbursements, or special
payments.”

•	 Any aliases, or alternative names, for the attribute can be specified in the definition.
•	 It may also be desirable to state in the definition the source of values for the attribute.

Stating the source may make the meaning of the data clearer.
•	 An attribute definition should indicate if a value for the attribute is required or optional.

This business rule about an attribute is important for maintaining data integrity.
•	 An attribute definition may indicate if a value for the attribute may change once a

value is provided and before the entity instance is deleted. This business rule also
controls data integrity.

•	 An attribute definition may also indicate any relationships that attribute has with
other attributes; for example, “Employee_Vacation_Days_Number is the number
of days of paid vacation for the employee. If the employee has a value of ‘Exempt’
for Employee_Type, then the maximum value for Employee_ Vacation_Days_
Number is determined by a formula involving the number of years of service for
the employee.”

Candidate Keys and identif iers
Every entity type must have an attribute or set of attributes that distinguishes one in-
stance from other instances of the same type (see the second question in Table 8-1).
A candidate key is an attribute (or combination of attributes) that uniquely identifies
each instance of an entity type. A candidate key for a STUDENT entity type might be
Student_ID.

Sometimes a combination of attributes is required to identify a unique entity.
For example, consider the entity type GAME for a basketball league. The attribute

Candidate key
An attribute (or combination of attributes)
that uniquely identifies each instance of an
entity type.

 ChaPter 8 structuring system DAtA requirements 265

Team_Name is clearly not a candidate key because each team plays several games. If
each team plays exactly one home game against each other team, then the combina-
tion of the attributes Home_Team and Visiting_Team is a composite candidate key
for GAME.

Some entities may have more than one possible candidate key. One candidate
key for EMPLOYEE is Employee_ID; a second is the combination of Employee_
Name and Address (assuming that no two employees with the same name live at the
same address). If there is more than one possible candidate key, the designer must
choose one of the candidate keys as the identifier. An identifier is a candidate key
that has been selected to be used as the unique characteristic for an entity type. We
show the identifier attribute(s) by placing a solid underline below the identifier (see
Figure 8-5). Bruce (1992) suggests the following criteria for selecting identifiers:

•	 Choose a candidate key that will not change its value over the life of each instance
of the entity type. For example, the combination of Employee_Name and Payroll_
Address would probably be a poor choice as an identifier for EMPLOYEE because
the values of Payroll_Address and Employee_Name could easily change during an
employee’s term of employment.

•	 Choose a candidate key so that, for each instance of the entity, the attribute is
guaranteed to have valid values and not be null. To ensure valid values, you may
have to include special controls in data entry and maintenance routines to elimi-
nate the possibility of errors. If the candidate key is a combination of two or more
attributes, make sure that all parts of the key have valid values.

•	 Avoid the use of so-called intelligent identifiers, whose structure indicates clas-
sifications, locations, and so on. For example, the first two digits of a key for a
PART entity may indicate the warehouse location. Such codes are often modified
as conditions change, which renders the primary key values invalid.

•	 Consider substituting single-attribute surrogate keys for large composite keys. For
example, an attribute called Game_ID could be used for the entity GAME instead
of the combination of Home_Team and Visiting_Team.

Figure 8-7 shows the representation for a STUDENT entity type using our E-R
notation. STUDENT has a simple identifier, Student_ID, and three other simple
attributes.

other attribute types
A multivalued attribute may take on more than one value for each entity instance.
Suppose that Skill is one of the attributes of EMPLOYEE. If each employee can have
more than one skill, Skill is a multivalued attribute. Two ways of showing multivalued
attributes are common. The first is to list the multivalued attribute along with other at-
tributes, but use a special symbol to indicate that it is multivalued. This is the approach
taken in Figure 8-8a, where the multivalued attribute skill is enclosed in curly brackets.

Sometimes a set of data repeats together. For example, consider Figure 8-8b
for an employee entity with multivalued attributes for data about each employee’s
dependents. In this situation, data such as dependent name, age, and relation to
employee (spouse, child, parent, etc.) are multivalued attributes about an employee,
and these attributes repeat together (we show this by using one set of curly brackets
around the data that repeats together). Several attributes that repeat together are
called a repeating group.

Conceptually, dependents can also be thought of as entities. Thus, many data
analysts prefer a second approach to representing a repeating group. In this approach,
we separate the repeating data into another entity, called a weak (or attributive) entity
(designated by a rectangle with a double line border), and then use a relationship
(relationships are discussed in the next section) to link the weak entity to its associ-
ated regular entity (this particular relationship is also represented by a double line).
We can show this in Figure 8-8c using a weak entity, DEPENDENT, and a relationship,

identifier
A candidate key that has been selected as
the unique, identifying characteristic for an
entity type.

Multivalued attribute
An attribute that may take on more than
one value for each entity instance.

repeating group
A set of two or more multivalued attributes
that are logically related.

Student_ID
Student_Name
Student_Campus_Address
Student_Campus_Phone

STUDENT

Figure 8-7
STUDENT entity type with attributes

266 Part III AnAlysis

between DEPENDENT and EMPLOYEE. The crow’s foot next to DEPENDENT
means that there may be many DEPENDENTs for the same EMPLOYEE. The identi-
fier of DEPENDENT is a combination of the dependent’s name and the ID of the
employee for which this person is a dependent. It is sufficient to show Dep_Name in
the weak entity and use a double underline to designate it as a partial identifier.

It may be important to designate whether an attribute must have a value
(required attribute) or may not have a value (optional attribute) for every entity
instance. It is also common to have an attribute, such as Name or Address, which has
meaningful component parts, which we call a composite attribute. For some applica-
tions, people may want to simply refer to the set of component attributes by a compos-
ite name, whereas in other applications, we may need to display or compute with only
some of the component parts. Also in conceptual modeling, users may refer to some
datum that can be computed from other data in the database, a so-called derived attri-
bute. In order to represent these unique characteristics of attributes, many E-R draw-
ing tools have special notations for each of these types of attributes. In this text, we
use the notation found in Figure 8-5. Figure 8-9 illustrates an EMPLOYEE entity with
each of these types of attributes using our notation. Any identifier is required, and
we have designated the composite attribute Employee_Name (with atomic compo-
nents First_Name and Last_Name) as also required by putting these attribute names
in bold. Date_of_Birth is an optional attribute. Employee_Age, also optional, can be
computed from today’s date and Date_of_Birth, so it is a derived attribute.

Relationships
Relationships are the glue that holds together the various components of an E-R
model (see the fifth, seventh, and eighth questions in Table 8-1). A relationship is an
association between the instances of one or more entity types that is of interest to the
organization. An association usually means that an event has occurred or that there
exists some natural linkage between entity instances. For this reason, relationships
are labeled with verb phrases. For example, in Figure 8-10a we represent a training
department in a company that is interested in tracking which training courses each

required attribute
An attribute that must have a value
for every entity instance.

Optional attribute
An attribute that may not have a value
for every entity instance.

Composite attribute
An attribute that has meaningful component
parts.

Derived attribute
An attribute whose value can be computed
from related attribute values.

relationship
An association between the instance of one
or more entity types that is of interest to the
organization.

Employee_ID
Employee_Name
Payroll_Address
{Skill}

EMPLOYEE

(a) Multivalued attribute skill

Employee_ID
{ Dep_Name,
 Dep_Age,
 Dep_Relation}

EMPLOYEE

(b) Repeating group of dependent data

Employee_ID
EMPLOYEE

Dep_Name
Dep_Age
Dep_Relation

DEPENDENT

(c) Weak entity for dependent data

Figure 8-8
Multivalued attributes and repeating
groups

Employee_ID
Employee_Name(First_Name, Last_Name)
Date_of_Birth
[Employee_Age]

EMPLOYEE

Figure 8-9
Required, optional, composite,
and derived attributes

 ChaPter 8 structuring system DAtA requirements 267

of its employees has completed. This leads to a relationship called Completes be-
tween the EMPLOYEE and COURSE entity types.

As indicated by the arrows, this is a many-to-many relationship: each employee
may complete more than one course, and each course may be completed by more
than one employee. More significantly, we can use the Completes relationship to
determine the specific courses that a given employee has completed. Conversely, we
can determine the identity of each employee who has completed a particular course.
For example, consider the employees and courses shown in Figure 8-10b. In this illus-
tration, Melton has completed three courses (C++, COBOL, and Perl) and the SQL
course has been completed by Celko and Gosling.

We sometimes use two verb phrases for a relationship name so that there is an
explicit name for the relationship in each direction. The standards you follow will be
determined by your organization.

ConCeptual Data MoDeling
anD the e-R MoDel
The last section introduced the fundamentals of the E-R data modeling notation—
entities, attributes, and relationships. The goal of conceptual data modeling is to
 capture as much of the meaning of data as possible. The more details (business rules)
about data that we can model, the better the system we can design and build. Further,
if we can include all these details in a CASE repository, and if a CASE tool can
 generate code for data definitions and programs, then the more we know about data,
the more code we can generate automatically. This will make system building more
accurate and faster. More important, if we can keep a thorough repository of data de-
scriptions, we can regenerate the system as the business rules change. Because main-
tenance is the largest expense with any information system, the efficiencies gained by
maintaining systems at the rule rather than the code level drastically reduce the cost.

In this section, we explore more advanced concepts needed to model data
more thoroughly and learn how the E-R notation represents these concepts.

Completes
EMPLOYEE

Employee_ID
Employee_Name(. . .)
Birth_Date

COURSE
Course_ID
Course_Title
{Topic}

(a) Figure 8-10
Relationship type and instances
(a) Relationship type (Completes)
(b) Relationship instances

C++

Java

COBOL

Visual Basic

Perl

SQL

Chen

Melton

Ritchie

Celko

Gosling

Employee Course(b)

268 Part III AnAlysis

Degree of a Relationship
The degree of a relationship (see the seventh question in Table 8-1) is the number
of entity types that participate in that relationship. Thus, the relationship Completes
illustrated in Figure 8-10a is of degree two because there are two entity types:
EMPLOYEE and COURSE. The three most common relationships in E-R models are
unary (degree one), binary (degree two), and ternary (degree three). Higher-degree
relationships are possible, but they are rarely encountered in practice, so we restrict
our discussion to these three cases. Examples of unary, binary, and ternary relation-
ships appear in Figure 8-11.

Unary Relationships Also called a recursive relationship, a unary relationship is a
relationship between the instances of one entity type. Three examples are shown in
Figure 8-11. In the first example, Is_married_to is shown as a one-to-one relationship
between instances of the PERSON entity type. That is, each person may be currently
married to one other person. In the second example, Manages is shown as a one-
to-many relationship between instances of the EMPLOYEE entity type. Using this
relationship, we can identify, for example, the employees who report to a particular
manager; reading the Manages relationship in the opposite direction, we can iden-
tify who the manager is for a given employee. In the third example, Stands_after is

Degree
The number of entity types that participate
in a relationship.

unary relationship
A relationship between instances of
one entity type; also called recursive
relationship.

PERSON

One-to-one One-to-many One-to-one

Is_married_to Manages Stands_after

EMPLOYEE TEAM

(a)

Figure 8-11
Examples of relationships of different
degrees
(a) Unary relationships
(b) Binary relationships
(c) Ternary relationship

EMPLOYEE PARKING
SPACE

STUDENT COURSE

PRODUCT
LINE PRODUCT

One-to-one

Many-to-many

One-to-many

Is_assigned

Registers_for

Contains

(b)

VENDOR

PART

WAREHOUSE
Supplies

Shipping_Mode
Unit_Cost

(c)

 ChaPter 8 structuring system DAtA requirements 269

shown as a one-to-one relationship between instances of the TEAM entity type. This
relationship represents the sequential order of teams in a league; this sequential or-
dering could be based on any criteria, such as winning percentage.

Figure 8-12 shows an example of another common unary relationship, called
a bill-of-materials structure. Many manufactured products are made of subassemblies,
which in turn are composed of other subassemblies and parts, and so on. As shown
in Figure 8-12a, we can represent this structure as a many-to-many unary relation-
ship. In this figure, we use Has_components for the relationship name. The attribute
Quantity, which is a property of the relationship, indicates the number of each com-
ponent that is contained in a given assembly.

Two occurrences of this structure are shown in Figure 8-12b. Each of these dia-
grams shows the immediate components of each item as well as the quantities of that
component. For example, item TX100 consists of item BR450 (quantity 2) and item
DX500 (quantity 1). You can easily verify that the associations are in fact many-to-
many. Several of the items have more than one component type (e.g., item MX300
has three immediate component types: HX100, TX100, and WX240). Also, some
of the components are used in several higher-level assemblies. For example, item
WX240 is used in both item MX300 and item WX340, even at different levels of the
bill of materials. The many-to-many relationship guarantees that, for example, the
same subassembly structure of WX240 (not shown) is used each time item WX240
goes into making some other item.

Binary Relationships A binary relationship is a relationship between instances of
two entity types and is the most common type of relationship encountered in data
modeling. Figure 8-11b shows three examples. The first (one-to-one) indicates that
an employee is assigned one parking place, and each parking place is assigned to one
employee. The second (one-to-many) indicates that a product line may contain sev-
eral products, and each product belongs to only one product line. The third (many-
to-many) shows that a student may register for more than one course, and that each
course may have many student registrants.

Ternary Relationships A ternary relationship is a simultaneous relationship among
instances of three entity types. In the example shown in Figure 8-11c, the relationship

Binary relationship
A relationship between instances of two
entity types. This is the most common
type of relationship encountered in data
modeling.

Ternary relationship
A simultaneous relationship among
instances of three entity types.

Quantity

Has_components

ITEM

(a) Figure 8-12
Representing a bill-of-materials structure
(a) Many-to-many relationship
(b) Two ITEM bill-of-materials structure
instances

Mountain Bike
MX300

Transmission
System TX100

Qty: 1

Handle Bars
HX100
Qty: 1

Brakes
BR450
Qty: 2

Wheels
WX240
Qty: 2

Derailer
DX500
Qty: 1

Tandem Bike
TR425

Transmission
System TX101

Qty: 1

Handle Bars
HT200
Qty: 2

Derailer
DX500
Qty: 1

Wheels
WX340
Qty: 2

Brakes
BR250
Qty: 2

Wheels
WX240
Qty: 2

Wheel Trim
WT100
Qty: 2

(b)

270 Part III AnAlysis

Supplies tracks the quantity of a given part that is shipped by a particular vendor to
a selected warehouse. Each entity may be a one or a many participant in a ternary
relationship (in Figure 8-11, all three entities are many participants).

Note that a ternary relationship is not the same as three binary relationships. For
example, Shipping_Mode is an attribute of the Supplies relationship in Figure 8-11c.
Shipping_Mode cannot be properly associated with any of the three possible binary
relationships among the three entity types (such as that between PART and VENDOR)
because Shipping_Mode is the type of shipping carrier used for a particular PART
shipped from a particular VENDOR to a particular WAREHOUSE. We strongly rec-
ommend that all ternary (and higher) relationships be represented as associative enti-
ties (described later). We examine the cardinality of relationships next.

Cardinalities in Relationships
Suppose there are two entity types, A and B, connected by a relationship. The cardinality
of a relationship (see the fifth, seventh, and eighth questions in Table 8-1) is the
number of instances of entity B that can (or must) be associated with each instance
of entity A. For example, consider the relationship for DVDs at a video store shown
in Figure 8-13a.

Clearly, a video store may stock more than one DVD of a given movie. In the ter-
minology we have used so far, this example is intuitively a “many” relationship. Yet it
is also true that the store may not have a single copy of a particular movie in stock. We
need a more precise notation to indicate the range of cardinalities for a relationship.
This notation was introduced in Figure 8-5, which you may want to review at this point.

Minimum and Maximum Cardinalities The minimum cardinality of a relation-
ship is the minimum number of instances of entity B that may be associated with
each instance of entity A. In the preceding example, the minimum number of DVDs
available for a movie is zero, in which case we say that DVD is an optional participant
in the Is_stocked_as relationship. When the minimum cardinality of a relationship
is one, then we say that entity B is a mandatory participant in the relationship. The
maximum cardinality is the maximum number of instances. For our example, this
maximum is “many” (an unspecified number greater than one). Using the notation
from Figure 8-5, we diagram this relationship in Figure 8-13b. The zero through the
line near the DVD entity means a minimum cardinality of zero, whereas the crow’s
foot notation means a “many” maximum cardinality. The double underline of Copy_
Number indicates that this attribute is part of the identifier of DVD, but the full com-
posite identifier must also include the identifier of MOVIE, Movie_Name.

Examples of three relationships that show all possible combinations of mini-
mum and maximum cardinalities appear in Figure 8-14. A brief description of each
relationship follows:

1. PATIENT Has_recorded PATIENT_HISTORY (Figure 8-14a). Each patient has
recorded one or more patient histories (we assume that the initial patient visit
is always recorded as an instance of PATIENT HISTORY). Each instance of
PATIENT HISTORY is a record for exactly one PATIENT.

Cardinality
The number of instances of entity B that can
(or must) be associated with each instance
of entity A.

Figure 8-13
Introducing cardinality constraints
(a) Basic relationship
(b) Relationship with cardinality
constraints

Is_stocked_as
DVDMOVIE

(a)

Is_stocked_asMOVIE
Movie_Name

DVD
Copy_Number

(b)

 ChaPter 8 structuring system DAtA requirements 271

2. EMPLOYEE Is_assigned_to PROJECT (Figure 8-14b). Each PROJECT has at least
one assigned EMPLOYEE (some projects have more than one). Each EMPLOYEE
may or (optionally) may not be assigned to any existing PROJECT, or may be as-
signed to several PROJECTs.

3. PERSON Is_married_to PERSON (Figure 8-14c). This is an optional zero or one
cardinality in both directions because a person may or may not be married.

It is possible for the maximum cardinality to be a fixed number, not an arbitrary
“many” value. For example, suppose corporate policy states that an employee may
work on at most five projects at the same time. We could show this business rule by plac-
ing a “5” above or below the crow’s foot next to the PROJECT entity in Figure 8-14b.

naming and Defining Relationships
Relationships may be the most difficult component of an E-R diagram to understand.
Thus, you should use a few special guidelines for naming relationships, such as the
following:

•	 A relationship name is a verb phrase (such as Assigned_to, Supplies, or Teaches).
Relationships represent actions, usually in the present tense. A relationship name
states the action taken, not the result of the action (e.g., use Assigned_to, not
Assignment).

•	 You should avoid vague names, such as Has or Is_related_to. Use descriptive verb
phrases taken from the action verbs found in the definition of the relationship.

Specific guidelines for defining relationships follow:

•	 A relationship definition explains what action is being taken and possibly why it is
 important. It may be important to state who or what does the action, but it is not
important to explain how the action is taken.

•	 It may be important to give examples to clarify the action. For example, for a
 relationship Registered_for between student and course, it may be useful to
 explain that this covers both on-site and online registration and registrations made
during the drop/add period.

Mark

Sarah

Elsie

Visit 1

Visit 1

Visit 1
Visit 2

PATIENT
PATIENT
HISTORY

Has recorded
(a) Figure 8-14

Examples of cardinality constraints
(a) Mandatory cardinalities

(b) One optional, one mandatory
cardinality

(c) Optional cardinalities

Rose

Pete

Debbie

Tom

Heidi

BPR

TQM

OO

CR

EMPLOYEE
Is_assigned_to

PROJECT

(b)

Shirley

Mack

Dawn

Kathy

Ellis

Fred

PERSON

Is_married_to(c)

272 Part III AnAlysis

•	 The definition should explain any optional participation. You should explain what
conditions lead to zero associated instances, whether this can happen only when
an entity instance is first created or whether this can happen at any time.

•	 A relationship definition should also explain the reason for any explicit maximum
cardinality other than many.

•	 A relationship definition should explain any restrictions on participation in the relation-
ship. For example, “Supervised_by links an employee with the other employees he
or she supervises and links an employee with the other employee who supervises
him or her. An employee cannot supervise him- or herself, and an employee can-
not supervise other employees if his or her job classification level is below 4.”

•	 A relationship definition should explain the extent of history that is kept in the relationship.
•	 A relationship definition should explain whether an entity instance involved in a

relationship instance can transfer participation to another relationship instance. For
example, “Places links a customer with the orders they have placed with our com-
pany. An order is not transferable to another customer.”

associative entities
As seen in the examples of the Supplies relationship in Figure 8-11 and the Has_
components relationship of Figure 8-12, attributes may be associated with a many-to-
many relationship as well as with an entity. For example, suppose that the organization
wishes to record the date (month and year) that an employee completes each course.
Some sample data follow:

Figure 8-15
An associative entity
(a) Attribute on a relationship
(b) An associative entity (CERTIFICATE)
(c) An associative entity using Microsoft
Visio®

B A
EMPLOYEE

Employee_ID
Employee_Name(. . .)
Birth_Date Completes

Course_ID
Course_Title
{Topic}

COURSE

Date_Completed

(a)

A BEMPLOYEE
Employee_ID
Employee_Name(. . .)
Birth_Date

COURSE
Course_ID
Course_Title
{Topic}

Certificate_Number
Date_Completed

CERTIFICATE
(b)

Employee_IDPK

Employee_Name

EMPLOYEE

Certificate_NumberPK

Date_Completed

CERTIFICATE

Course_IDPK

Course_Title

COURSE
(c)

Employee_ID Course_Name Date_Completed
549-23-1948 Basic Algebra March 2017
629-16-8407 Software Quality June 2017
816-30-0458 Software Quality February 2017
549-23-1948 C Programming May 2017

From these limited data, you can conclude that the attribute Date_Completed
is not a property of the entity EMPLOYEE because a given employee, 549-23-1948,
has com pleted courses on different dates. Nor is Date_Completed a property of
COURSE bec ause a particular course (Software Quality) may be completed on dif-
ferent dates. Instead, Date_Completed is a property of the relationship between
EMPLOYEE and COURSE. The attribute is associated with the relationship and dia-
grammed in Figure 8-15.

 ChaPter 8 structuring system DAtA requirements 273

Because many-to-many and one-to-one relationships may have associated
 attributes, the E-R data model poses an interesting dilemma: Is a many-to-many
relationship actually an entity in disguise? Often the distinction between entity and
relationship is simply a matter of how you view the data. An associative entity (some-
times called a gerund) is a relationship that the data modeler chooses to model as an
entity type. Figure 8-15b shows the E-R notation for representing the Completes rela-
tionship as an associative entity and Figure 8-15c shows how this would be modeled
using Microsoft Visio. The lines from CERTIFICATE to the two entities are not two
separate binary relationships, so they do not have labels. Note that EMPLOYEE and
COURSE have mandatory one cardinality because an instance of Completes must
have an associated EMPLOYEE and COURSE. The labels A and B show where the
cardinalities from the Completes relation now appear. We have created an identifier
for CERTIFICATE of Certificate_Number, rather than use the implied combination
of the identifiers of EMPLOYEE and COURSE, Employee_ID and Course_Name,
respectively.

An example of the use of an associative entity for a ternary relationship appears
in Figure 8-16. This figure shows an alternative (and more explicit) representation
of the ternary Supplies relationship shown in Figure 8-11. In Figure 8-16, the entity
type (associative entity) SHIPMENT SCHEDULE replaces the Supplies relation-
ship from Figure 8-11. Each instance of SHIPMENT SCHEDULE represents a real-
world shipment by a given vendor of a particular part to a selected warehouse. The
Shipment_Mode and Unit_Cost are attributes of SHIPMENT SCHEDULE. We have
not designated an identifier for SHIPMENT SCHEDULE, so implicitly it would be a
composite identifier of the identifiers of the three related entities. Business rules
about participation of vendors, parts, and warehouses in supplies relationships are
shown via the cardinalities next to SUPPLY SCHEDULE. Remember, as with any asso-
ciative identity, these are not three separate relationships.

One situation in which a relationship must be turned into an associative entity is
when the associative entity has other relationships with entities besides the relation-
ship that caused its creation. For example, consider the E-R diagram in Figure 8-17a
that represents price quotes from different vendors for purchased parts stocked
by PVF. Now, suppose that we also need to know which price quote is in effect for
each part shipment received. This additional data requirement necessitates that the
Quotes_price relationship be transformed into an associative entity, as shown in
Figure 8-17b.

Associative entity
An entity type that associates the
instances of one or more entity types and
contains attributes that are peculiar to the
relationship between those entity Instances;
also called a gerund.

Each vendor can supply many
parts to any number of ware-
houses, but need not supply
any parts.

Each part can be supplied by
any number of vendors to
more than one warehouse, but
each part must be supplied by
at least one vendor to a
warehouse.

Each warehouse can be
supplied with any number of
parts from more than one
vendor, but each warehouse
must be supplied with at least
one part.

Business Rules

1

2

3

PART

VENDOR

SUPPLY SCHEDULE
Shipping_Mode
Unit_Cost

WAREHOUSE

31

2

Figure 8-16
Cardinality constraints in a ternary relationship

274 Part III AnAlysis

In this case, PRICE QUOTE is not a ternary relationship. Rather, PRICE QUOTE
is a binary many-to-many relationship (associative entity) between VENDOR and
PART. In addition, each PART RECEIPT, based on Amount, has an applicable, nego-
tiated Price. Each PART RECEIPT is for a given PART from a specific VENDOR, and
the Amount of the receipt dictates the purchase price in effect by matching with the
Quantity attribute. Because the PRICE QUOTE pertains to a given PART and a given
VENDOR, PART RECEIPT does not need direct relationships with these entities.

Summary of Conceptual Data Modeling with e-R Diagrams
The purpose of E-R diagramming is to capture the richest possible understanding
of the meaning of data necessary for an information system or organization. Besides
the aspects shown in this chapter, there are many other semantics about data that E-R
 diagramming can represent. Some of these more advanced capabilities are explained
in Hoffer et al. (2016). You can also find some general guidelines for effective con-
ceptual data modeling in Hoberman et al. (2012). The following section presents
one final aspect of conceptual data modeling: capturing the relationship between
similar entity types.

RepReSenting SupeRtypeS anD SubtypeS
Often two or more entity types seem very similar (maybe they have almost the same
name), but there are a few differences. That is, these entity types share common
properties but also have one or more distinct attributes or relationships. To address
this situation, the E-R model has been extended to include supertype/subtype rela-
tionships. A subtype is a subgrouping of the entities in an entity type that is mean-
ingful to the organization. For example, STUDENT is an entity type in a university.
Two subtypes of STUDENT are GRADUATE STUDENT and UNDERGRADUATE
STUDENT. A supertype is a generic entity type that has a relationship with one or
more subtypes.

Subtype
A subgrouping of the entities in an
entity type that is meaningful to the
organization and that shares common
attributes or relationships distinct from other
subgroupings.

Supertype
A generic entity type that has a relationship
with one or more subtypes.

PART

Quantity
Price

VENDOR

PART

PART RECEIPT
Order_Number
Date
Amount

VENDOR

PRICE QUOTE
Quantity
Price

Priced_at

(a)

(b)

Figure 8-17
Situation requiring an associative entity
(a) Many-to-many relationship with
attributes
(b) Associative entity with separate
relationship

 ChaPter 8 structuring system DAtA requirements 275

An example illustrating the basic notation used for supertype/subtype relation-
ships appears in Figure 8-18. The supertype PATIENT is connected with a line to a
circle, which in turn is connected by a line to each of the two subtypes, OUTPATIENT
and RESIDENT PATIENT. Attributes that are shared by all patients (including the
identifier) are associated with the supertype; attributes that are unique to a particular
subtype (e.g., Checkback_Date for OUTPATIENT) are associated with that subtype.
Relationships in which all types of patients participate (Is_cared_for) are associated
with the supertype; relationships in which only a subtype participates (Is_assigned for
RESIDENT PATIENTs) are associated only with the relevant subtype.

Several important business rules govern supertype/subtype relationships. The
total specialization rule specifies that each entity instance of the supertype must be a
member of some subtype in the relationship. The partial specialization rule specifies
that an entity instance of the supertype does not have to belong to any subtype. Total
specialization is shown on an E-R diagram by a double line from the supertype to
the circle, and partial specialization is shown by a single line. The disjoint rule speci-
fies that if an entity instance of the supertype is a member of one subtype, it cannot
simultaneously be a member of any other subtype. The overlap rule specifies that an
entity instance can simultaneously be a member of two (or more) subtypes. Disjoint
versus overlap is shown by a “d” or an “o” in the circle.

Figure 8-19 illustrates several combinations of these rules for a hierarchy of
supertypes and subtypes in a university database. In this example

•	 a PERSON must be (total specialization) an EMPLOYEE, an ALUMNUS, or a
STUDENT, or any combination of these subtypes (overlap);

•	 an EMPLOYEE must be a FACULTY or a STAFF (disjoint), or may be just an
EMPLOYEE (partial specialization); and

•	 a STUDENT can be only a GRADUATE STUDENT or an UNDERGRADUATE
STUDENT and nothing else (total specialization and disjoint).

buSineSS RuleS
Conceptual data modeling is a step-by-step process for documenting information re-
quirements, and it is concerned with both the structure of data and with rules about
the integrity of those data (see the eighth question in Table 8-1). Business rules are
specifications that preserve the integrity of the logical data model. Four basic types of
business rules are as follows:

1. Entity integrity. Each instance of an entity type must have a unique identifier that
is not null.

Total specialization rule
Specifies that each entity instance of the
supertype must be a member of some
subtype of the relationship.

Partial specialization rule
Specifies that an entity instance of the
supertype does not have to belong to any
subtype.

Disjoint rule
Specifies that if an entity instance of the
supertype is a member of one subtype, it
cannot simultaneously be a member of any
other subtype.

Overlap rule
Specifies that an entity instance can
simultaneously be a member of two (or
more) subtypes.

Business rules
Specifications that preserve the integrity
of the logical data model.

Checkback_Date

OUTPATIENT RESIDENT
PATIENT

Date_Discharged

Is_cared_for

Is_assigned
BED

Bed_ID

PATIENT

Patient_ID
Patient_Name
Admit_Date

RESPONSIBLE
PHYSICIAN

Physician_ID

Figure 8-18
Supertype/subtype relationships
in a hospital

276 Part III AnAlysis

2. Referential integrity constraints. Rules concerning the relationships between entity
types.

3. Domains. Constraints on valid values for attributes.
4. Triggering operations. Other business rules that protect the validity of attribute

values.

The E-R model that we have described in this chapter is concerned primarily
with the structure of data rather than with expressing business rules (although some
elementary rules are implied in the E-R model). Generally, the business rules are cap-
tured during requirements determination and stored in the CASE repository as they
are documented. Entity integrity was described earlier in this chapter, and referential
integrity is described in Chapter 9 because it applies to database design. In this sec-
tion, we briefly describe two types of rules: domains and triggering operations. These
rules are illustrated with a simple example from a banking environment, shown in
Figure 8-20a. In this example, an ACCOUNT entity has a relationship (Is_for) with a
WITHDRAWAL entity.

Domains
A domain is the set of all data types and ranges of values that attributes may assume
(Hoffer et al., 2016). Domain definitions typically specify some (or all) of the follow-
ing characteristics of attributes: data type, length, format, range, allowable values,
meaning, uniqueness, and null support (whether an attribute value may or may not
be null).

Figure 8-20b shows two domain definitions for the banking example. The first
definition is for Account_Number. Because Account_Number is an identifier attri-
bute, the definition specifies that Account_Number must be unique and must not be

Domain
The set of all data types and values that an
attribute can assume.

PERSON

SSN
Name
Address
Gender
Date_of_Birth

ALUMNUS

{Degree(Year,
Designation,
Date)}

Contract_Number
Billing_Rate

Salary
Date_Hired

EMPLOYEE STUDENT

Major_Dept

STAFF

PositionRank

FACULTY UNDERGRAD
STUDENT

Class_StandingTest_Score

GRADUATE
STUDENT

dd

O

Figure 8-19
Example of supertype/subtype hierarchy

 ChaPter 8 structuring system DAtA requirements 277

null (these specifications are true of all identifiers). The definition specifies that the
attribute data type is character and that the format is nnn-nnnn. Thus, any attempt to
enter a value for this attribute that does not conform to its character type or format
will be rejected, and an error message will be displayed.

The domain definition for the Amount attribute (dollar amount of the
requested withdrawal) also may not be null, but is not unique. The format allows for
two decimal places to accommodate a currency field. The range of values has a lower
limit of zero (to prevent negative values) and an upper limit of 10,000. The latter is
an arbitrary upper limit for a single withdrawal transaction.

The use of domains offers several advantages:

•	 Domains verify that the values for an attribute (stored by insert or update opera-
tions) are valid.

•	 Domains ensure that various data manipulation operations (such as joins or
unions in a relational database system) are logical.

•	 Domains help conserve effort in describing attribute characteristics.

Domains can conserve effort because we can define domains and then associate
each attribute in the data model with an appropriate domain. To illustrate, suppose
that a bank has three types of accounts, with the following identifiers:

ACCOUNT
Is_forAccount_Number

Balance

WITHDRAWAL
Date
Time
Amount

(a)

Figure 8-20
Examples of business rules
(a) Simple banking relationship

(b) Typical domain definitions

(c) Typical triggering operation

User rule: WITHDRAWAL Amount may not exceed ACCOUNT Balance
Event: Insert
Entity Name: WITHDRAWAL
Condition: WITHDRAWAL Amount > ACCOUNT Balance
Action: Reject the insert transaction

(c)

Name: Account_Number Name: Amount
Meaning: Customer account number in bank Meaning: Dollar amount of transaction
Data type: Character Data type: Numeric
Format: nnn-nnnn Format: 2 decimal places
Uniqueness: Must be unique Range: 0–10,000
Null support: Non-null Uniqueness: Nonunique

Null support: Non-null

(b)

Account Type Identifier
CHECKING Checking_Account_Number
SAVINGS Savings_Account_Number
LOAN Loan_Account_Number

If domains are not used, the characteristics for each of the three identifier
attributes must be described separately. Suppose, however, that the characteristics
for all three of the attributes are identical. Having defined the domain Account_
Number once (as shown in Figure 8-13b), we simply associate each of these three
attributes with Account_Number. Other common domains such as Date, Social_
Security_Number, and Telephone_Number also need to be defined just once in the
model.

278 Part III AnAlysis

triggering operations
A triggering operation (also called a trigger) is an assertion or rule that governs
the validity of data manipulation operations such as insert, update, and delete. The
scope of triggering operations may be limited to attributes within one entity or it may
extend to attributes in two or more entities. Complex business rules may often be
stated as triggering operations.

A triggering operation normally includes the following components:

1. User rule. A concise statement of the business rule to be enforced by the trigger-
ing operation.

2. Event. The data manipulation operation (insert, delete, or update) that initiates
the operation.

3. Entity name. The name of the entity being accessed and/or modified.
4. Condition. The condition that causes the operation to be triggered.
5. Action. The action taken when the operation is triggered.

Figure 8-20c shows an example of a triggering operation for the banking situation.
The business rule is a simple (and familiar) one: the amount of an attempted with-
drawal may not exceed the current account balance. The event of interest is an
attempted insert of an instance of the WITHDRAWAL entity type (perhaps from an
automated teller machine). The condition is

Amount (of the withdrawal). ACCOUNT Balance

When this condition is triggered, the action taken is to reject the transaction. You
should note two things about this triggering operation: first, it spans two entity types;
second, the business rule could not be enforced through the use of domains.

The use of triggering operations is an increasingly important component of
database strategy. With triggering operations, the responsibility for data integrity lies
within the scope of the database management system rather than with application
programs or human operators. In the banking example, tellers could conceivably
check the account balance before processing each withdrawal. Human operators
would be subject to human error and, in any event, manual processing would not
work with automated teller machines. Alternatively, the logic of integrity checks
could be built into the appropriate application programs, but integrity checks would
require duplicating the logic in each program. There is no assurance that the logic
would be consistent (because the application programs may have been developed at
different times by different people) or that the application programs will be kept up
to date as conditions change.

As stated earlier, business rules should be documented in the CASE reposi-
tory. Ideally, these rules will then be checked automatically by database software.
Removing business rules from application programs and incorporating them in the
repository (in the form of domains, referential integrity constraints, and triggering
operations) has several important advantages; specifically, incorporating business
rules in the repository

1. provides for faster application development with fewer errors because these
rules can be generated into programs or enforced by the database management
system,

2. reduces maintenance effort and expenditures,
3. provides for faster response to business changes,
4. facilitates end-user involvement in developing new systems and manipulating

data,
5. provides for consistent application of integrity constraints,
6. reduces the time and effort required to train application programmers, and
7. promotes ease of use of a database.

For a more thorough treatment of business rules, see Hoffer et al. (2016).

Triggering operation (trigger)
An assertion or rule that governs the validity
of data manipulation operations such as
insert, update, and delete; also called a
trigger.

 ChaPter 8 structuring system DAtA requirements 279

Role of paCKageD ConCeptual Data MoDelS:
DatabaSe patteRnS
Fortunately, the art and science of data modeling has progressed to the point where it
is seldom necessary for an organization to develop its data models internally in their
entirety. Instead, common database patterns for different business situations are avail-
able in packaged data models (or model components) that can be purchased at com-
paratively low cost and, after suitable customization, assembled into full-scale data
models. These generic data models are developed by industry specialists, consultants,
and database technology vendors based on their expertise and experience in dozens
of organizations across multiple industry types. The models are typically provided as
the contents of a data modeling software package, such as ERWin from Computer
Associates. The software is able to produce E-R diagrams, maintain all metadata about
the data model, and produce a variety of reports that help in the process of tailoring
the data model to the specific situation, such as customizing data names, changing
relationship characteristics, or adding data unique to your environment. The software
can then generate the computer code to define the database to a database manage-
ment system once the design is fully customized to the local situation. Some simple
and limited generic data models can be found in books or on the Internet.

There are two principal types of packaged data models: universal data models
applicable to nearly any business or organization and industry-specific data models.
We discuss each of these types briefly and provide references for each type.

universal Data Models
Numerous core subject areas are common to many (or even most) organizations,
such as customers, products, accounts, documents, and projects. Although they
 differ in detail, the underlying data structures are often quite similar for these sub-
jects. Further, there are core business functions such as purchasing, accounting,
 receiving, and project management that follow common patterns. Universal data
models are templates for one or more of these subject areas and/or functions. All of
the expected components of data models are generally included: entities, relation-
ships, attributes, primary and foreign keys, and even sample data. Two examples of
universal data model sets are provided by Hoberman (2009), Marco and Jennings
(2004), and Silverston and Agnew (2008).

industry-Specif ic Data Models
Industry-specific data models are generic data models that are designed to be used
by organizations within specific industries. Data models are available for nearly every
major industry group, including health care, telecommunications, discrete manu-
facturing, process manufacturing, banking, insurance, and higher education. These
models are based on the premise that data model patterns for organizations are very
similar within a particular industry (“a bank is a bank”). However, the data models
for one industry (such as banking) are quite different from those for another (such
as hospitals). Prominent examples of industry-specific data models are provided by
Inmon (2005), Kimball and Ross (2013), and Silverston and Agnew (2008).

benefits of Database patterns and packaged Data Models
Most people in the data modeling field refer to a purchased universal or industry-
specific database pattern as a logical data model (LDM). Technically, the term logical
data model means a conceptual data model with some additional properties associ-
ated with the most popular type of database technology—relational databases. The
type of data planning and analysis we have covered in this chapter can, in fact, be

280 Part III AnAlysis

done using either a conceptual or a logical data model. The process is the same; only
the starting point is different.

LDMs are the database version of patterns, components, and prepackaged
applications that have been discussed in prior chapters as ways to more quickly and
reliably build a new application. An advantage of LDMs is that a packaged data model
now exists for almost every industry and application area, for specific operational
systems to enterprise systems, such as Enterprise Resource Planning (ERP) and data
warehouses. They are available from database software vendors, application software
providers, and consulting firms. The use of a prepackaged data model does not elim-
inate the need for the methods and techniques we discuss in this chapter; they only
change the context in which these methods and techniques are used.

It is now important that you consider purchasing a prepackaged data model
even when an application is to be built from scratch. Consider the following benefits
of starting with and then tailoring a purchased data model:

•	 Validated. Purchased models are proven through extensive experience.
•	 Cost reduction. Projects with purchased models take less time and cost less be-

cause the initial discovery steps are no longer necessary, leaving only iterative
tailoring and refinement to the local situation.

•	 Anticipate future requirements, not just initial requirements. Purchased models antici-
pate future needs, not just those recognized during the first version of an appli-
cation. Thus, because the database structure does not require structural change
(which can have costly ramifications for reprogramming the applications using
the database), their benefits are recurring, not one-time.

•	 Facilitates systems analysis. The purchased model actually facilitates database plan-
ning and analysis by providing a first data model, which you can use to generate
specific analysis questions and concrete, not hypothetical or abstract, examples of
what might be in the appropriate database.

•	 Consistent and complete. The purchased data models are very general, covering
almost all options employed by the associated functional area or industry. Thus,
they provide a structure that, when tailored, will be consistent and complete.

See Hoffer et al. (2016) for more details on the use of packaged data models in
data modeling and database development. Of course, packaged data models are no
substitute for sound database analysis and design. Skilled analysts and designers are
still necessary to determine database requirements and to select, modify, install, and
integrate any packaged systems that are used.

eleCtRoniC CoMMeRCe appliCation:
ConCeptual Data MoDeling
Conceptual data modeling for an Internet-based electronic commerce application is
no different than the process followed when analyzing the data needs for other types
of applications. In the preceding chapters, you read how Jim Woo analyzed the flow
of information within the WebStore and developed a DFD. In this section, we exam-
ine the process he followed when developing the WebStore’s conceptual data model.

Conceptual Data Modeling for pine Valley furniture’s WebStore
To better understand what data would be needed within the WebStore, Jim Woo care-
fully reviewed the information from the JAD session and his previously developed
DFD. Table 8-2 shows a summary of the customer and inventory information identi-
fied during the JAD session. Jim wasn’t sure if this information was complete, but he
knew that it was a good starting place for identifying what information the WebStore
needed to capture, store, and process. To identify additional information, he carefully
studied the DFD shown in Figure 8-21. In this diagram, two data stores—Inventory

 ChaPter 8 structuring system DAtA requirements 281

Table 8-2 Customer and Inventory Information for the WebStore
Home Office Customer Student Customer Inventory Information
Name Name SKU
Doing Business as School Name
 (company’s name) Address Description
Address Phone Finished Product Size
Phone E-Mail Finished Product Weight
Fax Available Materials
E-Mail Available Colors

Price
Lead Time

5.0

Add/Modify
Account
Profile

6.0

Order
Status

Request

4.0

Check Out
Process
Order

3.0

Display
Shopping

Cart

2.0

Select
Item for

Purchase

PURCHASING
FULFILLMENT

SYSTEMCUSTOMER
TRACKING

SYSTEM

CUSTOMER

CUSTOMER

Cart ID/
Item Profile

Item
Profile Purchase

Request
Product

Item

Product
Item

Request

InvoiceCheck Out/
Customer

ID

Item
Profile

Cart ID/
Item Profile

Order Number/
Return Code

Order
Number

Order
Number

Order
Status

Information

Order
Status

Information

Remove Item/
Product Item

Remove
Item

Items in
Cart

Item
Profile

View
Cart

Customer
ID

Customer
Information

Customer
Information/ID

Customer
Information

Customer
Information Order

InventoryD1 Shopping CartD2

1.0

Browse
Catalog

Item
Profile

Figure 8-21
Level-0 DFD for the WebStore

282 Part III AnAlysis

and Shopping Cart—are clearly identified; both were strong candidates to become
entities within the conceptual data model. Finally, Jim examined the data flows from
the DFD as additional possible sources for entities. This analysis resulted in the iden-
tification of five general categories of information that he needed to consider:

•	 Customer
•	 Inventory
•	 Order
•	 Shopping Cart
•	 Temporary User/System Messages

After identifying these multiple categories of data, Jim’s next step was to care-
fully define each item. To do this, he again examined all data flows within the DFD
and recorded the source and destination of all data flows. By carefully listing these
flows, he could more easily move through the DFD and more thoroughly understand
what information was needed to move from point to point. This activity resulted
in the creation of two tables that documented his growing understanding of the
WebStore’s requirements. The first, Table 8-3, lists each of the data flows within each
data category and its corresponding description. The second, Table 8-4, lists each of
the unique data flows within each data category. He now felt ready to construct an
E-R diagram for the WebStore.

Jim concluded that Customer, Inventory, and Order were each a unique entity
and would be part of his E-R diagram. Recall that an entity is a person, place, or
object; all three of these items meet this criteria. Because the Temporary User/System

Table 8-3 Data Category, Data Flow, and Data Flow Descriptions for the WebStore
Data Category/Data Flow Description
Customer-Related
 Customer ID Unique identifier for each customer (generated by

Customer Tracking System)
 Customer Information Detailed customer information (stored in Customer

Tracking System)
Inventory-Related
 Product Item Unique identifier for each product item (stored in

Inventory Database)
 Item Profile Detailed product information (stored in Inventory

Database)
Order-Related
 Order Number Unique identifier for an order (generated by Purchasing

Fulfillment System)
 Order Detailed order information (stored in Purchasing

Fulfillment System)
 Return Code Unique code for processing customer returns (generated

by/stored in Purchasing Fulfillment System)
 Invoice Detailed order summary statement (generated from order

information stored in Purchasing Fulfillment System)
 Order Status Information Detailed summary information on order status (stored/

generated by)
Shopping Cart
 Cart ID Unique identifier for shopping cart
Temporary User/System Messages
 Product Item Request Request to view information on a catalog item
 Purchase Request Request to move an item into the shopping cart
 View Cart Request to view the contents of the shopping cart
 Items in Cart Summary report of all shopping cart items
 Remove Item Request to remove item from shopping cart
 Check Out Request to check out and process order

 ChaPter 8 structuring system DAtA requirements 283

Messages data were not permanently stored items—nor were they a person, place, or
object—he concluded that this should not be an entity in the conceptual data model.
Alternatively, although the shopping cart was also a temporarily stored item, its con-
tents needed to be stored for at least the duration of a customer’s visit to the WebStore
and should be considered an object. As shown in Figure 8-21, Process 4.0, Check
Out Process Order, moves the Shopping Cart contents to the Purchasing Fulfillment
System, where the order details are stored. Thus, he concluded that Shopping Cart—
along with Customer, Inventory, and Order—would be entities in his E-R diagram.

The final step was to identify the interrelationships among these four enti-
ties. After carefully studying all the related information, Jim came to the following
conclusions:

1. Each Customer owns zero or one Shopping Cart instances; each Shopping Cart
instance is owned by one and only one Customer.

Table 8-4 Data Category, Data Flow, and the Source/Destination of Data Flows within the
WebStore DFD

Data Flow From/To

Customer-Related
 Customer ID From Customer to Process 4.0

From Process 4.0 to Customer Tracking System
From Process 5.0 to Customer

 Customer Information From Customer to Process 5.0
From Process 5.0 to Customer
From Process 5.0 to Customer Tracking System
From Customer Tracking System to Process 4.0

Inventory-Related
 Product Item From Process 1.0 to Data Store D1

From Process 3.0 to Data Store D2
 Item Profile From Data Store D1 to Process 1.0

From Process 1.0 to Customer
From Process 1.0 to Process 2.0
From Process 2.0 to Data Store D2
From Data Store D2 to Process 3.0
From Data Store D2 to Process 4.0

Order-Related
 Order Number From Purchasing Fulfillment System to Process 4.0

From Customer to Process 6.0
From Process 6.0 to Purchasing Fulfillment System

 Order From Process 4.0 to Purchasing Fulfillment System
 Return Code From Purchasing Fulfillment System to Process 4.0
 Invoice From Process 4.0 to Customer
 Order Status From Process 6.0 to Customer

From Purchasing Fulfillment System to Process 6.0
Shopping Cart
Cart ID From Data Store D2 to Process 3.0

From Data Store D2 to Process 4.0
Temporary User/System Messages
 Product Item Request From Customer to Process 1.0
 Purchase Request From Customer to Process 2.0
 View Cart From Customer to Process 3.0
 Items in Cart From Process 3.0 to Customer
 Remove Item From Customer to Process 3.0

From Process 3.0 to Data Store D2
 Check Out From Customer to Process 4.0

284 Part III AnAlysis

2. Each Shopping Cart instance contains one and only one Inventory item; each
Inventory item is contained in zero or many Shopping Cart instances.

3. Each Customer places zero to many Orders; each Order is placed by one and only
one Customer.

4. Each Order contains one to many Shopping Cart instances; each Shopping Cart
instance is contained in one and only one Order.

With these relationships defined, Jim drew the E-R diagram shown in
Figure 8-22. He now had a very good understanding of the requirements, the flow of
information within the WebStore, the flow of information between the WebStore and
existing PVF systems, and now the conceptual data model. Over the next few hours,
Jim planned to further refine his understanding by listing the specific attributes for
each entity and then comparing these lists with the existing inventory, customer, and
order database tables. Making sure that all attributes were accounted for would be
the final conceptual data modeling activity before beginning the process of selecting
a final design strategy.

ORDER

SHOPPING
CART INVENTORYCUSTOMER

Is_placed_by

Places

Contains

Is_contained_in

Contains
 Is_contained_in

Is_owned_by

Owns

Figure 8-22
E-R diagram for the WebStore system

Summary

We have presented the process and basic notation used to
model the data requirements of an information system. We
outlined the structuring of conceptual data models using
the E-R notation and discussed how the components of a
conceptual data model relate to data flows and data stores.

Conceptual data modeling is based on certain
constructs about the structure, not use, of data. These
 constructs include entity, relationship, degree, and car-
dinality. A data model shows the relatively permanent
business rules that define the nature of an organization.
Rules define characteristics of data such as the legitimate
domain of values for data attributes, the unique character-
istics (identifier) of entities, the relationships between dif-
ferent entities, and the triggering operations that protect
the validity of attributes during data maintenance.

A data model shows major categories of data, called
entities for the E-R notation; the associations or relation-
ships between entities; and the attributes of both entities
and relationships. A special type of entity called an associa-
tive entity is often necessary to represent a many-to-many
relationship between entities. Entity types are distinct from

entity instances. Each entity instance is distinguished from
other instances of the same type by an identifier attribute.

Relationships are the glue that holds a data model
together. Three common relationship types are unary, bi-
nary, and ternary. The minimum and maximum number of
entity instances that participate in a relationship represent
important rules about the nature of the organization, as
captured during requirements determination. Supertype/
subtype relationships can be used to show a hierarchy of
more-general to more-specific related entity types that
share common attributes and relationships. Rules for total
and partial specialization between the supertype and sub-
types and disjoint and overlap among the subtypes clarify
the meaning of the related entity types.

Modern systems analysis is based on reuse, and one
form of reuse is prepackaged conceptual data models.
These data models can be purchased from various vendors
and are very helpful in learning best practices from other
organizations in the same industry or for the same busi-
ness function. They save considerable time over building
complex data models from scratch.

Key TermS

 8.1 Associative entity
 8.2 Attribute
 8.3 Binary relationship
 8.4 Business rules

 8.5 Candidate key
 8.6 Cardinality
 8.7 Composite attribute
 8.8 Conceptual data model

 8.9 Degree
 8.10 Derived attribute
 8.11 Disjoint rule
 8.12 Domain

 ChaPter 8 structuring system DAtA requirements 285

revIew QueSTIonS
 8.31 Discuss why some systems developers believe that a data

model is one of the most important parts of the statement
of information system requirements.

 8.32 Distinguish between the data modeling done during infor-
mation systems planning, project initiation and planning,
and the analysis phases of the SDLC.

 8.33 What elements of a DFD should be analyzed as part of data
modeling?

 8.34 Explain why a ternary relationship is not the same as three
binary relationships.

 8.35 When must a many-to-many relationship be modeled as an
associative entity?

 8.36 What is the significance of triggering operations and busi-
ness rules in the analysis and design of an information
system?

 8.37 Which of the following types of relationships—one-to-one,
one-to-many, many-to-many—can have attributes associ-
ated with them?

 8.38 What are the linkages among DFDs, decision tables, and
E-R diagrams?

 8.13 Entity instance
 8.14 Entity-relationship data model

(E-R model)
 8.15 Entity-relationship diagram

(E-R diagram)
 8.16 Entity type
 8.17 Identifier

 8.18 Multivalued attribute
 8.19 Optional attribute
 8.20 Overlap rule
 8.21 Partial specialization rule
 8.22 Relationship
 8.23 Repeating group
 8.24 Required attribute

 8.25 Subtype
 8.26 Supertype
 8.27 Ternary relationship
 8.28 Total specialization rule
 8.29 Triggering operation

(trigger)
 8.30 Unary relationship

Match each of the key terms above with the definition that best
fits it.

____ A detailed model that captures the overall structure
of organizational data and that is independent of any
database management system or other implementation
considerations.

____ A detailed, logical representation of the entities, associa-
tions, and data elements for an organization or business
area.

____ A graphical representation of an E-R model.

____ A collection of entities that share common properties or
characteristics.

____ A single occurrence of an entity type.

____ A named property or characteristic of an entity that is of
interest to the organization.

____ An attribute (or combination of attributes) that uniquely
identifies each instance of an entity type.

____ A candidate key that has been selected as the unique, iden-
tifying characteristic for an entity type.

____ An attribute that may take on more than one value for
each entity instance.

____ A set of two or more multivalued attributes that are logi-
cally related.

____ An association between the instances of one or more entity
types that is of interest to the organization.

____ The number of entity types that participate in a
relationship.

____ A relationship between the instances of one entity type.

____ A relationship between instances of two entity types.

____ A simultaneous relationship among instances of three
entity types.

____ The number of instances of entity B that can (or must) be
associated with each instance of entity A.

____ An entity type that associates the instances of one or more
entity types and contains attributes that are peculiar to the
relationship between those entity instances.

____ A subgrouping of the entities in an entity type that is mean-
ingful to the organization.

____ A generic entity type that has a relationship with one or
more subtypes.

____ Specifies that each entity instance of the supertype must be
a member of some subtype in the relationship.

____ Specifies that an entity instance of the supertype does not
have to belong to any subtype.

____ Specifies that if an entity instance of the supertype is a
member of one subtype, it cannot simultaneously be a
member of any other subtype.

____ Specifies that an entity instance can simultaneously be a
member of two (or more) subtypes.

____ Specifications that preserve the integrity of the logical data
model.

____ The set of all data types and values that an attribute can
assume.

____ An assertion or rule that governs the validity of data ma-
nipulation operations such as insert, update, and delete.

____ An attribute that must have a value for every entity
instance.

____ An attribute that may not have a value for every entity
instance.

____ An attribute that has meaningful component parts.

____ An attribute whose value can be computed from related
attribute values.

286 Part III AnAlysis

 8.39 What is the degree of a relationship? Give an example of
each of the relationship degrees illustrated in this chapter.

 8.40 Give an example (different from any example in this chap-
ter) of a ternary relationship.

 8.41 List the deliverables from the conceptual data model-
ing part of the analysis phase of the systems development
process.

 8.42 Explain the relationship between minimum cardinality
and optional and mandatory participation.

 8.43 List the ideal characteristics of an entity identifier attribute.

 8.44 Explain how conceptual data modeling is different when
you start with a prepackaged data model rather than a
clean sheet of paper.

 8.45 Contrast the following terms:

a. Subtype; supertype
b. Total specialization rule; partial specialization rule
c. Disjoint rule; overlap rule
d. Attribute; operation

CITYTOOL

Includes

Works_on

Done_atUsed_on
 TASK
Task_ID
Time
{Skill}

 PROJECT
Project_ID

 EMPLOYEE
Employee_ID

Figure 8-23
E-R diagram for Problem
and Exercise 8-53

ProblemS and exercISeS
 8.46 Assume that at PVF each product (described by Product

No., Description, and Cost) is composed of at least three
components (described by Component No., Description,
and Unit of Measure), and components are used to make
one or many products (i.e., must be used in at least one
product). In addition, assume that components are used
to make other components and that raw materials are also
considered to be components. In both cases of compo-
nents being used to make products and components being
used to make other components, we need to keep track
of how many components go into making something else.
Draw an E-R diagram for this situation and place minimum
and maximum cardinalities on the diagram.

 8.47 Much like PVF’s sale of products, stock brokerages sell
stocks, and the prices are continually changing. Draw an
E-R diagram that takes into account the changing nature
of stock prices.

 8.48 If you were going to develop a computer-based tool to help
an analyst interview users and quickly and easily create and
edit E-R diagrams, what type of tool would you build? What
features would it have? How would it work?

 8.49 A software training program is divided into training mod-
ules, and each module is described by module name and
the approximate practice time. Each module sometimes
has prerequisite modules. Model this situation of training
programs and modules with an E-R diagram.

 8.50 Each semester, each student must be assigned an adviser
who counsels students about degree requirements and

helps students register for classes. Students must register
for classes with the help of an adviser, but if their assigned
adviser is not available, they may register with any adviser.
We must keep track of students, their assigned adviser, and
with whom the student registered for the current term.
Represent this situation of students and advisers with an
E-R diagram.

 8.51 Assume that entity PART has attributes Part_Number,
Drawing_Number, Weight, Description, Storage_Location,
and Cost. Which attributes are candidate keys? Why? Which
attribute would you select for the identifier of PART? Why?
Or do you think that you should create another attribute
to be the identifier? Why or why not?

 8.52 Consider the E-R diagram in Figure 8.15b.

a. What would be the identifier for the CERTIFICATE
associative entity if Certificate_Number were not
included?

b. Now assume that the same employee may take the same
course multiple times on different dates. Does this
change your answer to Problem and Exercise 8.52a?
Why or why not?

 8.53 Study the E-R diagram in Figure 8.23. Based on this E-R
diagram, answer the following questions:

a. How many PROJECTs can an employee work on?
b. What is the degree of the Includes relationship?
c. Are there any associative entities on this diagram? If so,

name them.
d. How else could the attribute Skill be modeled?

 ChaPter 8 structuring system DAtA requirements 287

e. Is it possible to attach any attributes to the Includes
relationship?

f. Could TASK be modeled as an associative entity?
g. Employees’ earnings are calculated based on a different

hourly pay rate for each project. Where on the E-R dia-
gram would you represent the new attribute Hourly pay
rate?

 8.54 For the E-R diagram provided in Figure 8.24, draw in the
relationship cardinalities and describe them. Describe any
assumptions you must make about relevant business rules.
Are there any changes or additions you would make to this
diagram to make it better? Why or why not?

 8.55 For the E-R diagram provided in Figure 8.24, assume that
this company decided to assign each sales representative to
a small, unique set of customers; some customers can now
become “members” and receive unique benefits; small man-
ufacturing teams will be formed and each will be assigned to
the production of a small, unique set of products; and each
purchasing agent will be assigned to a small, unique set of
vendors. Make the necessary changes to the E-R diagram
and draw and describe the new relationship cardinalities.

 8.56 Obtain a copy of an invoice, order form, or bill used in
one of your recent business transactions. Create an E-R dia-
gram to describe your sample document.

 8.57 Using Table 8.1 as a guide, develop the complete script
(questions and possible answers) of an interview between
analysts and users within the order entry function at PVF.

 8.58 A concert ticket reservation is an association among a
patron, a concert, and a seat. Select a few pertinent attri-
butes for each of these entity types and represent a reserva-
tion in an E-R diagram.

 8.59 Choose from your own experiences with organizations
and draw an E-R diagram for a situation that has a ternary
relationship.

 8.60 Consider the E-R diagram in Figure 8.25. Are all three
relationships—Holds, Goes_on, and Transports— necessary
(i.e., can one of these be deduced from the other two)?
Are there reasonable assumptions that make all three rela-
tionships necessary? If so, what are these assumptions?

 8.61 Draw an E-R diagram to represent the sample customer
 order in Figure 8-4.

CUSTOMER

ORDER BACKORDER

Places

Includes

Generates

Comprised_of Supplied_byPRODUCT COMPONENT VENDOR

Figure 8-24
E-R diagram for Problem
and Exercises 8-54 and 8-55

May_contain

Goes_on

Holds Transports

Is_responsible_for AGENT
Agent_ID

 VESSEL
Vessel_ID
Country_of_
 Registry

 CONSIGNMENT
Consignment_Number
$_Value

 CONSIGNMENT
Consignment_Number
$_Value

 VOYAGE
Voyage_ID
Tonnage Figure 8-25

E-R diagram for Problem
and Exercise 8-60

288 Part III AnAlysis

 8.62 In a real estate database, there is an entity called PROP-
ERTY, which is a property for sale by the agency. Each time
a potential property buyer makes a purchase offer on a
property, the agency records the date, offering price, and
name of the person making the offer.

a. Represent the PROPERTY entity and its purchase offer
attributes using the notation for multivalued attributes.

b. Represent the PROPERTY entity and its purchase offer
attributes using two entity types.

c. Assume the agency decides to also keep data about buy-
ers and potential buyers, including their name, phone
number, and address. Buyers often have multiple phone
numbers and addresses, which are not necessarily
 related to each other. Augment your answer to Problem
and Exercise 8.62b to accommodate this new entity type.

d. Finally, assume that, for each purchase offer, we need
to know which buyer phone number and address to
 associate with that offer. Augment your answer to
Problem and Exercise 8.62c to accommodate this new
requirement.

 8.63 Consider the Is_married_to unary relationship in Figure 8.14c.

a. Assume that we want to know the date on which a mar-
riage occurred. Augment this E-R diagram to include a
Date_married attribute.

b. Because persons sometimes remarry after the death of
a spouse or a divorce, redraw this E-R diagram to show
the whole history of marriages (not just the current
marriage) for persons. Show the Date_married attribute
on this diagram.

c. In your answer to Problem and Exercise 8.63b, is it possi-
ble to represent a situation in which the same two people
marry each other a multiple number of times? Explain.

 8.64 Consider Figure 8.20.

a. Write a domain integrity rule for Balance.
b. Write a triggering operation for the Balance attribute

for the event of inserting a new ACCOUNT.

 8.65 How are E-R diagrams similar to and different from
 decision trees? In what ways are data and logic modeling
techniques complementary? What problems might be
encountered if either data or logic modeling techniques
were not performed well or not performed at all as part of
the systems development process?

 8.66 In the Purchasing department at one company, a purchase
request may be assigned an expediter within the Pur-
chasing department. This expediter follows the purchase
request through the entire purchasing process and acts as
the sole contact person with the person or unit within the
company buying the goods or services. The Purchasing
department refers to its fellow employees buying goods
and services as customers. The purchasing process is such
that purchase requests from certain special customers
must go out for bid to vendors, and the associated Request
for Bids for these requests must be approved by the Pur-
chasing department. If the purchase is not by a special
customer, the product or service can simply be bought
from any approved vendor, but the purchase request must
still be approved by the Purchasing department, and the
department must issue a Purchase Order. For “special cus-
tomer” purchases, the Purchasing department can issue
a Purchase Order once the winning bid is accepted. List
the relevant entities and attributes, and draw an E-R dia-
gram for this business process. List whatever assumptions
you must make to define identifiers, assess cardinality, and
so on.

FIeld exercISeS
 8.67 Interview a friend or family member about each of the

entities, attributes, relationships, and relevant business
rules he or she comes into contact with at work. Use this
information to construct and present to this person an E-R
diagram. Revise the diagram until it seems appropriate to
you and to your friend or family member.

 8.68 Visit an organization that provides primarily a service, such
as a dry cleaner, and a company that manufactures a more
tangible product. Interview employees from these orga-
nizations about the entities, attributes, relationships, and
relevant business rules that are commonly encountered by
their company. Use this information to construct E-R dia-
grams. What differences and similarities are there between
the diagrams for the service- and the product-oriented
companies? Does the E-R diagramming technique handle
both situations equally well? Why or why not? What differ-
ences, if any, might there be in the use of this technique
for a public agency?

 8.69 Discuss with a systems analyst the role of conceptual data
modeling in the overall systems analysis and design of
information systems at his or her company. How, and by
whom, is conceptual data modeling performed? What

training in this technique is given? At what point(s) is this
done in the development process? Why?

 8.70 Ask a systems analyst to give you examples of unary, binary,
and ternary relationships that they have heard of or dealt
with personally at their company. Ask them which is the
most common. Why?

 8.71 Talk to MIS professionals at a variety of organizations and
determine their interest in using prepackaged data models,
rather than doing data modeling from scratch. If they have
adopted any prepackaged data models, document how
they did the customization for their local requirements.

 8.72 Ask a systems analyst to give you a copy of the standard
notation he or she uses to draw E-R diagrams. In what ways
is this notation different from the notation in this text?
Which notation do you prefer and why? What is the mean-
ing of any additional notation?

 8.73 Ask a systems analyst in a manufacturing company to show
you an E-R diagram for a database in that organization that
contains bill-of-materials data. Compare that E-R diagram
to the one in Figure 8-7. What are the differences between
these diagrams?

 ChaPter 8 structuring system DAtA requirements 289

reFerenceS
Bruce, T. A. 1992. Designing Quality Databases with IDEF1X Infor-

mation Models. New York: Dorset House Publications.
Gottesdiener, E. 1999. “Turning Rules into Requirements.”

Application Development Trends 6(7): 37–50.
Herbst, H. 2013. Business Rule-Oriented Conceptual Modeling.

Heidelberg, Germany: Physica-Verlag.
Hoberman, S. 2009. Industry Logical Data Models Serve as Maps

to an Organization’s Information. www.teradatamagazine.com.
From: http://www.teradatamagazine.com/where_to.aspx.
Retrieved on February 24, 2015.

Hoberman, S., D. Burbank, and C. Bradley. 2012. Data Modeling
for the Business. Bradley Beach, NJ: Technics Publications.

Hoffer, J. A., V. Ramesh, and H. Topi. 2016. Modern Database
Management, 12th ed. Upper Saddle River, NJ: Prentice Hall.

Inmon, W. H. 2005. Building the Data Warehouse. Indianapolis,
IN: Wiley.

Keller, S. B, and B. C. Keller. The Definitive Guide to Warehousing.
Upper Saddle River, NJ: Pearson.

Kimball, R., and M. Ross. 2013. The Data Warehouse Toolkit: The
Complete Guide to Dimensional Data Modeling, 3rd ed. New
York: John Wiley & Sons, Inc.

Marco, D., and M. Jennings. 2004. Universal Meta Data Models.
New York: John Wiley & Sons, Inc.

Silverston, L., and P. Agnew. 2008. The Data Model Resource Book,
Vol. 3: Universal Patterns for Data Modeling. New York: John
Wiley & Sons, Inc.

Witt, G. 2012. Writing Effective Business Rules. Burlington, MA:
Morgan Kaufmann.

http://www.teradatamagazine.com
http://www.teradatamagazine.com/where_to.aspx

290

appendix

8.3 illustrate how associations are represented in class
diagrams,

8.4 show how associative classes are drawn in class
diagrams, and

8.5 show how generalization and aggregation are
represented in class diagrams.

object-oriented
analysis and Design
object Modeling—Class Diagrams

Learning Objectives

After studying this section, you should be able to

8.1 demonstrate the differences between object
diagrams and class diagrams,

8.2 explain the three types of operations possible in
class diagrams,

Introduction

In this section, we show how to develop class diagrams,
the object-oriented data modeling notation. We describe
the main concepts and techniques involved in object
modeling, including objects and classes, encapsulation
of attributes and operations, aggregation relationships,
polymorphism, and inheritance. We show how you can
develop class diagrams, using the UML notation, to pro-
vide a conceptual view of the system being modeled.
For a more thorough coverage of object modeling, see
George et al. (2007).

RepReSenting objeCtS anD
ClaSSeS
With the object-oriented approach, we model the world
in objects. Before applying this approach to a real-world
problem, we need to understand what an object really is.
Similar to an entity instance, an object has a well-defined
role in the application domain, and it has state (data), be-
havior, and identity characteristics. An object is a single
occurrence of a class, which we define below.

An object has a state and exhibits behavior through
operations that can examine or affect its state. The state of
an object encompasses its properties (attributes and rela-
tionships) and the values of those properties. Its behavior
represents how an object acts and reacts (Booch et al.,
2007). An object’s state is determined by its attribute values
and links to other objects. An object’s behavior depends on

its state and the operation being performed. An operation
is simply an action that one object performs upon another
in order to get a response. You can think of an operation
as a service provided by an object (supplier) to its clients.
A client sends a message to a supplier, which delivers the
desired service by executing the corresponding operation.

Consider the example of a student, Mary Jones,
represented as an object. The state of this object is charac-
terized by its attributes (name, date of birth, year, address,
and phone number) and the values these attributes
 currently have; for example, name is “Mary Jones,” year
is “junior,” and so on. Its behavior is expressed through
operations such as calc-gpa, which is used to calculate a
student’s current grade point average. The Mary Jones
object, therefore, packages both its state and its behavior
together.

All objects have an identity; that is, no two objects are
the same. For example, if there are two Student instances
with the same name and date of birth (or even all attri-
butes), they are essentially two different objects. An ob-
ject maintains its own identity over its life. For example, if
Mary Jones gets married and changes her name, address,
and phone, she will still be represented by the same ob-
ject. This concept of an inherent identity is different from
the identifier concept we saw earlier for E-R modeling.

We use the term object class (or simply class) to refer
to a logical grouping of objects that have the same (or simi-
lar) attributes, relationships, and behaviors (methods) (just
as we used entity type and entity instance earlier in this

 ChaPter 8 structuring system DAtA requirements 291

chapter). In our example, therefore, Mary Jones is an object instance, whereas Student
is an object class (as Student was an entity type in E-R diagramming).

Classes can be depicted graphically in a class diagram, as shown in Figure 8-26.
A class diagram shows the static structure of an object-oriented model: the object
classes, their internal structure, and the relationships in which they participate. In
UML, a class is represented by a rectangle with three compartments separated by
horizontal lines. The class name appears in the top compartment, the list of attri-
butes in the middle compartment, and the list of operations in the bottom compart-
ment of the rectangle. The diagram in Figure 8-26 shows two classes, Student and
Course, along with their attributes and operations.

The Student class is a group of Student objects that share a common structure
and a common behavior. Each object knows to which class it belongs; for example,
the Mary Jones object knows that it belongs to the Student class. Objects belonging
to the same class may also participate in similar relationships with other objects; for
example, all students register for courses and, therefore, the Student class can par-
ticipate in a relationship called “registers-for” with another class called Course (see
the section Representing Associations).

An operation, such as calc-gpa in Student (see Figure 8-26), is a function or a
service that is provided by all the instances of a class to invoke behavior in an object
by passing a message. It is only through such operations that other objects can ac-
cess or manipulate the information stored in an object. The operations, therefore,
provide an external interface to a class; the interface presents the outside view of the
class without showing its internal structure or how its operations are implemented.
This technique of hiding the internal implementation details of an object from its
external view is known as encapsulation, or information hiding (Booch et al., 2007;
Rumbaugh et al., 1991). So while we provide the abstraction of the behavior com-
mon to all instances of a class in its interface, we encapsulate within the class its struc-
ture and the secrets of the desired behavior.

typeS of opeRationS
Operations can be classified into three types, depending on the kind of service
requested by clients: (1) constructor, (2) query, and (3) update (Bell, 2004). A
 constructor operation creates a new instance of a class. For example, you can have an
operation called create-student within Student that creates a new student and initial-
izes its state. Such constructor operations are available to all classes and, therefore,
are not explicitly shown in the class diagram.

A query operation is an operation that does not have any side effects; it ac-
cesses the state of an object but does not alter the state (Fowler, 2003; Rumbaugh
et al., 1991). For example, the Student class can have an operation called get-year
(not shown) that simply retrieves the year (freshman, sophomore, junior, or senior)
of the Student object specified in the query. Note that there is no need to show
explicitly a query such as get-year in the class diagram because it retrieves the value

Class diagram
Shows the static structure of an object-
oriented model: the object classes, their
internal structure, and the relationships in
which they participate.

Operation
A function or a service that is provided by
all the instances of a class.

encapsulation
The technique of hiding the internal
implementation details of an object from its
external view.

Constructor operation
An operation that creates a new instance
of a class.

Query operation
An operation that accesses the state of an
object but does not alter the state.

name
dateOfBirth
year
address
phone

calc-age ()
calc-gpa ()
register-for (course)

Student

crse-code
crse-title
credit-hrs

enrollment ()

CourseClass
name

List of
attributes

List of
operations

Figure 8-26
UML class diagram showing two classes

State
Encompasses an object’s properties
(attributes and relationships) and the values
of those properties.

Object
An entity that has a well-defined role in
the application domain, and it has state,
behavior, and identity characteristics.

Behavior
Represents how an object acts and reacts.

Object class
A logical grouping of objects that have the
same (or similar) attributes, relationships,
and behaviors; also called class.

292 Part III AnAlysis

of an independent base attribute. Consider, however, the calc-age operation within
Student. This is also a query operation because it does not have any side effects. Note
that the only argument for this query is the target Student object. Such a query can
be represented as a derived attribute (Rumbaugh et al., 1991); for example, we can
represent “age” as a derived attribute of Student. Because the target object is always
an implicit argument of an operation, there is no need to show it explicitly in the
operation declaration.

An update operation has side effects; it alters the state of an object. For exam-
ple, consider an operation of Student called promote-student (not shown). The op-
eration promotes a student to a new year, say, from junior to senior, thereby changing
the Student object’s state (value of the year attribute). Another example of an update
operation is register-for(course), which, when invoked, has the effect of establishing
a connection from a Student object to a specific Course object. Note that, in addition
to having the target Student object as an implicit argument, the operation has an ex-
plicit argument called “course” that specifies the course for which the student wants
to register. Explicit arguments are shown within parentheses.

A class-scope operation is an operation that applies to a class rather than an
object instance. For example, avg-gpa for the Student class (not shown with the other
operations for this class in Figure 8-26) calculates the average GPA across all students
(the operation name is underlined to indicate that it is a scope operation).

RepReSenting aSSoCiationS
Parallel to the definition of a relationship for the E-R model, an association is a
relationship among instances of object classes. As in the E-R model, the degree of an
association relationship may be one (unary), two (binary), three (ternary), or higher
(n-ary). In Figure 8-27, we illustrate how the object-oriented model can be used to
represent association relationships of different degrees. An association is shown as
a solid line between the participating classes. The name given to the end of an
association where it connects to a class is called an association role (Bell, 2004). Each
association has two or more roles. A role may be explicitly named with a label near
the end of an association (see the “manager” role in Figure 8-27). The role name in-
dicates the role played by the class attached to the end near which the name appears.
Use of role names is optional. You can specify role names in place of or in addition to
an association name. You may show the direction of an association explicitly by using
a solid triangle next to the association name.

Figure 8-27 shows two unary relationships, Is-married-to and Manages. At one
end of the Manages relationship, we have named the role as “manager,” implying
that an employee can play the role of a manager. We have not named the other roles,
but we have named the associations. When the role name does not appear, you may
think of the role name as being that of the class attached to that end (Fowler, 2003).
For example, you may call the role for the right end of the Is-assigned relationship in
Figure 8-27 “Parking Place.”

Each role has a multiplicity, which indicates how many objects participate in
a given association relationship. For example, a multiplicity of 2..5 denotes that a
minimum of two and a maximum of five objects can participate in a given relation-
ship. Multiplicities, therefore, are nothing but cardinality constraints, which you saw
in E-R diagrams. In addition to integer values, the upper bound of a multiplicity can
be an * (asterisk), which denotes an infinite upper bound. If a single integer value is
specified, it means that the range includes only that value.

The multiplicities for both roles in the Is-married-to relationship in Figure 8-27
are 0..1, indicating that a person may be single or married to one person. The multi-
plicity for the manager role in the Manages relationship is 0..1 and that for the other
role is 0..*, implying that an employee may be managed by only one manager, but a
manager may manage zero to many employees.

update operation
An operation that alters the state of an
object.

Class-scope operation
An operation that applies to a class rather
than an object instance.

Association
A named relationship between or among
object classes.

Association role
The end of an association where it
connects to a class.

Multiplicity
A specification that indicates how many
objects participate in a given relationship.

 ChaPter 8 structuring system DAtA requirements 293

In Figure 8-27, we show a ternary relationship called Supplies among Vendor,
Part, and Warehouse. As is preferred in an E-R diagram, we represent a ternary rela-
tionship using a class and place the name of the relationship there.

The class diagram in Figure 8-28 shows several binary associations. The diagram
shows that a student may have an adviser, while a faculty member may advise up to a
maximum of 10 students. Also, while a course may have multiple offerings, a given
course offering is scheduled for exactly one course. UML allows you to specify nu-
merically any multiplicity. For example, the diagram shows that a course offering may
be taught by one or two instructors (1,2). You can specify a single number (e.g., 2 for
the members of a bridge team), a range (e.g., 11–14 for the players of a soccer team
who participated in a particular game), or a discrete set of numbers and ranges (e.g.,
3, 5, 7 for the number of committee members and 20–32, 35–40 for the workload in
hours per week of a company’s employees).

Figure 8-28 also shows that a faculty member plays the role of an instructor, as
well as that of an adviser. While the adviser role identifies the Faculty object associated

Is-married-to

Is-assigned

0..1

0..1

0..1 0..1

Person

One-to-one

One-to-many

Many-to-many

Manages

*

0..1 manager

Employee

Contains1

Registers-for*

Employee

Product
Line

Student

Parking
Place

Product

Course

PART

WAREHOUSE

1

*

1 1
SUPPLIESVENDOR

1..*

*

Figure 8-27
Examples of association relationships of
different degrees

Registers-for

Teaches

Scheduled-for

0..10

0..1

advisees

adviser

instructor 1,2

Faculty

*
1

Student
Course
O�ering Course

** *
Figure 8-28
Example of binary associations

294 Part III AnAlysis

with a Student object, the advisee’s role identifies the set of Student objects associ-
ated with a Faculty object. We could have named the association Advises; in this case,
however, the role names are sufficiently meaningful to convey the semantics of the
relationship.

RepReSenting aSSoCiatiVe ClaSSeS
When an association itself has attributes or operations of its own or when it
participates in relationships with other classes, it is useful to model the association
as an associative class (just as we used an associative entity in E-R diagramming).
For example, in Figure 8-29, the attributes term and grade really belong to the
many-to-many association between Student and Course. The grade of a student for
a course cannot be determined unless both the student and the course are known.
Similarly, to find the term(s) in which the student took the course, both student and
course must be known. The check Eligibility operation, which determines if a stu-
dent is eligible to register for a given course, also belongs to the association, rather
than to any of the two participating classes. We have also captured the fact that, for
some course registrations, a computer account is issued to a student. For these rea-
sons, we model Registration as an association class, with its own set of features and an
association with another class (Computer Account). Similarly, for the unary Tutors
association, beginDate and numberOfHrs (number of hours tutored) really belong
to the association, and therefore they appear in a separate association class.

You have the option of showing the name of an association class on the associa-
tion path, on the class symbol, or both. When an association has only attributes but
does not have any operations or does not participate in other associations, the rec-
ommended option is to show the name on the association path, but omit it from the
association class symbol, to emphasize its “association nature” (Bell, 2004). That is
how we have shown the Tutors association. On the other hand, we have displayed the
name of the Registration association—which has two attributes and one operation
of its own, as well as an association called Issues with Computer Account—within the
class rectangle to emphasize its “class nature.”

Figure 8-30 shows a ternary relationship among the Student, Software, and
Course classes. It captures the fact that students use various software tools for dif-
ferent courses. For example, we could store the information that Mary Jones used
Microsoft Access and Oracle for the Database Management course, Rational Rose
and Visual C++ for the Object-Oriented Modeling course, and Jess for the Expert
Systems Course. Now suppose we want to estimate the number of hours per week
Mary will spend using Oracle for the Database Management course. This process
really belongs to the ternary association, and not to any of the individual classes.
Hence, we have created an associative class called Log, within which we have de-
clared an operation called estimate Usage. In addition to this operation, we have
specified three attributes that belong to the association: beginDate, expiryDate, and

Associative class
An association that has attributes or
operations of its own or that participates in
relationships with other classes.

beginDate
numberOfHrs

acctID
password
serverSpace

Computer Account

Student

pupil

tutor

Tutors

Issues

Course

* 0..1
term
grade

checkEligibility ()

Registration

*

*

* *Figure 8-29
Class diagram showing associative
classes

 ChaPter 8 structuring system DAtA requirements 295

hoursLogged. Alternatively, the associative class Log can be placed at the intersec-
tion of the association lines, as shown in Figure 8-16; in this case, multiplicities are
required on all the lines next to the Log class.

RepReSenting SteReotypeS foR attRibuteS
In E-R diagrams, we designated attributes as being primary keys, and we designated
them as multivalued, derived, and other types. This can also be done in a class dia-
gram by placing a stereotype next to the attribute. Stereotypes simply extend the
common UML vocabulary. For instance, in Figure 8-31, age is a derived attribute of
Student because it can be calculated from the date of birth and the current date.
Because the calculation is a constraint on the object class, the calculation is shown on
this diagram within braces near the Student object class. Also, the crseCode is a pri-
mary key for the Course class. Other properties of attributes can be similarly shown.

RepReSenting geneRalization
In the object-oriented approach, you can abstract the common features (attributes
and operations) among multiple classes, as well as the relationships they participate
in, into a more general class, as we saw with supertype/subtype relationships in E-R
diagramming. The classes that are generalized are called subclasses, and the class
they are generalized into is called a superclass.

Consider the example shown in Figure 8-32, which is the class diagramming
equivalent of the E-R diagram in Figure 8-18. There are two types of patients: outpa-
tients and resident patients. The features that are shared by all patients—patientId,
patientName, and admitDate—are stored in the Patient superclass, whereas the fea-
tures that are peculiar to a particular patient type are stored in the corresponding
subclass (e.g., checkbackDate of Outpatient). A generalization path is shown as a

tool

user forum

Software

Student

Log

Course* *

*

beginDate
expiryDate
hoursLogged

estimateUsage ()

Figure 8-30
Ternary relationship with association
classes

Student

name
ssn
dateOfBirth
<<Derived>>/age

Course

<<PK>>crseCode
crseTitle
creditHrs

Course
O�ering

term
section

Registers-for Scheduled-for

registrants

{age=currentDate-dateOfBirth}

* * * 1
Figure 8-31
Stereotypes

296 Part III AnAlysis

solid line from the subclass to the superclass, with an arrow at the end, and point-
ing toward the superclass. We also specify that this generalization is dynamic, mean-
ing that an object may change subtypes. This generalization is also complete (there
are no other subclasses) and disjoint (subclasses are not overlapping). Although not
using exactly the same terminology, the same generalization business rules that we
saw with E-R diagramming can be represented.

You can indicate the basis of a generalization by specifying a discriminator next
to the path. A discriminator shows which property of an object class is being ab-
stracted by a particular generalization relationship. You can discriminate on only one
property at a time. For example, in Figure 8-32, we discriminate the Patient class on
the basis of residency.

An instance of a subclass is also an instance of its superclass. For example, in
Figure 8-32, an Outpatient instance is also a Patient instance. For that reason, a gen-
eralization is also referred to as an Is-a relationship. Also, a subclass inherits all the
features from its superclass. For example, in Figure 8-32, in addition to its own special
feature—checkbackDate—the Outpatient subclass inherits patientId, patientName,
admitDate, and any operations (not shown) from Patient.

Notice that in Figure 8-32, the Patient class is in italics, implying that it is an ab-
stract class. An abstract class is a class that has no direct instances but whose descen-
dants may have direct instances (Booch et al., 2007; Rumbaugh et al., 1991). (Note:
You can also write the word abstract within braces just below the class name. This is
especially useful when you generate a class diagram by hand.) A class that can have
direct instances (e.g., Outpatient or Resident Patient) is called a concrete class. In
this example, therefore, Outpatient and Resident Patient can have direct instances,
but Patient cannot have any direct instances of its own.

The Patient abstract class participates in a relationship called Treated-by with
Physician, implying that all patients—outpatients and resident patients alike—are
treated by physicians. In addition to this inherited relationship, the Resident Patient
class has its own special relationship called Assigned-to with Bed, implying that only
resident patients may be assigned to beds. So, in addition to refining the attributes
and operations of a class, a subclass can also specialize the relationships in which it
participates.

In Figure 8-32, the words complete and disjoint have been placed within braces
next to the generalization. They indicate semantic constraints among the subclasses
(complete corresponds to total specialization in the Extended Entity Relationship
[EER] notation [see Hoffer et al., 2016], whereas incomplete corresponds to partial
specialization). Any of the following UML keywords may be used:

•	 Overlapping. A descendant may be descended from more than one of the sub-
classes (same as the overlapping rule in EER diagramming).

Abstract class
A class that has no direct instance, but
whose descendants may have direct
instances.

Concrete class
A class that can have direct instances.

Patient
{abstract} Treated-by

patientId
patientName
admitDate

* 1 Physician

physicianId

{complete, disjoint}

residency
<<dynamic>>

Assigned-to0..1 1 Bed

bedNumber

Outpatient

checkbackDate dateDischarged

Resident Patient

Figure 8-32
Example of generalizations,
inheritance, and constraints

 ChaPter 8 structuring system DAtA requirements 297

•	 Disjoint. A descendant may not be descended from more than one of the
subclasses (same as the disjoint rule in EER diagramming).

•	 Complete. All subclasses have been specified (whether or not shown). No
additional subclasses are expected (same as the total specialization rule in EER
diagramming).

•	 Incomplete. Some subclasses have been specified, but the list is known to be in-
complete. There are additional subclasses that are not yet in the model (same as
the partial specialization rule in EER diagramming).

In Figure 8-33, we represent both graduate and undergraduate students in a
model developed for student billing. The calc-tuition operation computes the tuition
a student has to pay; this sum depends on the tuition per credit hour (tuitionPer-
Cred), the courses taken, and the number of credit hours (creditHrs) for each of
those courses. The tuition per credit hour, in turn, depends on whether the stu-
dent is a graduate or an undergraduate student. In this example, that amount is
$300 for all graduate students and $250 for all undergraduate students. To denote
this, we have underlined the tuitionPerCred attribute in each of the two subclasses,
along with its value. Such an attribute is called a class-scope attribute, which speci-
fies a value common to an entire class, rather than a specific value for an instance
(Rumbaugh et al., 1991).

You can specify an initial default value of an attribute using an equals sign (=)
after the attribute name (see creditHrs for the Course class in Figure 8-33). The dif-
ference between an initial value specification and a class-scope attribute is that the
former allows the possibility of different attribute values for the instances of a class,
and the latter forces all the instances to share a common value.

In addition to specifying the multiplicity of an association role, you can also
specify other properties, for example, if the objects playing the role are ordered or
not. In the figure, we placed the keyword constraint “{ordered}” next to the Course
Offering end of the Scheduled-for relationship to denote the fact that the offerings

Class-scope attribute
An attribute of a class that specifies a value
common to an entire class, rather than a
specific value for an instance.

name
ssn
dateOfBirth
address
phone

register-for (class)
calc-tuition ()

Student
{abstract}

term
section

enrollment ()

Course
O�ering

crseCode
crseTitle
creditHrs=3

enrollment ()

Course

Registers-for Scheduled-for
* * * 1

{ordered}

undergradMajor
greScore
gmatScore
tuitionPerCred=300

calc-tuition ()

Graduate
Student

satScore
actScore
tuitionPerCred=250

calc-tuition ()

Undergrad
Student

Figure 8-33
Polymorphism, abstract
operation, class-scope attribute,
and ordering

298 Part III AnAlysis

for a given course are ordered into a list—say, according to term and section. The
default constraint on a role is “{unordered}.”

The Graduate Student subclass specializes the abstract Student class by adding
four attributes—undergradMajor, greScore, gmatScore, and tuitionPerCred—and by
refining the inherited calc-tuition operation. Notice that the operation is shown in
italics within the Student class, indicating that it is an abstract operation. An abstract
 operation defines the form or protocol of the operation, but not its implementation.
In this example, the Student class defines the protocol of the calc-tuition operation
without providing the corresponding method (the actual implementation of the oper-
ation). The protocol includes the number and types of the arguments, the result type,
and the intended semantics of the operation. The two concrete subclasses, Graduate
Student and Undergrad Student, supply their own implementations of the calc-tuition
operation. Note that because these classes are concrete, they cannot store abstract
operations.

It is important to note that, although the Graduate Student and Undergraduate
Student classes share the same calc-tuition operation, they might implement
the operation in quite different ways. For example, the method that implements the
operation for a graduate student might add a special graduate fee for each course
the student takes. The fact that the same operation may apply to two or more classes
in different ways is known as polymorphism, a key concept in object-oriented sys-
tems (Booch et al., 2007; Rumbaugh et al., 1991). The enrollment operation in
Figure 8-33 illustrates another example of polymorphism. Whereas the enrollment
operation within Course Offering computes the enrollment for a particular course
offering or section, an operation with the same name within Course computes the
combined enrollment for all sections of a given course.

RepReSenting aggRegation
An aggregation expresses a part-of relationship between a component object and
an aggregate object. It is a stronger form of association relationship (with the
added “part-of” semantics) and is represented with a hollow diamond at the ag-
gregate end.

Figure 8-34 shows an aggregation structure of a university. Notice that the dia-
mond at one end of the relationship between Building and Room is solid, not hollow.
A solid diamond represents a stronger form of aggregation known as composition. In
composition, a part object belongs to only one whole object; for example, a room is
part of only one building. Therefore, the multiplicity on the aggregate end may not
exceed one. Parts may be created after the creation of the whole object; for example,

Abstract operation
Defines the form or protocol of the
operation, but not its implementation.

Method
The implementation of an operation.

Polymorphism
The same operation may apply to two or
more classes in different ways.

Aggregation
A part-of relationship between a
component object and an aggregate
object.

Composition
A part-of relationship in which parts belong
to only one whole object, and the parts live
and die with the whole object.

1

1

1 1

*

1

20..*

1..* 1..*

Administrative
Unit

Department

School
Housed in

Consists of
Part of

Building

Room

University

Figure 8-34
Aggregation and composition

 ChaPter 8 structuring system DAtA requirements 299

Invoices

InvoicesPayments Orders

Counts

Amounts
Used

Amounts
Added

Inventory
Levels

Inventory
Levels

Minimum Order
Quantities

INVENTORYD1

1.0

Update
Inventory

Added

3.0

Generate
Orders

4.0

Generate
Payments

2.0

Update
Inventory

Used

SUPPLIER STOCK ON HAND

Query
Request

Query Result

5.0

Query
Inventory

Levels

MANAGER

Figure 8-35
Level-0 data flow diagram for Hoosier
Burger’s new logical inventory control
system

rooms may be added to an existing building. However, once part of a composition
is created, it lives and dies with the whole; deletion of the aggregate object cascades
to its components. If a building is demolished, for example, so are all of its rooms.
However, it is possible to delete a part before its aggregate dies, just as it is possible to
demolish a room without bringing down a building.

an exaMple of ConCeptual Data MoDeling
at hooSieR buRgeR
Chapter 7 structured the process and logic requirements for a new inventory
 control system for Hoosier Burger. The DFD and decision table (repeated here as
Figures 8-35 and 8-36) describe requirements for this new system. The purpose of
this system is to monitor and report changes in raw material inventory levels and
to issue material orders and payments to suppliers. Thus, the central data entity
for this system will be an INVENTORY ITEM, corresponding to data store D1 in
Figure 8-22.

Changes in inventory levels are due to two types of transactions: receipt of new
items from suppliers and consumption of items from sales of products. Inventory is
added upon receipt of new raw materials, for which Hoosier Burger receives a sup-
plier INVOICE (see Process 1.0 in Figure 8-35). Each INVOICE indicates that the sup-
plier has sent a specific quantity of one or more INVOICE_ITEMs, which correspond
to Hoosier’s INVENTORY ITEMs. Inventory is used when customers order and pay
for PRODUCTs. That is, Hoosier makes a SALE for one or more ITEM SALEs, each
of which corresponds to a food PRODUCT. Because the real-time customer order
processing system is separate from the inventory control system, a source, STOCK
ON HAND in Figure 8-35, represents how data flow from the order processing to
the inventory control system. Finally, because food PRODUCTs are made up of vari-
ous INVENTORY ITEMs (and vice versa), Hoosier maintains a RECIPE to indicate
how much of each INVENTORY ITEM goes into making one PRODUCT. From this
discussion, we have identified the data entities required in a data model for the new
Hoosier Burger inventory control system: INVENTORY ITEM, INVOICE, INVOICE

HOOSIER
BURGER

300 Part III AnAlysis

ITEM, PRODUCT, SALE, ITEM SALE, and RECIPE. To complete the data model, we
must determine a necessary relationship between these entities as well as attributes for
each entity.

The wording in the previous description tells us much of what we need to know
to determine relationships:

•	 An INVOICE includes one or more INVOICE ITEMs, each of which corre-
sponds to an INVENTORY ITEM. Obviously, an INVOICE ITEM cannot exist
without an associated INVOICE, and over time there will be zero to many
receipts, or INVOICE ITEMs, for an INVENTORY ITEM.

•	 Each PRODUCT has a RECIPE of INVENTORY ITEMs. Thus, RECIPE is an asso-
ciative entity supporting a bill-of-materials type relationship between PRODUCT
and INVENTORY ITEM.

•	 A SALE indicates that Hoosier sells one or more ITEM SALEs, each of which cor-
responds to a PRODUCT. An ITEM SALE cannot exist without an associated
SALE, and over time there will be zero to many ITEM SALEs for a PRODUCT.

Figure 8-37 shows a class diagram with the classes and relationships described
above. In some cases, we include role names (e.g., a Sale plays the role of a transac-
tion in the Sells association). RECIPE is shown as an association class rather than as
simply a relationship between PRODUCT and INVENTORY ITEM because it is likely
to have attributes and behaviors. Now that we understand the data classes and rela-
tionships, we must decide which data element and behaviors are associated with the
data classes in this diagram. We have chosen to develop the conceptual data model
using UML notation rather than E-R notation, but you should be able to easily trans-
late the UML class diagrams into E-R diagrams (which is left as an exercise at the end
of this section).

You may wonder at this point why only the INVENTORY data store is shown in
Figure 8-35 when there are seven data classes on the class diagram. The INVENTORY
data store corresponds to the INVENTORY ITEM data class in Figure 8-37. The
other data classes are hidden inside other processes for which we have not shown
lower-level diagrams. In actual requirements structuring steps, you would have to
match all data classes with data stores: each data store represents some subset of a
class or an E-R diagram, and each data class or entity is included in one or more data
stores. Ideally, each data store on a primitive DFD will be an individual data class or
entity.

To determine data elements for a data class, we investigate data flows in and
out of data stores that correspond to the data class and supplement this with a study
of decision logic and temporal logic that uses or changes data about the data class.

Conditions/ Rules
Courses of Action

1 2 3 4 5 6 7

Type of item P P P P P P N

Time of week D W D W D W –

Season of year A A S S H H –

Standing daily order X X X

Standing weekend order X X X

Minimum order quantity X

Holiday reduction X X

Summer reduction XX

Figure 8-36
Reduced decision table for Hoosier
Burger’s inventory reordering

 ChaPter 8 structuring system DAtA requirements 301

Six data flows are associated with the INVENTORY data store in Figure 8-35. The
description of each data flow in the project dictionary or CASE repository would
include the data flow’s composition, which then tells us what data are flowing in or
out of the data store. For example, the Amounts Used data flow coming from Process
2.0 indicates how much to decrement an attribute Quantity_in_Stock due to use of
the INVENTORY ITEM to fulfill a customer sale. Thus, the Amounts Used data flow
implies that Process 2.0 will first read the relevant INVENTORY ITEM record, then
update its Quantity_in_Stock attribute, and finally store the updated value in the
record. Structured English for Process 2.0 would depict this logic. Each data flow
would be analyzed similarly (space does not permit us to show the analysis for each
data flow).

The analysis of data flows for data elements is supplemented by a study of de-
cision logic. For example, consider the decision table in Figure 8-36. One condi-
tion used to determine the process of reordering an INVENTORY ITEM involves the
Type_of_Item. Thus, Process 3.0 in Figure 8-35 (to which this decision table relates)
needs to know this characteristic of each INVENTORY ITEM, so this identifies an-
other attribute of this data class.

An analysis of the DFD and decision table also suggests possible operations
for each class. For example, the Inventory Item class will need operations to up-
date quantity on hand, generate replenishment orders, and receive inventory
counts.

After considering all data flows in and out of data stores related to data classes,
plus all decision and temporal logic related to inventory control, we derive the full
class diagram, with attributes and operations, shown in Figure 8-38.

Sale

transaction1

line item1..*

Sells

Item Sale

0..nline item

1item sold

Orders

Product

Invoice

1

1..*

Includes

Invoice Item

*

1

Receives

Inventory Item

Recipe

1..* 1..*

Figure 8-37
Preliminary class diagram for Hoosier
Burger’s inventory control system

302 Part III AnAlysis

Summary

We have presented the process and basic notation used
to model the data requirements of an information system
using class diagramming. A data model shows the rela-
tively permanent business rules that define the nature of
an organization. Rules define characteristics of data such
as the unique characteristics of data classes and the re-
lationships between different data classes. A data model
shows major categories of data, called classes for the UML
notation; the associations or relationships between classes;
and the attributes (only classes have attributes on a class

diagram). A special type of class called an association class is
often necessary to represent a many-to-many relationship
between classes. Classes are distinct from objects. Each
object is distinguished from other instances of the same
type by an identifier attribute (or attributes). Relationships
are the glue that holds a data model together. The mini-
mum and maximum number of objects that participate
in a relationship represent important rules about the
nature of the organization, as captured during require-
ments determination.

Key TermS

 8.74 Abstract class
 8.75 Abstract operation
 8.76 Aggregation

 8.77 Association
 8.78 Association role
 8.79 Associative class

 8.80 Behavior
 8.81 Class diagram
 8.82 Class-scope attribute

Sale

<<PK>> receiptNumber
saleDate

transaction1

line item1..*

Sells

Item Sale

quantitySold

0..*line item

1item sold

Orders

Product

<<PK>> productId
productDescription

Invoice

1

1..*

Includes

Invoice Item

*

1
Receives

Inventory Item

<<PK>> vendorId
<<PK>> invoiceNumber
invoiceDate
Paid?

generalPayment()

quantityAdded

<<PK>> itemNumber
itemDescription
quantityInStock
typeOfItem
minimumOrderQuantity

updateQuantity()
generateOrder()
receiveCount()

Recipe

quantityUsed

1..* 1..*

Figure 8-38
Final class diagram for Hoosier Burger’s
inventory control system

 ChaPter 8 structuring system DAtA requirements 303

revIew QueSTIonS
 8.97 Give an example of aggregation. Your example should

include at least one aggregate object and three component
objects. Specify the multiplicities at each end of all the
aggregation relationships.

 8.98 Contrast the following terms:

a. Object class; object
b. Abstract class; concrete class

ProblemS and exercISeS
 8.99 Draw a class diagram, showing the relevant classes, at-

tributes, operations, and relationships for each of the
following situations (if you believe that you need to
make additional assumptions, clearly state them for each
situation):

a. A company has a number of employees. The attributes
of Employee include employeeID (primary key), name,
address, and birth date. The company also has several
projects. Attributes of Project include projectName and
startDate. Each employee may be assigned to one or

more projects, or may not be assigned to a project. A
project must have at least one employee assigned, and it
may have any number of employees assigned. An employ-
ee’s billing rate may vary by project, and the company
wishes to record the applicable billing rate for each em-
ployee when assigned to a particular project. At the end
of each month, the company mails a check to each em-
ployee who has worked on a project during that month.
The check amount is based on the billing rate and the
hours logged for each project assigned to the employee.

 8.83 Class-scope operation
 8.84 Composition
 8.85 Concrete class
 8.86 Constructor operation
 8.87 Encapsulation

 8.88 Method
 8.89 Multiplicity
 8.90 Object
 8.91 Object (class)
 8.92 Operation

 8.93 Polymorphism
 8.94 Query operation
 8.95 State
 8.96 Update operation

Match each of the key terms above with the definition that best
fits it.

____ A part object that belongs to only one whole object and
that lives and dies with the whole.

____ A part-of relationship between a component object and an
aggregate object.

____ The same operation may apply to two or more classes in
different ways.

____ The implementation of an operation.

____ Defines the form or protocol of the operation, but not its
implementation.

____ An attribute of a class that specifies a value common to an
entire class, rather than a specific value for an instance.

____ A class that can have direct instances.

____ A class that has no direct instances but whose descendants
may have direct instances.

____ An association that has attributes or operations of its own
or that participates in relationships with other classes.

____ Indicates how many objects participate in a given
relationship.

____ The end of an association where it connects to a class.

____ A relationship among instances of object classes.

____ An operation that applies to a class rather than an object
instance.

____ An operation that alters the state of an object.

____ An operation that accesses the state of an object but does
not alter the state.

____ An operation that creates a new instance of a class.

____ The technique of hiding the internal implementation
details of an object from its external view.

____ A function or a service that is provided by all the instances
of a class.

____ A diagram that shows the static structure of an object-
oriented model.

____ A logical grouping of objects that have the same (or simi-
lar) attributes and behaviors (methods).

____ Represents how an object acts and reacts.

____ Encompasses an object’s properties (attributes and rela-
tionships) and the values those properties have.

____ An entity that has a well-defined role in the applica-
tion domain and has state, behavior, and identity
characteristics.

304 Part III AnAlysis

b. A university has a large number of courses in its catalog.
Attributes of Course include courseNumber (primary
key), courseName, and units. Each course may have
one or more different courses as prerequisites, or a
course may have no prerequisites. Similarly, a particular
course may be a prerequisite for any number of courses,
or it may not be a prerequisite for any other course.
The university adds or drops a prerequisite for a course
only when the director for the course makes a formal
request to that effect.

c. A laboratory has several chemists who work on one or
more projects. Chemists also may use certain kinds of
equipment on each project. Attributes of Chemist in-
clude name and phoneNo. Attributes of Project include
projectName and startDate. Attributes of Equipment
include serialNo and cost. The organization wishes to
record assignDate—that is, the date when a given equip-
ment item was assigned to a particular chemist working
on a specified project—as well as total Hours, that is, the
total number of hours the chemist has used the equip-
ment for the project. The organization also wants to
track the usage of each type of equipment by a chemist.
It does so by computing the average number of hours
the chemist has used that equipment on all assigned
projects. A chemist must be assigned to at least one
project and one equipment item. A given equipment
item need not be assigned, and a given project need not
be assigned either a chemist or an equipment item.

d. A college course may have one or more scheduled sec-
tions, or it may not have a scheduled section. Attributes
of Course include courseID, courseName, and units. At-
tributes of Section include sectionNumber and semes-
ter. The value of sectionNumber is an integer (such as
1 or 2) that distinguishes one section from another for
the same course, but does not uniquely identify a sec-
tion. There is an operation called findNumSections that
finds the number of sections offered for a given course
in a given semester.

e. A hospital has a large number of registered physicians.
Attributes of Physician include physicianID (primary
key) and specialty. Patients are admitted to the hospital
by physicians. Attributes of Patient include patientID

(primary key) and patientName. Any patient who is
admitted must have exactly one admitting physician.
A physician may optionally admit any number of pa-
tients. Once admitted, a given patient must be treated
by at least one physician. A particular physician may
treat any number of patients, or he or she may not
treat any patients. Whenever a patient is treated by a
physician, the hospital wishes to record the details of
the treatment by including the date, time, and results
of the treatment.

 8.100 A student, whose attributes include studentName, Ad-
dress, phone, and age, may engage in multiple campus-
based activities. The university keeps track of the number
of years a given student has participated in a specific activ-
ity and, at the end of each academic year, mails an activity
report to the student showing his or her participation in
various activities. Draw a class diagram for this situation.

 8.101 A bank has three types of accounts: checking, savings,
and loan. Following are the attributes for each type of
account:

CHECKING: Acct_No, Date_Opened, Balance, Service_
Charge

SAVINGS: Acct_No, Date_Opened, Balance, Interest_Rate

LOAN: Acct_No, Date_Opened, Balance, Interest_Rate,
Payment

Assume that each bank account must be a member of
 exactly one of these subtypes. At the end of each month,
the bank computes the balance in each account and
mails a statement to the customer holding that account.
The balance computation depends on the type of the
 account. For example, a checking account balance may
reflect a service charge, whereas a savings account bal-
ance may include an interest amount. Draw a class dia-
gram to represent the situation. Your diagram should
include an abstract class as well as an abstract operation
for computing balance.

 8.102 Convert the class diagram in Figure 8-37 to the equiva-
lent E-R diagram. Compare the two diagrams. Describe
what different system specifications are shown in each
diagram.

reFerenceS
Bell, D. 2004. “UML Basics: The Class Diagram.” IBM developer-

Works, available at http://www.ibm.com/developerworks/
rational/library/content/RationalEdge/sep04/bell/index.
html. Accessed March 14, 2015.

Booch, G., R. A. Maksimchuk, M. W. Engle, B. J. Young, J. Conallen,
and K.A. Houston. 2007. Object-Oriented Analysis and Design
with Applications, 3rd ed. Reading, MA: Addison-Wesley.

Chonoles, M. J., and J. A. Schardt. 2003. UML2 for Dummies.
 Indianapolis, IN: Wiley Publishing Inc.

Fowler, M. 2003. UML Distilled: A Brief Guide to the Object Modeling
Language, 3rd ed. Reading, MA: Addison-Wesley.

George, J., D. Batra, J. Valacich, and J. Hoffer. 2007. Object-
Oriented Systems Analysis and Design, 2nd ed. Upper Saddle
River, NJ: Prentice Hall.

Hoffer, J. A., V. Ramesh, and H. Topi. 2016. Modern Database
Management, 12th ed. Upper Saddle River, NJ: Prentice
Hall.

Rumbaugh, J., M. Blaha, W. Premerlani, F. Eddy, and
W. Lorensen. 1991. Object-Oriented Modeling and Design.
Upper Saddle River, NJ: Prentice Hall.

http://www.ibm.com/developerworks/rational/library/content/RationalEdge/sep04/bell/index.html
http://www.ibm.com/developerworks/rational/library/content/RationalEdge/sep04/bell/index.html
http://www.ibm.com/developerworks/rational/library/content/RationalEdge/sep04/bell/index.html

 ChaPter 8 structuring system DAtA requirements 305

PetrIe eLeCtrOnICs

Chapter 8: Structuring System Data
Requirements

Jim Watanabe, manager of the “No Customer Escapes”
project, and assistant director of IT for Petrie Electronics,
was sitting in the company cafeteria. He had just finished
his house salad and was about to go back to his office
when Stephanie Welch sat down at his table. Jim had met
Stephanie once, back when he started work at Petrie. He
remembered she worked for the database administrator.

“Hi, Jim, remember me?” she asked.
“Sure, Stephanie, how are you? How are things in data-

base land?”
“Can’t complain. Sanjay asked me to talk to you about

the database needs for your new customer loyalty sys-
tem.” Stephanie’s phone beeped. She pulled it out of her
oversize bag and looked at it. She started to text as she
continued to talk to Jim. “How far along are you on your
database requirements?”

That’s kind of rude, Jim thought. Oh well. “We are still
in the early stages. I can send you a very preliminary E-R
diagram we have (PE Figure 8-1), along with a description
of the major entities.”

“OK, that will help. I suspect that you won’t have too
many new entities to add to what’s already in the system,”
Stephanie responded, still looking at her phone and still
texting. She briefly looked up at Jim and smiled slightly
before going back to texting. “Just send the E-R to me,
and I’ll let you know if I have any questions.” She stood
up, still looking at her phone. “Gotta go,” she said, and she
walked away.

OK, Jim thought, I need to remember to send Stephanie
the preliminary E-R we have. I should probably send her
the entity descriptions too (PE Table 8-1), just in case. Jim

stood up, carried his tray over to the recycling area of the
cafeteria, and went back to his office.

When Jim got back to his office, Sanjay was waiting for
him.

“I’ve got more information on those alternatives we
talked about earlier,” Sanjay said. “I had one of my em-
ployees gather some data on how the alternatives might
satisfy our needs.” (See the descriptions of the alterna-
tives at the end of Chapter 6.) Sanjay handed Jim a short
report. “The matrix shows the requirements and con-
straints for each alternative and makes it relatively easy
to compare them.” (See PE Figure 8-2.)

“The matrix favors the XRA CRM system,” Jim said, after
looking over the report. “It looks like their proposal meets
our requirements the best, but the Nova group’s proposal
does the best job with the constraints.”

“Yes, but just barely,” Sanjay said. “There is only a five
point difference between XRA and Nova, so they are
pretty comparable when it comes to constraints. But I
think the XRA system has a pretty clear advantage in
meeting our requirements.”

“XRA seems to be pretty highly rated in your matrix in
terms of all of the requirements. You have them ranked
better than the other two proposals for implementation,
scalability, and vendor support,” Jim said. “The ‘5’ you
gave them for proven performance is one of the few ‘5’s
you have in your whole matrix.”

“That’s because they are one of the best companies in
the industry to work with,” Sanjay responded. “Their rep-
utation is stellar.”

“This looks really promising,” Jim said. “Let’s see if real-
ity matches what we have here. It’s time to put together the
formal request for proposal. I’ll get that work started today.
I hope that all three of these companies decide to bid.”

Promotion

Coupon Service

Customer Transaction

Product

Pe Figure 8-1
Initial E-R diagram for Petrie’s customer loyalty program

306 Part III AnAlysis

Case Questions

 8.103 Review the data flow diagrams you developed for questions
in the Petrie Electronics case at the end of Chapter 7 (or
diagrams given to you by your instructor). Study the data
flows and data stored on these diagrams and decide whether
you agree with the team’s conclusion that the only six entity
types needed are listed in the case and in PE Figure 8-1. If
you disagree, define additional entity types, explain why
they are necessary, and modify PE Figure 8-1 accordingly.

 8.104 Again, review the DFDs you developed for the Petrie Elec-
tronics case (or those given to you by your instructor). Use
these DFDs to identify the attributes of each of the six enti-
ties listed in this case plus any additional entities identified
in your answer to Case Question 8-103. Write an unam-
biguous definition for each attribute. Then, redraw PE
Figure 8-1 by placing the six (and additional) entities
in this case on the diagram along with their associated
attributes.

Pe Table 8-1 entity Descriptions for the preliminary e-R diagram for Petrie’s customer loyalty system
Entity Description

Coupon A coupon is a special promotion created specifically for an individual customer. A coupon is for a set dollar amount,
for example, $10. The customer may use it like cash or like a dollars-off promotion when purchasing products or
services. Coupons can only be created for an individual customer based on the points in his or her customer loyalty
account. For each dollar value of a coupon, a certain number of points must be redeemed. Coupons must be
accounted for when created and when redeemed.

Customer A customer is someone who buys products and/or services from Petrie Electronics. Customers include both online
customers and those who shop in Petrie’s brick-and-mortar stores.

Product An item made available for sale to a Petrie customer. For example, a product is a 40” Sony LCD HD television. Products
can be purchased online or in brick-and-mortar stores.

Promotion A promotion is a special incentive provided to a customer to entice the customer into buying a specific product or
service. For example, a promotion intended to sell Blu-ray discs may involve 2-for-1 coupons. Promotions are targeted
to all customers, or to subsets of customers, not just to individual customers.

Service A job performed by one of Petrie’s associates for a customer. For example, upgrading the memory in a computer by
installing new memory cards is a service that Petrie provides for a fee. Services may only be ordered and performed
in brick-and-mortar stores, not online.

Transaction A record that a particular product or service was sold to a specified customer on a particular date. A transaction
may involve more than one product or service, and it may involve more than one of a particular kind of product or
service. For example, one transaction may involve blank DVDs and pre-recorded DVDs, and the pre-recorded DVDs
may all be of the same movie. For members of the loyalty program, each transaction is worth a number of points,
depending on the dollar value of the transaction.

 Criteria Alt A: SBSI Alt B XRA Alt C Nova
Weight Rating Score Rating Score Rating Score

Requirements

E�ective customer incentives 15 5 75 4 60 4 60
Easy for customers to use 10 3 30 4 40 5 50
Proven performance 10 4 40 5 50 3 30
Easy to implement 5 3 15 4 20 3 15
Scalable 10 3 30 4 40 3 30
Vendor support 10 3 30 4 40 3 30

60 220 250 215

Constraints

Cost to buy 15 3 45 4 60 5 75
Cost to operate 10 3 30 4 40 4 40
Time to implement 5 3 15 3 15 3 15
Sta� to implement 10 3 30 4 40 3 30

40 120 155 160

TOTAL 100 340 405 375

Pe Figure 8-2
Evaluation matrix for customer loyalty proposals

 ChaPter 8 structuring system DAtA requirements 307

 8.105 Using your answer to Case Question 8.104, designate
which attribute or attributes form the identifier for each
entity type. Explain why you chose each identifier.

 8.106 Using your answer to Case Question 8.105, draw the
relationships between entity types needed by the system.
Remember, a relationship is needed only if the system
wants data about associated entity instances. Give a mean-
ingful name to each relationship. Specify cardinalities for
each relationship and explain how you decided on each
minimum and maximum cardinality on each end of each
relationship. State any assumptions you made if the Petrie
Electronics cases you have read so far and the answers to
questions in these cases do not provide the evidence to
justify the cardinalities you chose. Redraw your final E-R
diagram in Microsoft Visio.

 8.107 Now that you have developed in your answer to Case
 Question 8.106 a complete E-R diagram for the Petrie
Electronics database, what are the consequences of not
having an employee entity type in this diagram? Assuming

only the attributes you show on the E-R diagram, would
any attribute be moved from the entity it is currently asso-
ciated with to an employee entity type if it were in the dia-
gram? Why or why not?

 8.108 Write project dictionary entries (using standards given to
you by your instructor) for all the entities, attributes, and
relationships shown in the E-R diagram in your answer to
Case Question 8.106. How detailed are these entries at this
point? What other details still must be filled in? Are any
of the entities on the E-R diagram in your answer to Case
Question 8.106 weak entities? Why? In particular, is the
SERVICE entity type a weak entity? If so, why? If not, why
not?

 8.109 What date-related attributes did you identify in each of the
entity types in your answer to Case Question 8.106? Why
are each of these needed? Can you make some general
observations about why date attributes must be kept in a
database based on your analysis of this database?

This page intentionally left blank

309

Part Four

Design

Chapter 9
Designing Databases

Chapter 10
Designing Forms and Reports

Chapter 11
Designing Interfaces and Dialogues

Chapter 12
Designing Distributed and Internet Systems

310

Overview

The focus of Part Four is system design, which is often
the first phase of the systems development life cycle,
the phase in which you and the user develop a concrete
understanding of how the system will operate. The ac-
tivities within design are not necessarily sequential. For
example, the design of data, system inputs and outputs,
and interfaces interact, allowing you to identify flaws and
missing elements. This means that the project dictionary
or CASE repository becomes an active and evolving com-
ponent of systems development management during de-
sign. It is only when each design element is consistent
with others and each one is satisfactory to the end user
that you know that the design phase is complete.

Data are a core system element, and data design
and structure are studied in all systems development
methodologies. You have seen how data flow diagrams
(DFDs) and entity-relationship (E-R) diagrams (as well
as use cases and class diagrams from the object-oriented
material at the end of prior chapters) are used to depict
the data requirements of a system. These diagrams are
flexible and allow considerable latitude in how you
 represent data. For example, you can use one or many
data stores with a process in a DFD. E-R diagrams pro-
vide more structure, but an entity can still be either very
detailed or rather aggregate. When designing databases,
you define data in its most fundamental form, called
normalized data. Normalization is a well-defined method
of identifying relationships between each data attribute
and representing all the data so that they cannot logi-
cally be broken down into more detail. The goal is to rid
the data design of unwanted anomalies that would make
a database susceptible to errors and inefficiencies. This is
the topic of Chapter 9.

In Chapter 10, you will learn the principles and
guidelines for usable system inputs and outputs. Your
overall goal in formatting the presentation of data to
users should be usability: helping users of all types to use
the system efficiently, accurately, and with satisfaction.
The achievement of these goals can be greatly improved
if you follow certain guidelines when presenting data

on business forms, visual display screens, printed docu-
ments, and other kinds of media. Fortunately, there has
been considerable research on how to present data to
users, and Chapter 10 summarizes and illustrates the most
 useful of these guidelines. Chapter 11 is closely related to
Chapter 10 and addresses principles you should follow
in tying all the system inputs and outputs together into
an overall pattern of interaction between users and the
system. System interfaces and dialogues form a conversa-
tion that provides user access to and navigation between
each system function. Chapter 11 focuses on providing
specifications for designing effective system interfaces
and dialogues and a technique for representing these
designs called dialogue diagramming.

For traditional development efforts, before devel-
opers can begin the implementation process, questions
about multiple users, multiple platforms, and program
and data distribution have to be considered. The extent
to which the system is Internet-based also has an impact
on numerous design issues. The focus of Chapter 12 is
on the intricacies of designing distributed and Internet
systems.

The deliverables of design include detailed, func-
tional specifications for system inputs, outputs, inter-
faces, dialogues, and databases. Often these elements
are represented in prototypes, or working versions.
The project dictionary or CASE repository is updated
to include each form, report, interface, dialogue, and
 relation design. Due to considerable user involvement in
reviewing prototypes and specifications during design,
and due to the fact that activities within design can be
scheduled with considerable overlap in the project base-
line plan, a formal review milestone or walk-through
often does not occur after each activity. If prototyping
is not done, however, you should conduct a formal walk-
through at the completion of the system design phase.

All of the chapters in Part Four conclude with a
Petrie Electronics case. These cases illustrate numerous
relevant design activities for an ongoing systems develop-
ment project within the company.

Part Four

Design

311

In Chapter 8, you learned how to represent an organiza-
tion’s data graphically using an entity-relationship (E-R),
or class, diagram. In this chapter, you will learn guide-
lines for well-structured and efficient database files, and
you will learn about logical and physical database design.
It is likely that the human interface and database design
steps will happen in parallel, as illustrated in the systems
development life cycle (SDLC) in Figure 9-1.

Database design has five purposes:

1. Structure the data in stable structures, called normal-
ized tables, that are not likely to change over time and
that have minimal redundancy.

2. Develop a logical database design that reflects the
 actual data requirements that exist in the forms (hard
copy and computer displays) and reports of an infor-
mation system. This is why database design is often
done in parallel with the design of the human inter-
face of an information system.

3. Develop a logical database design from which we can
do physical database design. Because most information
systems today use relational database management sys-
tems, logical database design usually uses a relational

database model, which represents data in simple tables
with common columns to link related tables.

4. Translate a relational database model into a technical
file and database design that balances several perfor-
mance factors.

5. Choose data storage technologies (such as Read/
Write DVD or optical disc) that will efficiently, accu-
rately, and securely process database activities.

The implementation of a database (i.e., creating and
loading data into files and databases) is done during the
next phase of the systems development life cycle. Because
implementation is technology specific, we address imple-
mentation issues only at a general level in Chapter 13.

Database Design
File and database design occurs in two steps. You begin by
developing a logical database model, which describes data
using a notation that corresponds to a data organization
used by a database management system. This is the system
software responsible for storing, retrieving, and protecting

9.5 describe physical database design concepts
including choosing storage formats for fields in
database tables, translating well-structured
relations into efficient database tables, explaining
when to use different types of file organizations to
store computer files, and describing the purpose of
indexes and the important considerations in
selecting attributes to be indexed.

Learning objectives

After studying this chapter, you should be able to

9.1 describe the database design process, its
outcomes, and the relational database model;

9.2 describe normalization and the rules for second
and third normal form;

9.3 transform an entity-relationship (E-R) diagram into
an equivalent set of well-structured (normalized)
relations;

9.4 merge normalized relations from separate user
views into a consolidated set of well-structured
relations; and

Designing Databases
9

Chapter

Introduction

312 Part IV Design

data (such as Microsoft Access, Oracle, or SQL Server). The most common style for
a logical database model is the relational database model. Once you develop a clear
and precise logical database model, you are ready to prescribe the technical specifi-
cations for computer files and databases in which to store the data. A physical data-
base design provides these specifications.

You typically do logical and physical database design in parallel with other systems
design steps. Thus, you collect the detailed specifications of data necessary for logical
database design as you design system inputs and outputs. Logical database design is
driven not only from the previously developed E-R data model for the application or
enterprise but also from form and report layouts. You study data elements on these
system inputs and outputs and identify interrelationships among the data. As with con-
ceptual data modeling, the work of all systems development team members is coordi-
nated and shared through the project dictionary or repository. The designs for logical
databases and system inputs and outputs are then used in physical design activities to
specify to computer programmers, database administrators, network managers, and
others how to implement the new information system. For this text, we assume that the
design of computer programs and distributed information processing and data net-
works are topics of other courses, so we concentrate on the aspect of physical design
most often undertaken by a systems analyst— physical file and database design.

the Process of Database Design
Figure 9-2 shows that database modeling and design activities occur in all phases of
the systems development process. In this chapter, we discuss methods that help you
finalize logical and physical database designs during the design phase. In logical data-
base design, you use a process called normalization, which is a way to build a data model
that has the properties of simplicity, nonredundancy, and minimal maintenance.

In most situations, many physical database design decisions are implicit or
eliminated when you choose the data management technologies to use with the
 application. We concentrate on those decisions you will make most frequently and
use Oracle to illustrate the range of physical database design parameters you must

DesignImplementation

Planning

Maintenance Analysis

Databases
Forms and Reports
Dialogues and Interfaces
Finalizing Design Specifications
Distributed and Internet Systems

Figure 9-1
Systems development life cycle with
design phase highlighted

 ChaPter 9 Designing Databases 313

manage. The interested reader is referred to Hoffer, Ramesh, and Topi (2016) for
a more thorough treatment of techniques for logical and physical database design.

There are four key steps in logical database modeling and design:

1. Develop a logical data model for each known user interface (form and report)
for the application using normalization principles.

2. Combine normalized data requirements from all user interfaces into one con-
solidated logical database model; this step is called view integration.

3. Translate the conceptual E-R data model for the application or enterprise, devel-
oped without explicit consideration of specific user interfaces, into normalized
data requirements.

4. Compare the consolidated logical database design with the translated E-R model
and produce, through view integration, one final logical database model for the
application.

During physical database design, you use the results of these four key logical
database design steps. You also consider definitions of each attribute; descriptions of
where and when data are entered, retrieved, deleted, and updated; expectations for
response time and data integrity; and descriptions of the file and database technolo-
gies to be used. These inputs allow you to make key physical database design deci-
sions, including the following:

•	 Choosing the storage format (called data type) for each attribute from the logical
database model; the format is chosen to minimize storage space and to maxi-
mize data quality. Data type involves choosing length, coding scheme, number
of decimal places, minimum and maximum values, and potentially many other
parameters for each attribute.

•	 Grouping attributes from the logical database model into physical records (in
general, this is called selecting a stored record, or data, structure).

•	 Arranging related records in secondary memory (hard disks and magnetic tapes)
so that individual records and groups of records can be stored, retrieved, and
 updated rapidly (called file organization). You should also consider protecting
data and recovering data after errors are found.

DesignImplementation

Planning

Maintenance Analysis

• Enterprise-wide data model (E-R with only entities)

• Conceptual data mode (E-R with only entities for
 specific project)

• Data model
 evolution

• Database and file definitions
 (DBMS specific code)

• Logical data model (relational)
 and physical file and database
 design (file organizations)

• Conceptual data
 models (E-R with
 attributes)

Figure 9-2
Relationship between data modeling and
the SDLC

314 Part IV Design

•	 Selecting media and structures for storing data to make access more efficient.
The choice of media affects the utility of different file organizations. The primary
structure used today to make access to data more rapid is key indexes on unique
and nonunique keys.

In this chapter, we show how to do each of these logical database design steps
and discuss factors to consider in making each physical file and database design
decision.

Deliverables and Outcomes
During logical database design, you must account for every data element on a system
input or output—form or report—and on the E-R diagram. Each data element (e.g.,
customer name, product description, or purchase price) must be a piece of raw data
kept in the system’s database or, in the case of a data element on a system output, the
element can be derived from data in the database. Figure 9-3 illustrates the outcomes
from the four-step logical database design process listed earlier. Figures 9-3a and 9-3b
(step 1) contain two sample system outputs for a customer order processing system at
Pine Valley Furniture (PVF). A description of the associated database requirements,
in the form of what we call normalized relations, is listed below each output diagram.
Each relation (think of a relation as a table with rows and columns) is named, and its
attributes (columns) are listed within parentheses. The primary key attribute—that
attribute whose value is unique across all occurrences of the relation—is indicated by
an underline, and an attribute of a relation that is the primary key of another rela-
tion is indicated by a dashed underline.

In Figure 9-3a, data about customers, products, and the customer orders and
associated line items for products are shown. Each of the attributes of each rela-
tion either appears in the display or is needed to link connected relations. For
 example, because an order is for a customer, an attribute of ORDER is the associated
Customer_ID. The data for the display in Figure 9-3b are more complex. A back-
logged product on an order occurs when the amount ordered (Order_Quantity) is
less than the amount shipped (Ship_Quantity) for invoices associated with an order.
The query refers only to a specified time period, so the Order_Date is needed. The
INVOICE Order_Number links invoices with the associated order.

Figure 9-3c (step 2) shows the result of integrating these two separate sets of
normalized relations. Figure 9-3d (step 3) shows an E-R diagram for a customer
order processing application that might be developed during conceptual data mod-
eling, along with equivalent normalized relations. Finally, Figure 9-3e (step 4) shows
a set of normalized relations that would result from reconciling the logical database
designs of Figures 9-3c and 9-3d. Normalized relations like those in Figure 9-3e are
the primary deliverable from logical database design.

It is important to remember that relations do not correspond to computer files. In
physical database design, you translate the relations from logical database design into
specifications for computer files. For most information systems, these files will be tables
in a relational database. These specifications are sufficient for programmers and data-
base analysts to code the definitions of the database. The coding, done during systems
implementation, is written in special database definition and processing languages,
such as Structured Query Language (SQL), or by filling in table definition forms, such
as with Microsoft Access. Figure 9-4 shows a possible definition for the SHIPMENT
relation from Figure 9-3e using Microsoft Access. This display of the SHIPMENT table
definition illustrates choices made for several physical database design decisions.

•	 All three attributes from the SHIPMENT relation, and no attributes from other
relations, have been grouped together to form the fields of the SHIPMENT table.

•	 The Invoice Number field has been given a data type of Text, with a maximum
length of 10 characters.

Primary key
An attribute (or combination of attributes)
whose value is unique across all
occurrences of a relation.

 ChaPter 9 Designing Databases 315

HIGHEST-VOLUME CUSTOMER

ENTER PRODUCT ID.: M128
START DATE: 11/01/2017
END DATE: 12/31/2017
– –
CUSTOMER ID.: 1256
NAME: Commonwealth Builder
VOLUME: 30

This inquiry screen shows the customer with the largest volume of total sales for a specified product during
an indicated time period.

Relations:
 CUSTOMER(Customer_ID,Name)
 ORDER(Order_Number,Customer_ID,Order_Date)
 PRODUCT(Product_ID)
 LINE ITEM(Order_Number,Product_ID,Order_Quantity)

- - - - - - - - -

(a) Figure 9-3
Simple example of logical data modeling
(a) Highest-volume customer query screen

CUSTOMER(Customer_ID,Name)
PRODUCT(Product_ID)
INVOICE(Invoice_Number,Invoice_Date,Order_Number)
ORDER(Order_Number,Customer_ID,Order_Date)
LINE ITEM(Order_Number,Product_ID,Order_Quantity)
SHIPMENT(Product_ID,Invoice_Number,Ship_Quantity)

_ _ _ _ _ _ _
_ _ _ _ _ _ _ _

(c) (c) Integrated set of relations

BACKLOG SUMMARY REPORT
11/30/2017

PAGE 1

BACKLOG
QUANTITYPRODUCT ID

B381
B975
B985
E125

M128

0
0
6

30

2

…
…

This report shows the unit volume of each product that has been ordered less that amount shipped
through the specified date.

Relations:
 PRODUCT(Product_ID)
 LINE ITEM(Product_ID,Order_Number,Order_Quantity)
 ORDER(Order_Number,Order_Date)
 SHIPMENT(Product_ID,Invoice_Number,Ship_Quantity)
 INVOICE(Invoice_Number,Invoice_Date,Order_Number)

(b) (b) Backlog summary report

316 Part IV Design

•	 The Invoice Number field is required because it is part of the primary key for
the SHIPMENT table (the value that makes every row of the SHIPMENT table
unique is a combination of Invoice Number and Product ID).

•	 An index is defined for the Invoice Number field, but because there may be sev-
eral rows in the SHIPMENT table for the same invoice (different products on the
same invoice), duplicate index values are allowed (so Invoice Number is what we
will call a secondary key).

Places

Bills

 LINE ITEM
Order_Quantity

 SHIPMENT
Ship_Quantity

 CUSTOMER
Customer_ID
Name
Address

 ORDER
Order_Number
Order_Date

 INVOICE
Invoice_Number

 PRODUCT
Product_ID
Description

Relations:

 CUSTOMER(Customer_ID,Name,Address)
 PRODUCT(Product_ID,Description)
 ORDER(Order_Number,Customer_ID,Order_Date)
 LINE ITEM(Order_Number,Product_ID,Order_Quantity)
 INVOICE(Invoice_Number,Order_Number)
 SHIPMENT(Invoice_Number,Product_ID,Ship_Quantity)

- - - - - - - - - -

- - - - - - - - -

(d)Figure 9-3 (continued)
(d) Conceptual data model and
transformed relations

CUSTOMER(Customer_ID,Name,Address)
PRODUCT(Product_ID,Description)
ORDER(Order_Number,Customer_ID,Order_Date)
LINE ITEM(Order_Number,Product_ID,Order_Quantity)
INVOICE(Invoice_Number,Order_Number,Invoice_Date)
SHIPMENT(Invoice_Number,Product_ID,Ship_Quantity)

_ _ _ _ _ _ _

_ _ _ _ _ _ _ _

(e)(e) Final set of normalized relations

Figure 9-4
Definition of shipment table in
Microsoft Access
(Source: Microsoft Corporation.)

 ChaPter 9 Designing Databases 317

Many other physical database design decisions were made for the SHIPMENT
table, but they are not apparent on the display in Figure 9-4. Further, this table is only
one table in the Pine Valley Furniture Company Order Entry database, and other
tables and structures for this database are not illustrated in this figure.

the Relational Database Model
Many different database models are in use and are the bases for database technolo-
gies. Although hierarchical and network models have been popular in the past, these
are not used very often today for new information systems. Object-oriented data-
base models are emerging but are still not common. The vast majority of informa-
tion systems today use the relational database model. The relational database model
(Codd, 1970; Date, 2012; Elmasri and Navathe, 2015; Umanath and Scamell, 2014)
represents data in the form of related tables, or relations. A relation is a named, two-
dimensional table of data. Each relation (or table) consists of a set of named columns
and an arbitrary number of unnamed rows. Each column in a relation corresponds
to an attribute of that relation. Each row of a relation corresponds to a record that
contains data values for an entity.

Figure 9-5 shows an example of a relation named EMPLOYEE1. This relation
contains the following attributes describing employees: Emp_ID, Name, Dept, and
Salary. This table has five sample rows, corresponding to five employees.

You can express the structure of a relation with a shorthand notation in which
the name of the relation is followed (in parentheses) by the names of the attributes
in the relation. The identifier attribute (called the primary key of the relation) is under-
lined. For example, you would express EMPLOYEE1 as follows:

EMPLOYEE1(Emp_ID,Name,Dept,Salary)

Not all tables are relations. Relations have several properties that distinguish them
from nonrelational tables:

1. Entries in cells are simple. An entry at the intersection of each row and column
has a single value.

2. Entries in a given column are from the same set of values.
3. Each row is unique. Uniqueness is guaranteed because the relation has a non-

empty primary key value.
4. The sequence of columns can be interchanged without changing the meaning or

use of the relation.
5. The rows may be interchanged or stored in any sequences.

Well-structured Relations
What constitutes a well-structured relation (also known as a table)? Intuitively, a well-
structured relation contains a minimum amount of redundancy and allows users
to insert, modify, and delete the rows in a table without errors or inconsistencies.

relational database model
Data represented as a set of related tables
or relations.

relation
A named, two-dimensional table of data.
Each relation consists of a set of named
columns and an arbitrary number of
unnamed rows.

Well-structured relation
A relation that contains a minimum amount
of redundancy and that allows users to
insert, modify, and delete the rows without
error or inconsistencies; also known as
a table.

EMPLOYEE1

Emp_ID Name Dept Salary

100 Margaret Simpson Marketing 75,000
140 Allen Beeton Accounting 95,000
110 Chris Lucero Info Systems 90,000
190 Lorenzo Davis Finance 90,000
150 Susan Martin Marketing 62,000

Figure 9-5
EMPLOYEE1 relation with sample data

318 Part IV Design

EMPLOYEE1 (Figure 9-5) is such a relation. Each row of the table contains data
describing one employee, and any modification to an employee’s data (such as a
change in salary) is confined to one row of the table.

In contrast, EMPLOYEE2 (Figure 9-6) contains data about employees and the
courses they have completed. Each row in this table is unique for the combination
of Emp_ID and Course, which becomes the primary key for the table. This is not a
well-structured relation, however. If you examine the sample data in the table, you
notice a considerable amount of redundancy. For example, the Emp_ID, Name,
Dept, and Salary values appear in two separate rows for employees 100, 110, and 150.
Consequently, if the salary for employee 100 changes, we must record this fact in two
rows (or more, for some employees).

The problem with this relation is that it contains data about two entities:
EMPLOYEE and COURSE. You will learn to use principles of normalization
to divide EMPLOYEE2 into two relations. One of the resulting relations is
EMPLOYEE1 (Figure 9-5). The other we will call EMP COURSE, which appears
with sample data in Figure 9-7. The primary key of this relation is the combination
of Emp_ID and Course (we emphasize this by underlining the column names for
these attributes).

nORMalizatiOn
We have presented an intuitive discussion of well-structured relations; however, we
need rules and a process for designing them. Normalization is a process for con-
verting complex data structures into simple, stable data structures (Date, 2012).

Normalization
The process of converting complex data
structures into simple, stable data structures.

Emp_ID Name Dept Salary Course Date_Completed

100 Margaret Simpson Marketing 42,000 SPSS 6/19/2017
100 Margaret Simpson Marketing 42,000 Surveys 10/7/2017
140 Alan Beeton Accounting 39,000 Tax Acc 12/8/2017
110 Chris Lucero Info Systems 41,500 SPSS 1/22/2017
110 Chris Lucero Info Systems 41,500 C++ 4/22/2017
190 Lorenzo Davis Finance 38,000 Investments 5/7/2017
150 Susan Martin Marketing 38,500 SPSS 6/19/2017
150 Susan Martin Marketing 38,500 TQM 8/12/2017

EMPLOYEE2

Figure 9-6
Relation with redundancy

Date_
Emp_ID Course Completed

100 SPSS 6/19/2017
100 Surveys 10/7/2017
140 Tax Acc 12/8/2017
110 SPSS 1/22/2017
110 C++ 4/22/2017
190 Investments 5/7/2017
150 SPSS 6/19/2017
150 TQM 8/12/2017

EMP COURSE

Figure 9-7
EMP COURSE relation

 ChaPter 9 Designing Databases 319

For example, we used the principles of normalization to convert the EMPLOYEE2
table with its redundancy to EMPLOYEE1 (Figure 9-5) and EMP COURSE
(Figure 9-7).

Rules of normalization
Normalization is based on well-accepted principles and rules. There are many nor-
malization rules, more than can be covered in this text (see Hoffer et al. [2011], for
a more complete coverage). Besides the five properties of relations outlined previ-
ously, there are two other frequently used rules:

1. Second normal form (2NF). Each nonprimary key attribute is identified by the
whole key (what we call full functional dependency). For example, in Figure 9-7,
both Emp_ID and Course identify a value of Date_Completed because the same
Emp_ID can be associated with more than one Date_Completed and the same
for Course.

2. Third normal form (3NF). Nonprimary key attributes do not depend on each other
(what we call no transitive dependencies). For example, in Figure 9-5, Name,
Dept, and Salary cannot be guaranteed to be unique for one another.

The result of normalization is that every nonprimary key attribute depends
upon the whole primary key and nothing but the primary key. We discuss second and
third normal form in more detail next.

Functional Dependence and Primary Keys
Normalization is based on the analysis of functional dependence. A functional
 dependency is a particular relationship between two attributes. In a given relation,
attribute B is functionally dependent on attribute A if, for every valid value of A, that
value of A uniquely determines the value of B (Date, 2012; Hoffer et al., 2016). The
functional dependence of B on A is represented by an arrow, as follows: A S B (e.g.,
Emp_ID S Name in the relation of Figure 9-5). Functional dependence does not
imply mathematical dependence—that the value of one attribute may be computed
from the value of another attribute; rather, functional dependence of B on A means
that there can be only one value of B for each value of A. Thus, a given Emp_ID value
can have only one Name value associated with it; the value of Name, however, can-
not be derived from the value of Emp_ID. Other examples of functional dependen-
cies from Figure 9-3b are in ORDER, Order_Number, Order_Date, and in INVOICE,
Invoice_Number, Invoice_Date, and Order_Number.

An attribute may be functionally dependent on two (or more) attributes
rather than on a single attribute. For example, consider the relation EMP COURSE
(Emp_ID,Course,Date_Completed) shown in Figure 9-7. We represent the functional
dependency in this relation as follows:

Emp_ID,Course S Date_Completed (this is sometimes shown as Emp_ID +
Course S Date_Completed). In this case, Date_Completed cannot be determined
by either Emp_ID or Course alone because Date_Completed is a characteristic of an
employee taking a course.

You should be aware that the instances (or sample data) in a relation do not
prove that a functional dependency exists. Only knowledge of the problem domain,
obtained from a thorough requirements analysis, is a reliable method for identifying
a functional dependency. However, you can use sample data to demonstrate that a
functional dependency does not exist between two or more attributes. For example,
consider the sample data in the relation EXAMPLE(A,B,C,D), shown in Figure 9-8.
The sample data in this relation prove that attribute B is not functionally dependent
on attribute A because A does not uniquely determine B (two rows with the same
value of A have different values of B).

Functional dependency
A constraint between two attributes
in which the value of one attribute is
determined by the value of another
attribute.

A B C D

X U
Y X
Z Y
Y Z

X Y
Z X
Y Y
W Z

EXAMPLE

Figure 9-8
EXAMPLE relation

320 Part IV Design

second normal Form
A relation is in second normal form (2NF) if every nonprimary key attribute is func-
tionally dependent on the whole primary key. Thus, no nonprimary key attribute is
functionally dependent on part, but not all, of the primary key. Second normal form
is satisfied if any one of the following conditions apply:

1. The primary key consists of only one attribute (such as the attribute Emp_ID in
relation EMPLOYEE1).

2. No nonprimary key attributes exist in the relation.
3. Every nonprimary key attribute is functionally dependent on the full set of pri-

mary key attributes.

EMPLOYEE2 (Figure 9-6) is an example of a relation that is not in second nor-
mal form. The shorthand notation for this relation is

EMPLOYEE2(Emp_ID,Name,Dept,Salary,Course,Date_Completed)

The functional dependencies in this relation are the following:

Emp_ID S Name,Dept,Salary
Emp_ID,Course S Date_Completed

The primary key for this relation is the composite key Emp_ID,Course.
Therefore, the nonprimary key attributes Name, Dept, and Salary are functionally
dependent on only Emp_ID but not on Course. EMPLOYEE2 has redundancy, which
results in problems when the table is updated.

To convert a relation to second normal form, you decompose the relation into
new relations using the attributes, called determinants, that determine other attri-
butes; the determinants are the primary keys of these relations. EMPLOYEE2 is de-
composed into the following two relations:

1. EMPLOYEE(Emp_ID,Name,Dept,Salary): This relation satisfies the first second
normal form condition (sample data shown in Figure 9-5).

2. EMP COURSE(Emp_ID,Course,Date_Completed): This relation satisfies second
normal form condition three (sample data appear in Figure 9-7).

third normal Form
A relation is in third normal form (3NF) if it is in second normal form and there are
no functional dependencies between two (or more) nonprimary key attributes (a
functional dependency between nonprimary key attributes is also called a transitive
dependency). For example, consider the relation SALES (Customer_ID, Customer_
Name,Salesperson,Region) (sample data shown in Figure 9-9a).

The following functional dependencies exist in the SALES relation:

1. Customer_ID S Customer_Name,Salesperson,Region (Customer_ID is the
 primary key.)

2. Salesperson S Region (Each salesperson is assigned to a unique region.)

Notice that SALES is in second normal form because the primary key consists
of a single attribute (Customer_ID). However, Region is functionally dependent on
Salesperson, and Salesperson is functionally dependent on Customer_ID. As a result,
there are data maintenance problems in SALES.

1. A new salesperson (Robinson) assigned to the North region cannot be entered
until a customer has been assigned to that salesperson (because a value for
 Customer_ID must be provided to insert a row in the table).

Second normal form (2NF)
A relation is in second normal form if every
nonprimary key attribute is functionally
dependent on the whole primary key.

Third normal form (3NF)
A relation is in second normal form and
has no functional (transitive) dependencies
between two (or more) nonprimary key
attributes.

 ChaPter 9 Designing Databases 321

2. If customer number 6837 is deleted from the table, we lose the information that
salesperson Hernandez is assigned to the East region.

3. If salesperson Smith is reassigned to the East region, several rows must be
changed to reflect that fact (two rows are shown in Figure 9-9a).

These problems can be avoided by decomposing SALES into the two rela-
tions, based on the two determinants, shown in Figure 9-9b. These relations are the
following:

SALES1(Customer_ID,Customer_Name,Salesperson)
SPERSON(Salesperson,Region)

Note that Salesperson is the primary key in SPERSON. Salesperson is also a
foreign key in SALES1. A foreign key is an attribute that appears as a nonprimary key
attribute in one relation (such as SALES1) and as a primary key attribute (or part
of a primary key) in another relation. You designate a foreign key by using a dashed
underline.

A foreign key must satisfy referential integrity, which specifies that the value of
an attribute in one relation depends on the value of the same attribute in another
relation. Thus, in Figure 9-9b, the value of Salesperson in each row of table SALES1 is
limited only to the current values of Salesperson in the SPERSON table. If some sales
do not have to have a salesperson, then it is possible for the value of Salesperson to
be null (i.e., have no value). Referential integrity is one of the most important prin-
ciples of the relational model.

tRansFORMing e-R DiagRaMs intO RelatiOns
Normalization produces a set of well-structured relations that contains all of the data
mentioned in system inputs and outputs developed in human interface design. Because
these specific information requirements may not represent all future information
needs, the E-R diagram you developed in conceptual data modeling is another source
of insight into possible data requirements for a new application system. To compare

Foreign key
An attribute that appears as a nonprimary
key attribute in one relation and as a
primary key attribute (or part of a primary
key) in another relation.

referential integrity
A rule that states that either each foreign
key value must match a primary key value
in another relation or the foreign key value
must be null (i.e., have no value).

Salesperson Region

Smith South
Hicks
Hernandez East
Faulb

West

North

SPERSON

Customer_ID Customer_Name Salesperson

8023 Anderson Smith
9167 Bancroft Hicks
7924 Hobbs Smith
6837 Tucker Hernandez
8596 Eckersley Hicks
7018 Arnold Faulb

SALES1

Customer_ID Customer_Name Salesperson Region

8023 Anderson Smith South
9167 Bancroft Hicks West
7924 Hobbs Smith South
6837 Tucker Hernandez East
8596 Eckersley Hicks West
7018 Arnold Faulb North

SALES Figure 9-9
Removing transitive dependencies
(a) Relation with transitive dependency

(b) Relation in 3NF

322 Part IV Design

the conceptual data model and the normalized relations developed so far, your
E-R diagram must be transformed into relational notation, normalized, and then
merged with the existing normalized relations.

Transforming an E-R diagram into normalized relations and then merging all
the relations into one final, consolidated set of relations can be accomplished in
four steps. These steps are summarized briefly here, and then steps 1, 2, and 4 are
discussed in detail in the remainder of this chapter.

1. Represent entities. Each entity type in the E-R diagram becomes a relation. The
identifier of the entity type becomes the primary key of the relation, and other
attributes of the entity type become nonprimary key attributes of the relation.

2. Represent relationships. Each relationship in an E-R diagram must be represented
in the relational database design. How we represent a relationship depends on
its nature. For example, in some cases we represent a relationship by making the
primary key of one relation a foreign key of another relation. In other cases, we
create a separate relation to represent a relationship.

3. Normalize the relations. The relations created in steps 1 and 2 may have unnec-
essary redundancy. So we need to normalize these relations to make them well
structured.

4. Merge the relations. So far in database design we have created various relations
from both a bottom-up normalization of user views and from transforming one or
more E-R diagrams into sets of relations. Across these different sets of relations,
there may be redundant relations (two or more relations that describe the same
entity type) that must be merged and renormalized to remove the redundancy.

Represent entities
Each regular entity type in an E-R diagram is transformed into a relation. The
identifier of the entity type becomes the primary key of the corresponding rela-
tion. Each nonkey attribute of the entity type becomes a nonkey attribute of the
relation. You should check to make sure that the primary key satisfies the following
two properties:

1. The value of the key must uniquely identify every row in the relation.
2. The key should be nonredundant; that is, no attribute in the key can be deleted

without destroying its unique identification.

Some entities may have keys that include the primary keys of other entities. For
example, an EMPLOYEE DEPENDENT may have a Name for each dependent, but
to form the primary key for this entity, you must include the Employee_ID attribute
from the associated EMPLOYEE entity. Such an entity whose primary key depends
upon the primary key of another entity is called a weak entity.

Representation of an entity as a relation is straightforward. Figure 9-10a shows
the CUSTOMER entity type for PVF. The corresponding CUSTOMER relation is rep-
resented as follows:

CUSTOMER(Customer_ID,Name,Address,City_State_ZIP,Discount)

In this notation, the entity type label is translated into a relation name. The
identifier of the entity type is listed first and underlined. All nonkey attributes are
listed after the primary key. This relation is shown as a table with sample data in
Figure 9-10b.

Represent Relationships
The procedure for representing relationships depends on both the degree of the
relationship—unary, binary, ternary—and the cardinalities of the relationship.

 ChaPter 9 Designing Databases 323

Binary 1: N and 1:1 Relationships A binary one-to-many (1:N) relationship in an
E-R diagram is represented by adding the primary key attribute (or attributes) of the
entity on the one side of the relationship as a foreign key in the relation that is on the
many side of the relationship.

Figure 9-11a, an example of this rule, shows the Places relationship (1:N) link-
ing CUSTOMER and ORDER at PVF. Two relations, CUSTOMER and ORDER, were
formed from the respective entity types (see Figure 9-11b). Customer_ID, which is
the primary key of CUSTOMER (on the one side of the relationship), is added as a
foreign key to ORDER (on the many side of the relationship). One special case under
this rule was mentioned in the previous section. If the entity on the many side needs
the key of the entity on the one side as part of its primary key (this is a so-called weak
entity), then this attribute is added, not as a nonkey but as part of the primary key.

For a binary or unary one-to-one (1:1) relationship between two entities A and
B (for a unary relationship, A and B would be the same entity type), the relationship
can be represented by any of the following choices:

1. Adding the primary key of A as a foreign key of B
2. Adding the primary key of B as a foreign key of A
3. Both of the above

CUSTOMER
Customer_ID
Name
Address
City_State_Zip
Discount

(a) Figure 9-10
Transforming an entity type to a relation
(a) E-R diagram

Customer_ID Name Address City_State_ZIP Discount

1273 Contemporary Designs 123 Oak St. Austin, TX 28384 5%
6390 Casual Corner 18 Hoosier Dr. Bloomington, IN45821 3%

CUSTOMER(b) (b) Relations

 CUSTOMER
Customer_ID
Name
Address
City_State_Zip
Discount

Places

 ORDER
Order_Number
Order_Date
Promised_Date

(a)

Figure 9-11
Representing a 1:N relationship
(a) E-R diagram

Order_Number Order_Date Promised_Date Customer_ID

57194 3/28/1X 6390
63725 3/17/1X 4/01/1X 1273
80149

3/15/1X

3/14/1X 3/24/1X 6390

ORDER

CUSTOMER

Customer_ID Name Address City_State_ZIP Discount

1273 Contemporary Designs 123 Oak St. Austin, TX 28384 5%
6390 Casual Corner 18 Hoosier Dr. Bloomington, IN 45821 3%

(b)

(b) Relations

324 Part IV Design

Binary and Higher-Degree M :N Relationships Suppose that there is a binary
many-to-many (M :N) relationship (or associative entity) between two entity types
A and B. For such a relationship, we create a separate relation C. The primary key of
this relation is a composite key consisting of the primary key for each of the two enti-
ties in the relationship. Any nonkey attributes associated with the M :N relationship
are included with relation C.

Figure 9-12a, an example of this rule, shows the Requests relationship (M :N) be-
tween the entity types ORDER and PRODUCT for PVF. Figure 9-12b shows the three
relations (ORDER, ORDER LINE, and PRODUCT) that are formed from the entity
types and the Requests relationship. A relation (called ORDER LINE in Figure 9-12b) is
created for the Requests relationship. The primary key of ORDER LINE is the combina-
tion (Order_Number,Product_ID), which is the respective primary keys of ORDER and
PRODUCT. The nonkey attribute Quantity_Ordered also appears in ORDER LINE.

Occasionally, the relation created from an M :N relationship requires a primary
key that includes more than just the primary keys from the two related relations.
Consider, for example, the following situation:

 SHIPMENT
Date
Amount

 CUSTOMER
Customer_ID
Name

 VENDOR
Vendor_ID
Address

 ORDER
Order_Number
Order_Date
Promised_Date

Ordered_Quantity

Requests

 PRODUCT
Product_ID
Description
Room
City_State_Zip
(Other Attributes)

(a)Figure 9-12
Representing an M:N relationship
(a) E-R diagram

Order_Number Order_Date Promised_Date

61384 2/17/2014 3/01/2017
62009 2/13/2014 2/27/2017
62807 2/15/2014 3/01/2017

ORDER

Quantity_
Order_Number Product_ID Ordered

61384 M128 2
61384 A261 1

ORDER LINE

(Other
Product_ID Description Room Attributes)

M128 Bookcase Study —
A261 Wall unit Family —
R149 Cabinet Study —

PRODUCT

(b)(b) Relations

 ChaPter 9 Designing Databases 325

In this case, Date must be part of the key for the SHIPMENT relation to uniquely
distinguish each row of the SHIPMENT table, as follows:

SHIPMENT(Customer_ID,Vendor_ID,Date,Amount)

If each shipment has a separate nonintelligent key, say, a shipment number,
then Date becomes a nonkey and Customer_ID and Vendor_ID become foreign
keys, as follows:

SHIPMENT(Shipment_Number,Customer_ID,Vendor_ID,Date,Amount)

In some cases, there may be a relationship among three or more entities. In such
cases, we create a separate relation that has as a primary key the composite of the
primary keys of each of the participating entities (plus any necessary additional key
 elements). This rule is a simple generalization of the rule for a binary M :N relationship.

Unary Relationships To review, a unary relationship is a relationship between the
instances of a single entity type, which are also called recursive relationships. Figure 9-13
shows two common examples. Figure 9-13a shows a one-to-many relationship named
Manages that associates employees with another employee who is their manager.
Figure 9-13b shows a many-to-many relationship that associates certain items with
their component items. This relationship is called a bill-of-materials structure.

For a unary 1:N relationship, the entity type (such as EMPLOYEE) is modeled as
a relation. The primary key of that relation is the same as for the entity type. Then a
foreign key is added to the relation that references the primary key values. A recursive
foreign key is a foreign key in a relation that references the primary key values of that
same relation. We can represent the relationship in Figure 9-13a as follows:

EMPLOYEE(Emp_ID,Name,Birthdate,Manager_ID)

In this relation, Manager_ID is a recursive foreign key that takes its values from
the same set of worker identification numbers as Emp_ID.

For a unary M :N relationship, we model the entity type as one relation. Then we
create a separate relation to represent the M :N relationship. The primary key of this
new relation is a composite key that consists of two attributes (which need not have
the same name) that both take their values from the same primary key. Any attribute

recursive foreign key
A foreign key in a relation that references
the primary key values of that same
relation.

 EMPLOYEE

Emp_ID
Name
Birthdate Manages

 ITEM

Item_Number
Name
Cost

Contains

Quantity

(b)

(a)

Figure 9-13
Two unary relationships
(a) EMPLOYEE with Manages
relationship (1:N)
(b) Bill-of-materials structure (M:N)

326 Part IV Design

associated with the relationship (such as Quantity in Figure 9-13b) is included as a non-
key attribute in this new relation. We can express the result for Figure 9-13b as follows:

ITEM(Item_Number,Name,Cost)
ITEM-BILL(Item_Number,Component_Number,Quantity)

summary of transforming e-R Diagrams to Relations
We have now described how to transform E-R diagrams to relations. Table 9-1 lists the
rules discussed in this section for transforming E-R diagrams into equivalent relations.
After this transformation, you should check the resulting relations to determine
whether they are in third normal form and, if necessary, perform normaliza tion as
described earlier in this chapter.

MeRging RelatiOns
As part of the logical database design, normalized relations likely have been created
from a number of separate E-R diagrams and various user interfaces. Some of the re-
lations may be redundant—they may refer to the same entities. If so, you should merge
those relations to remove the redundancy. This section describes merging relations, or
view integration, which is the last step in logical database design and prior to physical
file and database design.

an example of Merging Relations
Suppose that modeling a user interface or transforming an E-R diagram results in
the following 3NF relation:

EMPLOYEE1(Emp_ID,Name,Address,Phone)

Table 9-1 e-R Diagrams to Relational Transformation
E-R Structure Relational Representation
Regular entity Create a relation with primary key and nonkey attributes.
Weak entity Create a relation with a composite primary key (which includes the

primary key of the entity on which this weak entity depends) and
nonkey attributes.

Binary or unary 1:1
relationship

Place the primary key of either entity in the relation for the other
entity or do this for both entities.

Binary 1:N relationship Place the primary key of the entity on the one side of the relationship
as a foreign key in the relation for the entity on the many side.

Binary or unary M:N
relationship or
associative entity

Create a relation with a composite primary key using the primary
keys of the related entities, plus any nonkey attributes associative
entity of the relationship or associative entity.

Binary or unary M:N
relationship or
associative entity
with additional key(s)

Create a relation with a composite primary key using the primary
keys of the related entities and additional primary key attributes
associated with the relationship or associative entity, plus any
nonkey attributes of the relationship or associative entity.

Binary or unary M:N
relationship or
associative entity
with its own key

Create a relation with the primary key associated with the relationship
or associative entity, plus any nonkey attributes of the relationship
or associative entity and the primary keys of the related entities
(as foreign key attributes).

Supertype/subtype Create a relation for the superclass, which contains the primary
relationship key and all nonkey attributes in common with all
subclasses, plus create a separate relation for each subclass with
the same primary key (with the same or local name) but with only
the nonkey attributes related to that subclass.

 ChaPter 9 Designing Databases 327

Modeling a second user interface might result in the following relation:

EMPLOYEE2(Emp_ID,Name,Address,Jobcode,Number_of_Years)

Because these two relations have the same primary key (Emp_ID) and describe
the same entity, they should be merged into one relation. The result of merging the
relations is the following relation:

EMPLOYEE(Emp_ID,Name,Address,Phone,Jobcode,Number_of_Years)

Notice that an attribute that appears in both relations (such as Name in this
example) appears only once in the merged relation.

View integration Problems
When integrating relations, you must understand the meaning of the data and be
prepared to resolve any problems that may arise in the process. In this section, we
describe and illustrate four problems that arise in view integration: synonyms, hom-
onyms, dependencies between nonkeys, and class/subclass relationships.

Synonyms In some situations, two or more attributes may have different names but
the same meaning, as when they describe the same characteristic of an entity. Such
attributes are called synonyms. For example, Emp_ID and Employee_Number may
be synonyms.

When merging relations that contain synonyms, you should obtain, if possible,
agreement from users on a single standardized name for the attribute and eliminate
the other synonym. Another alternative is to choose a third name to replace the syn-
onyms. For example, consider the following relations:

STUDENT1(Student_ID,Name)
STUDENT2(Matriculation_Number,Name,Address)

In this case, the analyst recognizes that both the Student_ID and the
Matriculation_Number are synonyms for a person’s social security number (SSN)
and are identical attributes. One possible resolution would be to standardize one of
the two attribute names, such as Student_ID. Another option is to use a new attribute
name, such as SSN, to replace both synonyms. With the latter approach, merging the
two relations would produce the following result:

STUDENT(SSN,Name,Address)

Homonyms In other situations, a single attribute name, called a homonym, may
have more than one meaning or describe more than one characteristic. For example,
the term account might refer to a bank’s checking account, savings account, loan
 account, or other type of account; therefore, account refers to different data, depend-
ing on how it is used.

You should be on the lookout for homonyms when merging relations. Consider
the following example:

STUDENT1(Student_ID,Name,Address)
STUDENT2(Student_ID,Name,Phone_Number,Address)

In discussions with users, the systems analyst may discover that the attribute
Address in STUDENT1 refers to a student’s campus address, whereas in STUDENT2
the same attribute refers to a student’s home address. To resolve this conflict,

Synonym
Two different names that are used for the
same attribute.

Homonym
A single attribute name that is used for two
or more different attributes.

328 Part IV Design

we would probably need to create new attribute names, and the merged relation
would become

STUDENT(Student_ID,Name,Phone_Number,Campus_Address,Permanent_
Address)

Dependencies between Nonkeys When two 3NF relations are merged to form a
single relation, dependencies between nonkeys may result. For example, consider
the following two relations:

STUDENT1(Student_ID,Major)
STUDENT2(Student_ID,Adviser)

Because STUDENT1 and STUDENT2 have the same primary key, the two rela-
tions may be merged:

STUDENT(Student_ID,Major,Adviser)

However, suppose that each major has exactly one adviser. In this case, Adviser
is functionally dependent on Major:

Major S Adviser

If this dependency exists, then STUDENT is in 2NF but not 3NF because it
contains a functional dependency between nonkeys. The analyst can create 3NF rela-
tions by creating two relations with Major as a foreign key in STUDENT:

STUDENT(Student_ID,Major)
MAJOR ADVISER(Major,Adviser)

Class/Subclass Class/subclass relationships may be hidden in user views or rela-
tions. Suppose that we have the following two hospital relations:

PATIENT1(Patient_ID,Name,Address,Date_Treated)
PATIENT2(Patient_ID,Room_Number)

Initially, it appears that these two relations can be merged into a single
PATIENT relation. However, suppose that there are two different types of patients:
inpatients and outpatients. PATIENT1 actually contains attributes common to all
 patients. PATIENT2 contains an attribute (Room_Number) that is a characteristic
only of inpatients. In this situation, you should create class/subclass relationships for
these entities:

PATIENT(Patient_ID,Name,Address)
INPATIENT(Patient_ID,Room_Number)
OUTPATIENT(Patient_ID,Date_Treated)

lOgiCal Database Design FOR
HOOsieR buRgeR
Figure 9-14 shows an E-R diagram that has been developed for a new inventory control
system at Hoosier Burger. The new system was discussed previously in Chapter 7,
where a DFD and decision table (respectively) for the system were created. In this
section we show how this E-R model is translated into normalized relations, and how

HOOSIER
BURGER

 ChaPter 9 Designing Databases 329

to normalize and then merge the relations for a new report with the relations from
the E-R model.

In this E-R model, four entities exist independently of other entities: SALE,
PRODUCT, INVOICE, and INVENTORY ITEM. Given the attributes shown in
Figure 9-14, we can represent these entities in the following four relations:

SALE(Receipt_Number,Sale_Date)
PRODUCT(Product_ID,Product_Description)
INVOICE(Vendor_ID,Invoice_Number,Invoice_Date,Paid?)
INVENTORY ITEM(Item_Number,Item_Description,Quantity_in_
Stock,Minimum_Order_Quantity,Type_of_Item)

The entities ITEM SALE and INVOICE ITEM as well as the associative entity
RECIPE each have a composite primary key taken from the entities to which they
relate, so we can represent these three entities in the following three relations:

ITEM SALE(Receipt_Number,Product_ID,Quantity_Sold)
INVOICE ITEM (Vendor_ID,Invoice_Number,Item_Number,Quantity_Added)
RECIPE(Product_ID,Item_Number,Quantity_Used)

Because there are no many-to-many, one-to-one, or unary relationships, we
have now represented all the entities and relationships from the E-R model. Also,
each of the above relations is in 3NF because all attributes are simple, all nonkeys are
fully dependent on the whole key, and there are no dependencies between nonkeys
in the INVOICE and INVENTORY ITEM relations.

Now suppose that Bob Mellankamp wanted an additional report that was not
previously known by the analyst who designed the inventory control system for
Hoosier Burger. A rough sketch of this new report, listing volume of purchases from

SALE
Receipt_Number
Sale_Date

Sells

ITEM SALE
Quantity_Sold

Orders

PRODUCT
Product_ID
Product_Description

INVOICE

Includes

INVOICE ITEM

Received on

INVENTORY ITEM

Invoice_Number
Vendor_ID
Invoice_Date
Paid?

Quantity_Added

Item_Number
Item_Description
Quantity_in_Stock
Type_of_Item
Minimum_Order_Quantity

RECIPE
Quantity_Used

Figure 9-14
Final E-R diagram for Hoosier Burger’s
inventory control system

330 Part IV Design

each vendor by type of item in a given month, appears in Figure 9-15. In this report,
the same type of item may appear many times if multiple vendors supply the same
type of item.

This report contains data about several relations already known to the analyst,
including the following:

•	 INVOICE(Vendor_ID,Invoice_Number,Invoice_Date): Primary keys and the date
are needed to select invoices in the specified month of the report.

•	 INVENTORY ITEM(Item_Number,Type_of_Item): Primary key and a nonkey in
the report.

•	 INVOICE ITEM (Vendor_ID,Invoice_Number,Item_Number,Quantity_Added):
Primary keys and the raw quantity of items invoiced that are subtotaled by vendor
and type of item in the report.

In addition, the report includes a new attribute—Vendor_Name. After some in-
vestigation, an analyst determines that Vendor_ID S Vendor_Name. The whole pri-
mary key of the INVOICE relation is Vendor_ID and Invoice_Number, so if Vendor_
Name were part of the INVOICE relation, this relation would violate the 3NF rule.
Thus, a new VENDOR relation must be created as follows:

VENDOR(Vendor_ID,Vendor_Name)

Now, Vendor_ID not only is part of the primary key of INVOICE but also is a
foreign key referencing the VENDOR relation. Hence, there must be a one-to-many
relationship from VENDOR to INVOICE. The systems analyst determines that an
invoice must come from a vendor, and there is no need to keep data about a vendor
unless the vendor invoices Hoosier Burger. An updated E-R diagram, reflecting these
enhancements for new data needed in the monthly vendor load report, appears in
Figure 9-16. The normalized relations for this database are as follows:

SALE(Receipt_Number,Sale_Date)
PRODUCT(Product_ID,Product_Description)
INVOICE(Vendor_ID,Invoice_Number,Invoice_Date,Paid?)
INVENTORY ITEM(Item_Number,Item_Description,Quantity_in_Stock,
Minimum_Order_Quantity,Type_of_Item)
ITEM SALE(Receipt_Number,Product_ID,Quantity_Sold)
INVOICE ITEM(Vendor_ID,Invoice_Number,Item_Number,Quantity_Added)
RECIPE(Product_ID,Item_Number,Quantity_Used)
VENDOR(Vendor_ID,Vendor_Name)

Vendor

ID Name Type of Item Total Quantity Added

V1 V1name aaa nnn1
bbb nnn2
ccc nnn3

V2 V2name bbb nnn4
mmm nnn5

x
x
x

Monthly Vendor Load Report Page x of n
for Month: xxxxx

Figure 9-15
Hoosier Burger Monthly Vendor Load
Report

 ChaPter 9 Designing Databases 331

PHysiCal File anD Database Design
Designing physical files and databases requires certain information that should have
been collected and produced during prior SDLC phases. This information includes
the following:

•	 Normalized relations, including volume estimates
•	 Definitions of each attribute
•	 Descriptions of where and when data are used: entered, retrieved, deleted, and

updated (including frequencies)
•	 Expectations or requirements for response time and data integrity
•	 Descriptions of the technologies used for implementing the files and database so

that the range of required decisions and choices for each is known

Normalized relations are, of course, the result of logical database design.
Statistics on the number of rows in each table as well as the other information listed
above may have been collected during requirements determination in systems analy-
sis. If not, these items need to be discovered to proceed with database design.

We take a bottom-up approach to reviewing physical file and database design.
Thus, we begin the physical design phase by addressing the design of physical fields
for each attribute in a logical data model.

Designing Fields
A field is the smallest unit of application data recognized by system software, such
as a programming language or database management system. An attribute from a
logical database model may be represented by several fields. For example, a student
name attribute in a normalized student relation might be represented as three fields:
last name, first name, and middle initial. In general, you will represent each attribute
from each normalized relation as one or more fields. The basic decisions you must

Field
The smallest unit of named application data
recognized by system software.

VENDOR
Vendor_ID
Vendor_Name

SALE
Receipt_Number
Sale_Date

Sells

ITEM SALE
Quantity_Sold

Orders

PRODUCT
Product_ID
Product_Description

INVOICE

Includes

INVOICE ITEM

Received on

INVENTORY ITEM

Invoice_Number
Vendor_ID
Invoice_Date
Paid?

Quantity_Added

Item_Number
Item_Description
Quantity_in_Stock
Type_of_Item
Minimum_Order_Quantity

RECIPE
Quantity_Used

Figure 9-16
E-R diagram corresponding to
normalized relations of Hoosier Burger’s
inventory control system

332 Part IV Design

make in specifying each field concern the type of data (or storage type) used to rep-
resent the field and data integrity controls for the field.

Choosing Data types
A data type is a coding scheme recognized by system software for representing orga-
nizational data. The bit pattern of the coding scheme is usually immaterial to you,
but the space to store data and the speed required to access data are of consequence
in the physical file and database design. The specific file or database management
software you use with your system will dictate which choices are available to you. For
example, Table 9-2 lists the most commonly used data types available in Oracle 10g.

Selecting a data type balances four objectives that will vary in degree of impor-
tance depending on the application:

1. Minimize storage space
2. Represent all possible values of the field
3. Improve data integrity for the field
4. Support all data manipulations desired on the field

You want to choose a data type for a field that minimizes space, represents every
possible legitimate value for the associated attribute, and allows the data to be
 manipulated as needed. For example, suppose a quantity sold field can be repre-
sented by a Number data type. You would select a length for this field that would
handle the maximum value, plus some room for growth of the business. Further, the
Number data type will restrict users from entering inappropriate values (text), but it
does allow negative numbers (if this is a problem, application code or form design
may be required to restrict the values to positive ones).

Be careful—the data type must be suitable for the life of the application; other-
wise, maintenance will be required. Choose data types for future needs by anticipat-
ing growth. Also, be careful that date arithmetic can be done so that dates can be
subtracted or time periods can be added to or subtracted from a date.

Several other capabilities of data types may be available with some database
technologies. We discuss a few of the most common of these features next: calculated
fields and coding and compression techniques.

Data type
A coding scheme recognized by system
software for representing organizational
data.

Table 9-2 Commonly Used Data Types in Oracle 10g
Data Type Description

VARCHAR2 Variable-length character data with a maximum length of 4000 characters;
you must enter a maximum field length (e.g., VARCHAR2(30) for a field with
a maximum length of 30 characters). A value less than 30 characters will
consume only the required space.

CHAR Fixed-length character data with a maximum length of 255 characters; default
length is 1 character (e.g., CHAR(5) for a field with a fixed length of five
characters, capable of holding a value from 0 to 5 characters long).

LONG Capable of storing up to two gigabytes of one variable-length character data
field (e.g., to hold a medical instruction or a customer comment).

NUMBER Positive and negative numbers in the range 10–130 to 10126; can specify the
precision (total number of digits to the left and right of the decimal point)
and the scale (the number of digits to the right of the decimal point) (e.g.,
NUMBER(5) specifies an integer field with a maximum of 5 digits and
NUMBER(5, 2) specifies a field with no more than five digits and exactly
two digits to the right of the decimal point).

DATE Any date from January 1, 4712 BC to December 31, 4712 AD; date stores
the century, year, month, day, hour, minute, and second.

BLOB Binary large object, capable of storing up to four gigabytes of binary data
(e.g., a photograph or sound clip).

 ChaPter 9 Designing Databases 333

Calculated Fields It is common for an attribute to be mathematically related to
other data. For example, an invoice may include a total due field, which repre-
sents the sum of the amount due on each item on the invoice. A field that can be
 derived from other database fields is called a calculated field (or a computed field
or a derived field). Recall that a functional dependency between attributes does not
imply a calculated field. Some database technologies allow you to explicitly define
calculated fields along with other raw data fields. If you specify a field as calculated,
you would then usually be prompted to enter the formula for the calculation; the for-
mula can involve other fields from the same record and possibly fields from records
in related files. The database technology will either store the calculated value or com-
pute it when requested.

Coding and Compression Techniques Some attributes have very few values from
a large range of possible values. For example, suppose that each product from PVF
has a finish attribute, with possible values of Birch, Walnut, Oak, and so forth. To
store this attribute as text might require 12, 15, or even 20 bytes to represent the
longest finish value. Suppose that even a liberal estimate is that PVF will never have
more than 25 finishes. Thus, a single alphabetic or alphanumeric character would be
more than sufficient. We not only reduce storage space but also increase integrity (by
restricting input to only a few values), which helps to achieve two of the physical file
and database design goals. Codes also have disadvantages. If used in system inputs
and outputs, they can be more difficult for users to remember, and programs must
be written to decode fields if codes will not be displayed.

Controlling Data integrity
Accurate data are essential for compliance with new national and international reg-
ulations, such as Sarbanes-Oxley (SOX) and Basel II. COBIT (Control Objectives
for Information and Related Technologies) and ITIL (IT Infrastructure Library)
provide standards, guidelines, and rules for corporate governance, risk assessment,
security, and controls of data. These preventive controls are best and consistently
applied if designed into the database and enforced by the database management
system (DBMS). Data integrity controls can be viewed very positively during audits
for compliance with regulations. These controls are only as good as the underlying
field data controls.

We have already explained that data typing helps control data integrity by lim-
iting the possible range of values for a field. There are additional physical file and
database design options you might use to ensure higher-quality data. Although these
controls can be imposed within application programs, it is better to include these
as part of the file and database definitions so that the controls are guaranteed to
be applied all the time as well as uniformly for all programs. There are four popular
data integrity control methods: default value, range control, referential integrity, and
null value control.

•	 Default value. A default value is the value a field will assume unless an explicit
value is entered for the field. For example, the city and state of most customers
for a particular retail store will likely be the same as the store’s city and state.
Assigning a default value to a field can reduce data entry time (the field can sim-
ply be skipped during data entry) and data entry errors, such as typing IM instead
of IN for Indiana.

•	 Range control. Both numeric and alphabetic data may have a limited set of permis-
sible values. For example, a field for the number of product units sold may have a
lower bound of zero, and a field that represents the month of a product sale may
be limited to the values JAN, FEB, and so forth.

•	 Referential integrity. As noted earlier in this chapter, the most common example
of referential integrity is cross-referencing between relations. For example,

Calculated field
A field that can be derived from other
database fields. Also known as a
computed field or a derived field.

Default value
A value a field will assume unless an
explicit value is entered for that field.

334 Part IV Design

consider the pair of relations in Figure 9-17a. In this case, the values for the
 foreign key Customer_ID field within a customer order must be limited to the
set of Customer_ID values from the CUSTOMER relation; we would not want
to accept an order for a nonexisting or unknown customer. Referential integrity
may be useful in other instances. Consider the employee relation example
in Figure 9-17b. In this example, the EMPLOYEE relation has a field of
Supervisor_ID. This field refers to the Employee_ID of the employee’s supervisor
and should have referential integrity on the Employee_ID field within the same
relation. Note in this case that the value of a Supervisor_ID field may be empty
because some employees do not have supervisors; therefore, this is a weak refer-
ential integrity constraint.

•	 Null value control. A null value is a special field value, distinct from a zero,
blank, or any other value, that indicates that the value for the field is missing
or otherwise unknown. It is not uncommon that when it is time to enter data—
for example, a new customer—you might not know the customer’s phone
number. The question is whether a customer, to be valid, must have a value
for this field. The answer for this field is probably no, initially, because most
data processing can continue without knowing the customer’s phone number.
Later, a null value may not be allowed when you are ready to ship a product
to the customer. On the other hand, you must always know a value for the
Customer_ID field. Due to referential integrity, you cannot enter any customer
orders for this new customer without knowing an existing Customer_ID value,
and customer name is essential for visual verification of correct data entry.
Besides using a special null value when a field is missing its value, you can also
estimate the value, produce a report indicating rows of tables with critical miss-
ing values, or determine whether the missing value matters when computing
needed information.

Designing Physical tables
A relational database is a set of related tables (tables are related by foreign keys ref-
erencing primary keys). In logical database design, you grouped into a relation those
attributes that concern some unifying, normalized business concept, such as a cus-
tomer, product, or employee. In contrast, a physical table is a named set of rows and
columns that specifies the fields in each row of the table. A physical table may or may
not correspond to one relation. Whereas normalized relations possess properties of
well-structured relations, the design of a physical table has two goals different from
those of normalization: efficient use of secondary storage and data processing speed.

The efficient use of secondary storage (disk space) relates to how data are
loaded on disks. Disks are physically divided into units (called pages) that can be
read or written in one machine operation. Space is used efficiently when the physical

Null value
A special field value, distinct from zero,
blank, or any other value, that indicates
that the value for the field is missing or
otherwise unknown.

Physical table
A named set of rows and columns that
specifies the fields in each row of the table.

CUSTOMER (Customer_ID,Cust_Name,Cust_Address, . . .)

CUST_ORDER (Order_ID,Customer_ID,Order_Date, . . .)
and Customer_ID may not be null because every order must be for
some existing customer

EMPLOYEE(Employee_ID,Supervisor_ID,Empl_Name, . . .)
and Superviosr_ID may be null because not all employees have supervisors

Figure 9-17
Examples of referential integrity field
controls
(a) Referential integrity between relations
(b) Referential integrity within a relation

 ChaPter 9 Designing Databases 335

length of a table row divides close to evenly into the length of the storage unit. For
many information systems, this even division is very difficult to achieve because it de-
pends on factors, such as operating system parameters, outside the control of each
database. Consequently, we do not discuss this factor of physical table design in this
text.

A second and often more important consideration when selecting a physi-
cal table design is efficient data processing. Data are most efficiently processed
when they are stored close to one another in secondary memory, thus minimizing
the number of input/output (I/O) operations that must be performed. Typically,
the data in one physical table (all the rows and fields in those rows) are stored
close together on disk. Denormalization is the process of splitting or combin-
ing normalized relations into physical tables based on affinity of use of rows and
fields. In Figure 9-18a, a normalized product relation is split into separate physi-
cal tables, each containing only engineering, accounting, or marketing product
data; the primary key must be included in each table. Note that the Description
and Color attributes are repeated in both the engineering and marketing tables
because these attributes relate to both kinds of data. In Figure 9-18b, a customer
relation is denormalized by putting rows from different geographic regions into
separate tables. In both cases, the goal is to create tables that contain only the data
used together in programs. By placing data used together close to one another
on disk, the number of disk I/O operations to retrieve all the data needed by a
program is minimized.

The capability to split a table into separate sections, often called partitioning, is
possible with most relational database products. With Oracle, there are three types
of table partitioning:

1. Range partitioning. Partitions are defined by nonoverlapping ranges of values for
a specified attribute (so separate tables are formed of the rows whose specified
attribute values fall in indicated ranges).

2. Hash partitioning. A table row is assigned to a partition by an algorithm and then
maps the specified attribute value to a partition.

3. Composite partitioning. Combines range and hash partitioning by first segregating
data by ranges on the designated attribute, and then within each of these parti-
tions, it further partitions by hashing on the designated attribute.

Each partition is stored in a separate contiguous section of disk space, which
Oracle calls a tablespace.

Denormalization can increase the chance of errors and inconsistencies that nor-
malization avoided. Further, denormalization optimizes certain data processing activi-
ties at the expense of others, so if the frequencies of different processing activities
change, the benefits of denormalization may no longer exist (Hoffer et al., 2016).

Various forms of denormalization, which involves combining data from several
normalized tables, can be done, but there are no hard-and-fast rules for deciding
when to denormalize data. Here are three common situations (Microsoft, 2015) in
which denormalization across tables often makes accessing related data faster (see
Figure 9-19 for illustrations):

1. Two entities with a one-to-one relationship. Figure 9-19a shows student data with
o ptional data from a standard scholarship application that a student may
complete. In this case, one record could be formed with four fields from the
 STUDENT and SCHOLARSHIP APPLICATION FORM normalized relations.
(Note: In this case, fields from the optional entity must have null values allowed.)

2. A many-to-many relationship (associative entity) with nonkey attributes. Figure 9-19b
shows price quotes for different items from different vendors. In this case, fields
from ITEM and PRICE QUOTE relations might be combined into one physical
table to avoid having to combine all three tables together. (Note: This may cre-
ate considerable duplication of data—in the example, the ITEM fields, such as

Denormalization
The process of splitting or combining
normalized relations into physical tables
based on affinity of use of rows and fields.

336 Part IV Design

Description, would repeat for each price quote—and excessive updating if dupli-
cated data change.)

3. Reference data. Figure 9-19c shows that several ITEMs have the same STORAGE
INSTRUCTIONS and that STORAGE INSTRUCTIONS relate only to ITEMs. In
this case, the storage instruction data could be stored in the ITEM table, thus
reducing the number of tables to access but also creating redundancy and the
potential for extra data maintenance.

Normalized Product Relation
Product(Product_ID,Description,Drawing_Number,Weight,Color,Unit_Cost,

Burden_Rate,Price,Product_Manager)

Denormalized Functional Area Product Relations for Tables
Engineering: E_Product(Product_ID,Description,Drawing_Number,Weight,Color)
Accounting: A_Product(Product_ID,Unit_Cost,Burden_Rate)
Marketing: M_Product(Product_ID,Description,Color,Price,Product_Manager)

Customer_ID Name Region Annual_Sales

1256 Rogers Atlantic 10,000

2566 Bailey Atlantic 12,000

A_CUSTOMER

Customer_ID Name Region Annual_Sales

1256 Rogers Atlantic 10,000

1323 Temple Pacific 20,000

1455 Gates South 15,000

1626 Hope Pacific 22,000

2433 Bates South 14,000

2566 Bailey Atlantic 12,000

CUSTOMER
Normalized Customer Table

Denormalized Regional Customer Tables

Customer_ID Name Region Annual_Sales

1323 Temple Pacific 20,000

1626 Hope Pacific 22,000

P_CUSTOMER

Customer_ID Name Region Annual_Sales

1455 Gates South 15,000

2433 Bates South 14,000

S_CUSTOMER

Figure 9-18
Examples of denormalization
(a) Denormalization by columns

(b) Denormalization by rows

 ChaPter 9 Designing Databases 337

Normalized relations:
 STUDENT(Student_ID,Campus_Address,Application_ID)
 APPLICATION(Application_ID,Application_Date,Qualifications,Student_ID)

Denormalized relation:
 STUDENT(Student_ID,Campus_Address,Application_Date,Qualifications)
 and Application_Date and Qualifications may be null

(Note: We assume Application_ID is not necessary when all fields are stored in one record,
but this field can be included if it is required application data.)

 STUDENT
Student_ID
Campus_Address

 SCHOLARSHIP
 APPLICATION
 FORM
Application_ID
Application_Date
Qualifications

Submits

(a) Figure 9-19
Possible denormalization situations
(a) Two entities with a one-to-one
relationship

Normalized relations:
 VENDOR(Vendor_ID,Address,Contact_Name)
 ITEM(Item_ID,Description)
 PRICE QUOTE(Vendor_ID,Item_ID,Price)

Denormalized relations:
 VENDOR(Vendor_ID,Address,Contact_Name)
 ITEM-QUOTE(Vendor_ID,Item_ID,Description,Price)

 VENDOR

Vendor_ID
Address
Contact_Name

 ITEM

Item_ID
Description

PRICE QUOTE
Price

(b) (b) A many-to-many relationship with
nonkey attributes

Normalized relations:
 STORAGE(Instr_ID,Where_Store,Container_Type)
 ITEM(Item_ID,Description,Instr_ID)

Denormalized relation
 ITEM(Item_ID,Description,Where_Store,Container_Type)

 STORAGE
 INSTRUCTIONS
Instr_ID
Where_Store
Container_Type

Control for

 ITEM
Item_ID
Description

(c) (c) Reference data

arranging table Rows
The result of denormalization is the definition of one or more physical files. A com-
puter operating system stores data in a physical file, which is a named set of table
rows stored in a contiguous section of secondary memory. A file contains rows and
columns from one or more tables, as produced from denormalization. To the op-
erating system (e.g., Windows, Linux, or UNIX), each table may be one file or the
whole database may be in one file, depending on how the database technology and
database designer organize data. The way the operating system arranges table rows

Physical file
A named set of table rows stored in a
contiguous section of secondary memory.

338 Part IV Design

in a file is called a file organization. With some database technologies, the systems
designer can choose from among several organizations for a file.

If the database designer has a choice, he or she chooses a file organization for
a specific file that will provide the following:

1. Fast data retrieval
2. High throughput for processing transactions
3. Efficient use of storage space
4. Protection from failures or data loss
5. Minimal need for reorganization
6. Accommodation of growth
7. Security from unauthorized use

Often these objectives conflict, and you must select an organization for each file
that provides a reasonable balance among the criteria within the resources available.

To achieve these objectives, many file organizations use a pointer. A pointer is
a field of data that can be used to locate a related field or row of data. In most cases,
a pointer contains the address of the associated data, which has no business mean-
ing. Pointers are used in file organizations when it is not possible to store related
data next to each other. Because this is often the case, pointers are common. In
most cases, fortunately, pointers are hidden from a programmer. Because a database
designer may need to decide if and how to use pointers, however, we introduce the
concept here.

Literally hundreds of different file organizations and variations have been cre-
ated, but we outline the basics of three families of file organizations used in most
file management environments: sequential, indexed, and hashed, as illustrated in
Figure 9-20. You need to understand the particular variations of each method avail-
able in the environment for which you are designing files.

Sequential File Organizations In a sequential file organization, the rows in the file
are stored in sequence according to a primary key value (see Figure 9-20a). To locate
a particular row, a program must normally scan the file from the beginning until the
desired row is located. A common example of a sequential file is the alphabetic list
of persons in the white pages of a phone directory (ignoring any index that may be
included with the directory). Sequential files are very fast if you want to process rows
sequentially, but they are impractical for random row retrievals. Deleting rows can
cause wasted space or the need to compress the file. Adding rows requires rewriting
the file, at least from the point of insertion. Updating a row may also require rewrit-
ing the file, unless the file organization supports rewriting over the updated row only.
Only one sequence can be maintained without duplicating the rows.

Indexed File Organizations In an indexed file organization, the rows are stored
either sequentially or nonsequentially, and an index is created that allows the appli-
cation software to locate individual rows (see Figure 9-20b). Like a card catalog in a
library, an index is a structure that is used to determine the rows in a file that satisfy
some condition. Each entry matches a key value with one or more rows. An index
can point to unique rows (a primary key index, such as on the Product_ID field of a
product table) or to potentially more than one row. An index that allows each entry
to point to more than one record is called a secondary key index. Secondary key in-
dexes are important for supporting many reporting requirements and for providing
rapid ad hoc data retrieval. An example would be an index on the Finish field of a
product table.

One of the most powerful capabilities of indexed file organizations is the abil-
ity to create multiple indexes, similar to the title, author, and subject indexes in a
library. Search results from the multiple indexes can be combined very quickly to
find those records with precisely the combination of values sought. The example in
Figure 9-20b, typical of many index structures, illustrates that indexes can be built

File organization
A technique for physically arranging the
records of a file.

Pointer
A field of data that can be used to locate a
related field or row of data.

Sequential file organization
A file organization in which rows in a file
are stored in sequence according to a
primary key value.

indexed file organization
A file organization in which rows are stored
either sequentially or nonsequentially, and
an index is created that allows software to
locate individual rows.

index
A table used to determine the location of
rows in a file that satisfy some condition.

Secondary key
One or a combination of fields for which
more than one row may have the same
combination of values.

 ChaPter 9 Designing Databases 339

Start of file

Scan

...

...

...

Aces

Boilermakers

Devils

Flyers

Hawkeyes

Hoosiers

Miners

Panthers

Seminoles

(a) Figure 9-20
Comparison of file organizations
(a) Sequential

Key

(Hoosiers)

B D F H L P

F P Z

R S Z

Miners

Panthers

Seminoles

Devils

Aces

Boilermakers

Flyers

Hawkeyes

Hoosiers

(b)
(b) Indexed

Relative
Record
Number

...

...

Miners

Hawkeyes

Aces

Hoosiers

Seminoles

Devils

Flyers

Panthers

Boilermakers

Hashing
Algorithm

Key

(Hoosiers)(c)
(c) Hashed

340 Part IV Design

on top of indexes, creating a hierarchical set of indexes, and the data are stored
sequentially in many contiguous segments. For example, to find the record with key
“Hoosiers,” the file organization would start at the top index and take the pointer
after the entry P, which points to another index for all keys that begin with the letters
G through P in the alphabet. Then the software would follow the pointer after the H
in this index, which represents all those records with keys that begin with the letters
G through H. Eventually, the search through the indexes either locates the desired
record or indicates that no such record exists. The reason for storing the data in
many contiguous segments is to allow room for some new data to be inserted in
 sequence without rearranging all the data.

The main disadvantages to indexed file organizations are the extra space
 required to store the indexes and the extra time necessary to access and maintain
indexes. Usually these disadvantages are more than offset by the advantages. Because
the index is kept in sequential order, both random processing and sequential pro-
cessing are practical. Also, because the index is separate from the data, you can build
multiple index structures on the same data file (just as in the library, where there
are multiple indexes on author, title, subject, and so forth). With multiple indexes,
software may rapidly find records that have compound conditions, such as records of
books by Tom Clancy on espionage.

The decision of which indexes to create is probably the most important physical
 database design task for relational database technology, such as Microsoft Access, Oracle,
DB2, and similar systems. Indexes can be created for both primary and secondary keys.
When using indexes, there is a trade-off between improved performance for retrievals
and degrading performance for inserting, deleting, and updating the rows in a file.
Thus, indexes should be used generously for databases intended primarily to support
data retrievals, such as for decision support applications. Because they impose addi-
tional overhead, indexes should be used judiciously for databases that support transac-
tion processing and other applications with heavy updating requirements.

Here are some guidelines for choosing indexes for relational databases (Gibson,
Hughes, and Remington, 1989):

1. Specify a unique index for the primary key of each table (file). This selection
ensures the uniqueness of primary key values and speeds retrieval based on those
values. Random retrieval based on primary key value is common for answering
multitable queries and for simple data maintenance tasks.

2. Specify an index for foreign keys. As in the first guideline, this speeds processing
of multitable queries.

3. Specify an index for nonkey fields that are referenced in qualification and sort-
ing commands for the purpose of retrieving data.

To illustrate the use of these rules, consider the following relations for PVF:

PRODUCT(Product_Number,Description,Finish,Room,Price)
ORDER(Order_Number,Product_Number,Quantity)

You would normally specify a unique index for each primary key: Product_
Number in PRODUCT and Order_Number in ORDER. Other indexes would be as-
signed based on how the data are used. For example, suppose that there is a system
module that requires PRODUCT and PRODUCT_ORDER data for products with a
price below $500, ordered by Product_Number. To speed up this retrieval, you could
consider specifying indexes on the following nonkey attributes:

1. Price in PRODUCT because it satisfies rule 3
2. Product_Number in ORDER because it satisfies rule 2

Because users may direct a potentially large number of different queries to the
database, and especially for a system with a lot of ad hoc queries, you will probably
have to be selective in specifying indexes to support the most common or frequently

 ChaPter 9 Designing Databases 341

used queries. See Hoffer et al. (2016) for a more thorough discussion of factors and
rules of thumb for selecting indexes.

Hashed File Organizations In a hashed file organization, the location of each row
is determined using an algorithm (see Figure 9-20c) that converts a primary key value
into a row address. Although there are several variations of hashed files, in most cases
the rows are located nonsequentially as dictated by the hashing algorithm. Thus,
 sequential data processing is impractical. On the other hand, retrieval of random
rows is very fast. There are issues in the design of hashing file organizations, such as
how to handle two primary keys that translate into the same address, but again, these
issues are beyond our scope (see Hoffer et al. [2016] for a thorough discussion).

Summary of File Organizations The three families of file organizations—sequen-
tial, indexed, and hashed—cover most of the file organizations you will have at your
disposal as you design physical files and databases. Table 9-3 summarizes the compar-
ative features of these file organizations. You can use this table to help choose a file
organization by matching the file characteristics and file processing requirements
with the features of the file organization.

Designing Controls for Files
Two of the goals of physical table design mentioned earlier are protection from fail-
ures or data loss and security from unauthorized use. These goals are achieved pri-
marily by implementing controls on each file. Data integrity controls, a primary type
of control, were mentioned earlier in this chapter. Two other important types of con-
trols address file backup and security.

It is almost inevitable that a file will be damaged or lost, due to either software
or human errors. When a file is damaged, it must be restored to an accurate and
reasonably current condition. A file and database designer has several techniques for
file restoration, including

•	 periodically making a backup copy of a file,
•	 storing a copy of each change to a file in a transaction log or audit trail, or
•	 storing a copy of each row before or after it is changed.

Hashed file organization
A file organization in which the address of
each row is determined using an algorithm.

Table 9-3 Comparative Features of Sequential, Indexed, and Hashed File Organizations
File Organization

Factor Sequential Indexed Hashed

Storage space No wasted space No wasted space for data, but extra
space for index

Extra space may be needed to
allow for addition and deletion
of records

Sequential retrieval
on primary key

Very fast Moderately fast Impractical

Random retrieval on
primary key

Impractical Moderately fast Very fast

Multiple key retrieval Possible, but
requires scanning whole file

Very fast with multiple indexes Not possible

Deleting rows Can create wasted space or
require reorganizing

If space can be dynamically allocated,
this is easy, but requires maintenance
of indexes

Very easy

Adding rows Requires rewriting file If space can be dynamically allocated,
this is easy, but requires maintenance
of indexes

Very easy, except multiple keys
with same address require
extra work

Updating rows Usually requires rewriting file Easy, but requires maintenance of
indexes

Very easy

342 Part IV Design

For example, a backup copy of a file and a log of rows after they were changed
can be used to reconstruct a file from a previous state (the backup copy) to its cur-
rent values. This process would be necessary if the current file were so damaged that
it could not be used. If the current file is operational but inaccurate, then a log of
before images of rows can be used in reverse order to restore a file to an accurate but
previous condition. Then a log of the transactions can be reapplied to the restored
file to bring it up to current values. It is important that the information system de-
signer make provisions for backup, audit trail, and row image files so that data files
can be rebuilt when errors and damage occur.

An information system designer can build data security into a file by several
means, including the following:

•	 Coding, or encrypting, the data in the file so that they cannot be read unless the
reader knows how to decrypt the stored values.

•	 Requiring data file users to identify themselves by entering user names and pass-
words, and then possibly allowing only certain file activities (read, add, delete,
change) for selected users to selected data in the file.

•	 Prohibiting users from directly manipulating any data in the file, but rather force
programs and users to work with a copy (real or virtual) of the data they need;
the copy contains only the data that users or programs are allowed to manipulate,
and the original version of the data will change only after changes to the copy are
thoroughly checked for validity.

Security procedures such as these all add overhead to an information system, so
only necessary controls should be included.

PHysiCal Database Design FOR
HOOsieR buRgeR
A set of normalized relations and an associated E-R diagram for Hoosier Burger
(Figure 9-16) were presented in the section Logical Database Design for Hoosier
Burger earlier in this chapter. The display of a complete design of this database
would require more documentation than space permits in this text, so we illustrate in
this section only a few key decisions from the complete physical database.

As outlined in this chapter, to translate a logical database design into a physical
database design, you need to make the following decisions:

•	 Create one or more fields for each attribute and determine a data type for each
field.

•	 For each field, decide if it is calculated; needs to be coded or compressed; must
have a default value or picture; or must have range, referential integrity, or null
value controls.

•	 For each relation, decide if it should be denormalized to achieve desired process-
ing efficiencies.

•	 Choose a file organization for each physical file.
•	 Select suitable controls for each file and the database.

Remember, the specifications for these decisions are made in physical database
design, and then the specifications are coded in the implementation phase using the
capabilities of the chosen database technology. These database technology capabilities
determine what physical database design decisions you need to make. For example,
for Oracle, which we assume is the implementation environment for this illustra-
tion, the only choice for file organization is indexed, so the file organization decision
 becomes which primary and secondary key attributes should be used to build indexes.

We illustrate these physical database design decisions only for the INVOICE
table. The first decision most likely would be whether to denormalize this table.

HOOSIER
BURGER

 ChaPter 9 Designing Databases 343

Based on the suggestions for possible denormalization presented in this chapter,
the only possible denormalization of this table would be to combine it with the
VENDOR table. Because each invoice must have a vendor, and the only additional
data about vendors not in the INVOICE table is the Vendor_Name attribute,
this is a good candidate for denormalization. Because Vendor_Name is not very
 volatile, repeating Vendor_Name in each invoice for the same vendor will not
cause excessive update maintenance. If Vendor_ Name is often used with other
invoice data when invoice data are displayed, then this would be a good candi-
date for denormalization. So the denormalized relation to be transformed into a
 physical table is

INVOICE(Vendor_ID,Invoice_Number,Invoice_Date,Paid?,Vendor_Name)

The next decision can be what indexes to create. The guidelines presented
in this chapter suggest creating an index for the primary key, all foreign keys,
and secondary keys used for sorting and qualifications in queries. So we create
a primary key index on the combined fields Vendor_ID and Invoice_Number.
INVOICE has no foreign keys. To determine what fields are used as secondary keys
in query sorting and qualification clauses, we would need to know the content of
queries. Also, it would be helpful to know query frequency because indexes do not
provide much performance efficiency for infrequently run queries. For simplicity,
suppose there were only two frequently run queries that reference the INVOICE
table, as follows:

1. Display all the data about all unpaid invoices due this week.
2. Display all invoices ordered by vendor, show all unpaid invoices first, then all

paid invoices, and order the invoices of each category in reverse sequence by
invoice date.

In the first query, both the Paid? and Invoice_Date fields are used for quali-
fication. Paid?, however, may not be a good candidate for an index because there
are only two values for this field. The systems analyst would need to discover what
percentage of invoices on file are unpaid. If this value is more than 10 percent, then
an index on Paid? would not likely be helpful. Invoice_Date is a more discriminating
field, so an index on this field would be helpful.

In the second query, Vendor_ID, Paid?, and Invoice_Date are used for sort-
ing. Vendor_ID and Invoice_Date are discriminating fields (most values occur
in less than 10 percent of the rows), so indexes on these fields will be helpful.
Assuming less than 10 percent of the invoices on file are unpaid, then it would
make sense to create the following indexes to make these two queries run as
 efficiently as possible:

1. Primary key index: Vendor_ID and Invoice_Number
2. Secondary key indexes: Vendor_ID,Invoice_Date, and Paid?

We do not illustrate security and other types of controls because these decisions
are very dependent on unique capabilities of the technology and a complex analysis
of what data which users have the right to read, modify, add, or delete.

eleCtROniC COMMeRCe aPPliCatiOn:
Designing Databases
Like many other analysis and design activities, designing the database for an Internet-
based electronic commerce application is no different than the process followed
when designing the database for other types of applications. In the last chapter, you
read how Jim Woo and the PVF development team designed the human interface for

344 Part IV Design

the WebStore. In this section, we examine the processes Jim followed when transform-
ing the conceptual data model for the WebStore into a set of normalized relations.

Designing Databases for Pine Valley Furniture’s Webstore
The first step Jim took when designing the database for the WebStore was to review
the conceptual data model—the E-R diagram—developed during the analysis phase
of the SDLC (see Figure 8-22 for a review). Given that there were no associative enti-
ties—many-to-many relationships—in the diagram, he began by identifying four dis-
tinct entity types, which he named

CUSTOMER,
ORDER,
INVENTORY, and
SHOPPING_CART

Once reacquainted with the conceptual data model, he examined the lists of
 attributes for each entity. He noted that three types of customers were identified during
conceptual data modeling, namely, corporate customers, home office customers, and
student customers. Yet all were referred to simply as a “customer.” Nonetheless, because
each type of customer had some unique information (attributes) that other types of
customers did not, Jim created three additional entity types, or subtypes, of customers:

CORPORATE
HOME_OFFICE
STUDENT

Table 9-4 lists the common and unique information about each customer type.
As Table 9-4 implies, four separate relations are needed to keep track of customer
information without having anomalies. The CUSTOMER relation is used to capture
common attributes, whereas the additional relations are used to capture information
unique to each distinct customer type. To identify the type of customer within the
CUSTOMER relation easily, a Customer_Type attribute is added to the CUSTOMER
relation. Thus, the CUSTOMER relation consists of

CUSTOMER(Customer_ID,Address,Phone,E-mail,Customer_Type).

To link the CUSTOMER relation to each of the separate customer types—
CORPORATE, HOME_OFFICE, and STUDENT—all share the same primary key,

Table 9-4 Common and Unique Information about each Customer Type
Common Information About ALL Customer Types

Corporate Customer Home Office Customer Student Customer

Customer ID Customer ID Customer ID
Address Address Address
Phone Number Phone Number Phone Number
E-Mail Address E-Mail Address E-Mail Address

Unique Information About EACH Customer Type
Corporate Customer Home Office Customer Student Customer

Corporate Name Customer Name Customer Name
Shipping Method Corporate Name School
Buyer Name Fax Number
Fax Number

 ChaPter 9 Designing Databases 345

Customer_ID, in addition to the attributes unique to each. This results in the follow-
ing relations:

CORPORATE(Customer_ID,Corporate_Name,Shipping_Method,Buyer_
Name,Fax)
HOME_OFFICE(Customer_ID,Customer_Name,Corporate_Name,Fax)
STUDENT(Customer_ID,Customer_Name,School)

In addition to identifying all the attributes for customers, Jim also identified
the attributes for the other entity types. The results of this investigation are summa-
rized in Table 9-5. As described in Chapter 8, much of the order-related information
is captured and tracked within PVF’s Purchasing Fulfillment System. This means that
the ORDER relation does not need to track all the details of the order because the
Purchasing Fulfillment System produces a detailed invoice that contains all order
details such as the list of ordered products, materials used, colors, quantities, and
other such information. To access this invoice information, a foreign key, Invoice_
ID, is included in the ORDER relation. To identify easily which orders belong to a
specific customer, the Customer_ID attribute is also included in ORDER. Two addi-
tional attributes, Return_Code and Order_Status, are also included in ORDER. The
Return_Code is used to track the return of an order more easily—or a product within
an order—whereas Order_Status is a code used to represent the state of an order as
it moves through the purchasing fulfillment process. This results in the following
ORDER relation:

ORDER(Order_ID,Invoice_ID,Customer_ID,Return_Code,Order_Status)

In the INVENTORY entity, two attributes—Materials and Colors—could take
on multiple values but were represented as single attributes. For example, Materials
represents the range of materials that a particular inventory item could be con-
structed from. Likewise, Colors is used to represent the range of possible product
colors. PVF has a long-established set of codes for representing materials and colors;
each of these complex attributes is represented as a single attribute. For example,
the value “A” in the Colors field represents walnut, dark oak, light oak, and natural
pine, whereas the value “B” represents cherry and walnut. Using this coding scheme,
PVF can use a single character code to represent numerous combinations of colors.
This results in the following INVENTORY relation:

INVENTORY(Inventory_ID,Name,Description,Size,Weight,Materials,Colors,
Price,Lead_Time)

Finally, in addition to Cart_ID, each shopping cart contains the Customer_ID
and Inventory_ID attributes so that each item in a cart can be linked to a particular

Table 9-5 attributes for Order, Inventory, and Shopping Cart entities
Order Inventory Shopping_Cart

Order_ID (primary key) Inventory_ID (primary key) Cart_ID (primary key)
Invoice_ID (foreign key) Name Customer_ID (foreign key)
Customer_ID (foreign key) Description Inventory_ID (foreign key)
Return_Code Size Material
Order_Status Weight Color

Materials Quantity
Colors
Price
Lead_Time

346 Part IV Design

inventory item and to a specific customer. In other words, both the Customer_ID and
Inventory_ID attributes are foreign keys in the SHOPPING_CART relation. Recall
that the SHOPPING_CART is temporary and is kept only while a customer is shop-
ping. When a customer actually places the order, the ORDER relation is created
and the line items for the order—the items in the shopping cart—are moved to the
Purchase Fulfillment System and stored as part of an invoice. Because we also need
to know the selected material, color, and quantity of each item in the SHOPPING_
CART, these attributes are included in this relation. This results in the following:

SHOPPING_CART(Cart_ID,Customer_ID,Inventory_ID,Material,Color,
Quantity)

Now that Jim has completed the database design for the WebStore, he has
shared all the design information with his project team so that the design can be
turned into a working database during implementation. We read more about the
WebStore’s implementation in the next chapter.

Summary

Databases are defined during the design phase of the sys-
tems development life cycle. They are designed usually in
parallel with the design of system interfaces. To design a
database, a systems analyst must understand the concep-
tual database design for the application, usually specified
by an E-R diagram, and the data requirements of each sys-
tem interface (report, form, screen, etc.). Thus, database
design is a combination of top-down (driven by an E-R
diagram) and bottom-up (driven by specific information
requirements in system interfaces) processes. Besides data
requirements, systems analysts must also know physical
data characteristics (e.g., length and format), frequency
of use of the system interfaces, and the capabilities of
 database technologies.

An E-R diagram is transformed into normalized rela-
tions by following well-defined principles, which are sum-
marized in Table 9-1. For example, each entity becomes
a relation and each many-to-many relationship or associa-
tive entity also becomes a relation. These principles also
specify how to add foreign keys to relations to represent
one-to-many relationships.

Separate sets of normalized relations are merged (a
process called view integration) to create a consolidated
logical database design. The different sets of relations
come from the conceptual E-R diagram for the applica-
tion, known human system interfaces (reports, screens,
forms, etc.), and known or anticipated queries for data
that meet certain qualifications. The result of merging is a
comprehensive, normalized set of relations for the appli-
cation. Merging is not simply a mechanical process. A sys-
tems analyst must address issues of synonyms, homonyms,
and functional dependencies between nonkeys during
view integration.

Fields in the physical database design represent the
attributes (columns) of relations in the logical database
design. Each field must have a data type as well as poten-
tially other characteristics such as a coding scheme to sim-
plify the storage of business data, a default value, picture
(or template) control, range control, referential integrity
control, or null value control. A storage format is chosen
to balance four objectives: (1) minimize storage space,
(2) represent all possible values of the field, (3) improve
data integrity for the field, and (4) support all data
 manipulations desired on the field.

Whereas normalized relations possess properties of
well-structured relations, the design of a physical table
 attempts to achieve two goals different from those of nor-
malization: efficient use of secondary storage and data
processing speed. Efficient use of storage means that the
amount of extra (or overhead) information is minimized.
Therefore, sequential file organizations are efficient in
the use of storage because little or no extra information,
besides the meaningful business data, is kept. Data pro-
cessing speed is achieved by storing data close together
that are used together and by building extra information
in the database, which allows data to be quickly found
based on primary or secondary key values or by sequence.

Table 9-3 summarizes the performance character-
istics of different types of file organizations. The systems
analyst must decide which performance factors are most
 important for each application and the associated data-
base. These factors are storage space; sequential retrieval
speed; random row retrieval speed; speed of retrieving
data based on multiple key qualifications; and the speed to
perform data maintenance activities of row deletion, addi-
tion, and updating.

 ChaPter 9 Designing Databases 347

An index is information about the primary or sec-
ondary keys of a file. Each index entry contains the key
value and a pointer to the row that contains that key value.
An index facilitates rapid retrieval to rows for queries that
involve AND, OR, and NOT qualifications of keys (e.g., all
products with a maple finish and unit cost greater than
$500 or all products in the office furniture product line).
When using indexes, there is a trade-off between im-
proved performance for retrievals and degrading perfor-
mance for inserting, deleting, and updating the rows in

a file. Thus, indexes should be used generously for data-
bases intended primarily to support data retrievals, such as
for decision support applications. Because they impose ad-
ditional overhead, indexes should be used judiciously for
databases that support transaction processing and other
applications with heavy updating requirements. Typically,
you create indexes on a file for its primary key, foreign
keys, and other attributes used in qualification and sort-
ing clauses in queries, forms, reports, and other system
interfaces.

Match each of the key terms above to the definition that best
fits it.

____ A named, two-dimensional table of data. Each relation
consists of a set of named columns and an arbitrary num-
ber of unnamed rows.

____ A relation that contains a minimum amount of redun-
dancy and allows users to insert, modify, and delete the
rows without errors or inconsistencies.

____ The process of converting complex data structures into
simple, stable data structures.

____ A particular relationship between two attributes.

____ A relation for which every nonprimary key attribute is
functionally dependent on the whole primary key.

____ A relation that is in second normal form and that has no
functional (transitive) dependencies between two (or
more) nonprimary key attributes.

____ An attribute that appears as a nonprimary key attribute in
one relation and as a primary key attribute (or part of a
primary key) in another relation.

____ An integrity constraint specifying that the value (or exis-
tence) of an attribute in one relation depends on the value
(or existence) of the same attribute in another relation.

____ A foreign key in a relation that references the primary key
values of that same relation.

____ Two different names that are used for the same attribute.

____ A single attribute name that is used for two or more differ-
ent attributes.

____ The smallest unit of named application data recognized by
system software.

____ A coding scheme recognized by system software for repre-
senting organizational data.

____ A field that can be derived from other database fields.

____ A value a field will assume unless an explicit value is
 entered for that field.

____ A special field value, distinct from a zero, blank, or any
other value, that indicates that the value for the field is
missing or otherwise unknown.

____ A named set of rows and columns that specifies the fields
in each row of the table.

____ The process of splitting or combining normalized rela-
tions into physical tables based on affinity of use of rows
and fields.

____ A named set of table rows stored in a contiguous section of
secondary memory.

____ A technique for physically arranging the records of
a file.

____ A field of data that can be used to locate a related field or
row of data.

____ The rows in the file are stored in sequence according to a
primary key value.

Key TermS
 9.1 Calculated field
 9.2 Data type
 9.3 Default value
 9.4 Denormalization
 9.5 Field
 9.6 File organization
 9.7 Foreign key
 9.8 Functional dependency
 9.9 Hashed file organization
 9.10 Homonym

 9.11 Index
 9.12 Indexed file organization
 9.13 Normalization
 9.14 Null value
 9.15 Physical file
 9.16 Physical table
 9.17 Pointer
 9.18 Primary key
 9.19 Recursive foreign key
 9.20 Referential integrity

 9.21 Relation
 9.22 Relational database model
 9.23 Second normal form (2NF)
 9.24 Secondary key
 9.25 Sequential file organization
 9.26 Synonym
 9.27 Third normal form (3NF)
 9.28 Well-structured relation

348 Part IV Design

revIew QueSTIonS

 9.29 What is the purpose of normalization?

 9.30 List five properties of relations.

 9.31 What problems can arise when merging relations (view
integration)?

 9.32 How are relationships between entities represented in the
relational data model?

 9.33 What is the relationship between the primary key of a rela-
tion and the functional dependencies among all attributes
within that relation?

 9.34 How is a foreign key represented in relational notation?

 9.35 Can instances of a relation (sample data) prove the exis-
tence of a functional dependency? Why or why not?

 9.36 In what way does the choice of a data type for a field help
to control the integrity of that field?

 9.37 What is the difference between how a range control state-
ment and a referential integrity control statement are han-
dled by a file management system?

 9.38 What is the purpose of denormalization? Why might you
not want to create one physical table or file for each rela-
tion in a logical data model?

 9.39 What factors influence the decision to create an index on
a field?

 9.40 Explain the purpose of data compression techniques.

 9.41 What are the goals of designing physical tables?

 9.42 What are the seven factors that should be considered in
selecting a file organization?

ProblemS and exercISeS
 9.43 Assume that, at PVF, products are composed of compo-

nents, products are assigned to salespersons, and compo-
nents are produced by vendors. Also assume that, in the
relation PRODUCT(Prodname, Salesperson, Compname,
Vendor), Vendor is functionally dependent on Compname
and Compname is functionally dependent on Prodname.
Eliminate the transitive dependency in this relation and
form 3NF relations.

 9.44 Transform the E-R diagram of Figure 8-23 into a set of 3NF
relations. Make up a primary key where needed and one or
more nonkey attributes for each entity.

 9.45 Consider the E-R diagram of Figure 9-21.

a. Transform this E-R diagram into a set of 3NF relations.
b. State and justify all referential integrity rules for the 3NF

relations you created in Problem and Exercise 9-45a.

____ The rows are stored either sequentially or nonsequentially,
and an index is created that allows software to locate indi-
vidual rows.

____ A table used to determine the location of rows in a file that
satisfy some condition.

____ One or a combination of fields for which more than one
row may have the same combination of values.

____ The address for each row is determined using an
algorithm.

____ An attribute whose value is unique across all occurrences
of a relation.

____ Data represented as a set of related tables or relations.

Priced_at

 VENDOR

Vendor_ID
Address

 PART

Item_Number
Description

PRICE QUOTE
Quote_Quantity
Price

 PART RECEIPT
Order_Number
Date
Order_Quantity

Figure 9-21
E-R diagram for Problem and Exercise 9-45

 ChaPter 9 Designing Databases 349

 9.46 Consider the list of individual 3NF relations below. These
relations were developed from several separate normaliza-
tion activities.

PATIENT(Patient_ID,Room_Number,Admit_Date,
Address)

ROOM(Room_Number,Phone,Daily_Rate)

PATIENT(Patient_Number,Treatment_Description,
Address)

TREATMENT(Treatment_ID,Description,Cost)

PHYSICIAN(Physician_ID,Name,Department)

PHYSICIAN(Physician_ID,Name,Supervisor_ID)

a. Merge these relations into a consolidated set of 3NF
relations. State whatever assumptions you consider nec-
essary (including but not limited to foreign keys) to
resolve any potential problems you identify in the merg-
ing process.

b. Draw an E-R diagram for your answer to Problem and
Exercise 9-46a.

 9.47 Consider the following 3NF relations about a sorority or
fraternity:

MEMBER(Member_ID,Name,Address,Dues_Owed)

OFFICE(Office_Name,Officer_ID,Term_Start_Date,
Budget)

EXPENSE(Ledger_Number,Office_Name,Expense_Date,
Amt_Owed)

PAYMENT(Check_Number,Expense_Ledger_Number,
Amt_Paid)

RECEIPT(Member_ID,Receipt_Date,Dues_Received)

COMMITTEE(Committee_ID,Officer_in_Charge)

WORKERS(Committee_ID,Member_ID)

a. Foreign keys are not indicated in these relations.
 Decide which attributes are foreign keys and justify your
decisions.

b. Draw an E-R diagram for these relations, using your an-
swer to Problem and Exercise 9-47a.

c. Explain the assumptions you made about cardinali-
ties in your answer to Problem and Exercise 9-47b.
 Explain why it is said that the E-R data model is more
expressive or more semantically rich than the rela-
tional data model.

 9.48 Consider the following functional dependencies:

Applicant_ID S Applicant_Name

Applicant_ID S Applicant_Address

Position_ID S Position_Title

Position_ID S Date_Position_Opens

Position_ID S Department

Applicant_ID + Position_ID S Date_Applied

Applicant_ID + Position_ID S Date_ Interviewed

a. Represent these attributes with 3NF relations. Provide
meaningful relation names.

b. Represent these attributes using an E-R diagram.
 Provide meaningful entity and relationship names.

 9.49 Suppose you were designing a file of student records for
your university’s placement office. One of the fields that
would likely be in this file is the student’s major. Develop
a coding scheme for this field that achieves the objectives
outlined in this chapter for field coding.

 9.50 In Problem and Exercise 9-45, you developed integrated
normalized relations. Choose primary keys for the files that
would hold the data for these relations. Did you use attri-
butes from the relations for primary keys or did you design
new fields? Why or why not?

 9.51 Suppose you created a file for each relation in your answer
to Problem and Exercise 9-45. If the following queries rep-
resented the complete set of accesses to this database, sug-
gest and justify what primary and secondary key indexes
you would build.

a. For each PART in Item_Number order list in Vendor_ID,
 sequence all the vendors and their associated prices for
that part.

b. List all PART RECEIPTs, including related PART fields
for all the parts received on a particular day.

c. For a particular VENDOR, list all the PARTs, and their
associated prices, that VENDOR can supply.

 9.52 Suppose you were designing a default value for the mari-
tal status field in a student record at your university.
What possible values would you consider and why? How
would the default value change depending on other fac-
tors, such as type of student (undergraduate, graduate,
professional)?

 9.53 Consider Figure 9-19b. Explain a query that would likely be
processed more quickly using the denormalized relations
rather than the normalized relations.

 9.54 Model a set of typical family relationships—spouse, father,
and mother—in a single 3NF relation. Also include nonkey
attributes name and birth date. Assume that each person
has only one spouse, one father, and one mother. Show for-
eign keys with dashed underlining.

FIeld exercISeS
 9.55 Locate library books or articles that discuss additional

normal forms other than second and third normal forms.
Describe each of these additional normal forms and give
examples of each. How are these additional normal forms
different from those presented in this chapter? What ad-
ditional benefit does their use provide?

 9.56 Find a systems analyst or database administrator within
a company that uses a database management system to
 organize the company’s corporate data. Ask this person to
 describe how he or she uses normalization and which level
of normal form is used for each database table. Are all tables
in third normal form? Why do they denormalize, if they do?

350 Part IV Design

reFerenceS
Codd, E. F. 1970. “A Relational Model of Data for Large Rela-

tional Databases.” Communications of the ACM 13(6): 77–87.
Date, C. J. 2012. Database Design and Relational Theory. Sebasto-

pol, CA: O’Reilly Media.
Elmasri, R., and S. B. Navathe. 2015. Fundamentals of Database Sys-

tems, 6th ed. Upper Saddle River, NJ: Addison-Wesley.
Gibson, M., C. Hughes, and W. Remington. 1989. “Tracking the

Trade-Offs with Inverted Lists.” Database Programming & De-
sign 2 (January): 28–34.

Hoffer, J. A., V. Ramesh, and H. Topi. 2016. Modern Database
Management, 12th ed. Upper Saddle River, NJ: Prentice Hall.

Microsoft 2015. “Lesson 3: Optimizing the Database Design by
Denormalizing.” Microsoft Developer Network. Available at:
https://msdn.microsoft.com/en-us/library/cc505841.aspx.
Accessed February 25, 2015.

Umanath, N. S., and R. W. Scamell. 2014. Data Modeling and Da-
tabase Design. Independence, KY: Cengage Learning.

 9.57 Find a systems analyst or database administrator within
a company that uses a database management system to
orga nize the company’s corporate data. Ask this person
to describe what “additional information” should be
 collected during requirements analysis that is needed for
file and database design but that is not very useful for
 earlier phases of systems development.

 9.58 Find out what database management systems are avail-
able at your university for student use. Investigate which
data types these DBMSs support. Compare these DBMSs
based on the data types supported and suggest which types
of applications each DBMS is best suited for based on this
comparison. Also investigate the capabilities these DBMSs

have for creating indexes. What limitations are imposed
on index creation? These might include constraints such
as the maximum number of indexes per table, what fields
or combinations of fields can be indexed, and how in-
dexes are used in query processing.

 9.59 Find out what database management systems are available
at your university for student use. Investigate what physical
file and database design decisions need to be made. Com-
pare this list of decisions with those discussed in this chap-
ter. For physical database and design decisions (or options)
not discussed in this chapter, investigate what choices you
have and how you should choose among them. Submit a
report to your instructor with your findings.

https://msdn.microsoft.com/en-us/library/cc505841.aspx

 ChaPter 9 Designing Databases 351

PetrIe eLeCtronICs

“Hi guys,” Jim said.
“Oh, hi, Jim,” Sanjay replied. “Glad I ran into you—we are

moving ahead on the preliminary database designs. We’re
translating the earlier conceptual designs into physical
designs.”

“Who’s working on that? Stephanie?” Jim asked. Stephanie
Welch worked for Petrie’s database administrator.

“Yes,” Sanjay replied. “But she is supervising a
 couple of interns who have been assigned to her for
this task.”

“So how is that going? Has she approved their work?”
“Yeah, I guess so. It all seems to be under control.”
“I don’t want to second-guess Stephanie, but I’m curi-

ous about what they’ve done.”
“Do you really have time to review interns’ work?”

 Sanjay asked. “OK, let me send you the memo Stephanie
sent me (PE Figure 9-1).”

Chapter 9: Designing Databases

Jim Watanabe, assistant director of IT for Petrie Electronics,
and the manager of the “No Customer Escapes” customer
loyalty system project, was walking down the hall from his
office to the cafeteria. It was 4 p.m., but Jim was nowhere
close to going home yet. The deadlines he had imposed for
the project were fast approaching. His team was running
 behind, and he had a lot of work to do over the next week
to try to get things back on track. He needed to get some
 coffee for what was going to be a late night.

As Jim approached the cafeteria, he saw Sanjay Agar-
wal and Sam Waterston walking toward him. Sanjay was
in charge of systems integration for Petrie, and Sam was
one of the company’s top interface designers. They were
both on the customer loyalty program team. They were
having an intense conversation as Jim approached.

To: Stephanie Welch
From: Xin Zhu & Anton Washington
Re: Preliminary physical database design for “No Customer Escapes”
Date: June 1, 2013

We were charged with converting the conceptual database designs for the customer loyalty system to physical database designs.
 We started with one of the initial ERDs (see PE Figure 8-1), designed at a very high level. The ERD identified six entities:
 Customer, Product, Service, Promotion, Transaction, and Coupon. We discovered that all of these entities are already
 defined in Petrie’s existing systems. The only entity not already defined is Coupon. Product and Service are defined as part
 of the product database. Promotion is defined as part of the marketing database. Customer and Transaction are defined as
 part of the core database.
However, after considerable consideration, we are not sure if some of these already identified and defined entities are the same
 as those identified in the preliminary ERD we were given. Specifically, we have questions about Customer, Transaction
 and Promotion.
Customer: The Customer entity is more complex than it appears. There are several ways to think about the instances of this entity.
 For example, we can divide Customers into those who shop online and those who shop in the brick-and-mortar stores. And
 there is of course some overlap. The biggest distinction between these two groups is that we know the names of (and
 other information about) the Customers who shop online, but we may have very little identifying information about those
 who shop only in the stores. For example, if an individual shops only at a store and pays only with cash, that individual
 meets the definition of Customer (see PE Table 8-1), but we collect no data on that individual at all. We raise these issues
 to call attention to the relationship between Customers and members of the customer loyalty program: All members are
 Customers, but not all Customers are members. We suggest that the entity called Customer in the preliminary ERD be
 renamed ‘Member,’ as we think that is a better name for this entity. We are prepared to map out the table design when this
 change is approved.
Transaction: Petrie already has a relational table called Transaction, but that applies to all transactions in all stores
 and online. The customer loyalty program focuses on the transactions of its Members, so the program involves only a subset
 of Transactions. We suggest that the ERD be redesigned to take this fact into account, and that what is now called
 Transaction be renamed ‘Member Transaction.’ The relational tables should then be designed accordingly.
Promotion: Petrie already has a relational table called Promotion. Again, the customer loyalty program, while having some interest
 in general promotions, focuses primarily on promotions created specifically for Members of the program. What is called
 Promotion in the ERD is really a subset of all of Petrie’s promotions. We recommend a name change to ‘Member Promotion’
 with the associated relational table design.
Finally, for the Coupon entity, which is new, we note from the ERD that Coupon only has one relationship, and that is with
 Customer. As it is a one-to-many relationship, the PK from Customer will be an FK in Coupon. We recommend the

following table design: COUPON (Coupon ID,Customer ID, Creation Date, Expiration Date, Value)

MEMO

Pe Figure 9-1
Memo on issues related to physical database design for Petrie Electronic’s customer loyalty program

352 Part IV Design

answer to Case Question 9-61? If not, how are mini-
mum cardinalities enforced in the database?

 9.63 Using your answer to Case Question 9-61, select data
types, formats, and lengths for each attribute of each
relation. Use the data types and formats supported
by Microsoft Access. What data type should be used
for nonintelligent primary keys?

 9.64 Complete all table and field definitions for the Petrie
Electronics case database using Microsoft Access.
Besides the decisions you have made in answers to
the preceding questions, fill in all other field defini-
tion parameters for each field of each table.

 9.65 The one decision for a relational database that usu-
ally influences efficiency the most is index defi-
nition. What indexes do you recommend for this
database? Justify your selection of each index.

 9.66 Using Microsoft Visio, develop an E-R diagram
with all the supporting database properties for
 decisions you made in Case Questions 9-60–65.
Can all the database design decisions you made be
documented in Visio? Finally, use Visio to generate
Microsoft Access table definitions. Did the table
generation create the table definitions you would
create manually?

“You’re right, I don’t have time,” Jim said. “But I’m curi-
ous. It won’t take long to read the memo, right?”

“OK, I’ll send it as soon as I get back to my desk.”
“OK, thanks.” Jim walked on to the cafeteria, and he

poured himself a big cup of coffee.

Case Questions

 9.60 In the questions associated with the Petrie Elec-
tronics case at the end of Chapter 8, you were asked
to modify the E-R diagram given in PE Figure 8-1 to
 include any other entities and the attributes you iden-
tified from the Petrie cases. Review your answers
to these questions, and add any additional needed
relations to the document in PE Figure 9-1.

 9.61 Study your answer to Case Question 9-60. Verify that
the relations you say represent the Petrie Electronics
database are in third normal form. If they are, explain
why. If they are not, change them so that they are.

 9.62 The E-R diagram you developed in questions in
the Petrie Electronics case at the end of Chapter 8
should have shown minimum cardinalities on both
ends of each relationship. Are minimum cardinali-
ties represented in some way in the relations in your

353

In this chapter, you will learn what guidelines to follow
when designing forms and reports. In general, forms are
used to present or collect information on a single item,
such as a customer, product, or event. Forms can be used
for both input and output. Reports, on the other hand,
are used to convey information on a collection of items.
Form and report design is a key ingredient for successful
systems. Because users often equate the quality of a sys-
tem with the quality of its input and output methods, you
can see that the design process for forms and reports is
an especially important activity. And because information
can be collected and formatted in many ways, gaining an
understanding of design dos and don’ts and the trade-
offs between various formatting options is useful for all
systems analysts.

In the next section, the process of designing forms
and reports is briefly described, and we also provide guid-
ance on the deliverables produced during this process.
Guidelines for formatting information are then provided
that serve as the building blocks for designing all forms
and reports. We then describe methods for assessing the
usability of form and report designs. The chapter con-
cludes by examining how to design forms and reports for
Internet-based electronic commerce applications.

Designing Forms anD reports
This is the second chapter that focuses on system design
within the systems development life cycle (see Figure 10-1).
In this chapter, we describe issues related to the design of sys-
tem inputs and outputs—forms and reports. In Chapter 11,
we focus on the design of dialogues and interfaces, which
are how users interact with systems. Due to the highly re-
lated topics and guidelines in these two chapters, they form
one conceptual body of guidelines and illustrations that
jointly guide the design of all aspects of system inputs and
outputs. In each of these chapters, your objective is to gain
an understanding of how you can transform information
gathered during analysis into a coherent design. Although
all system design issues are related, topics discussed in this
chapter on designing forms and reports are especially rela-
tive to those in the following chapter—the design of dia-
logues and interfaces.

System inputs and outputs—forms and reports—
were identified during requirements structuring. The
kinds of forms and reports the system will handle were
established as part of the design strategy formed at the
end of the analysis phase of the systems development
process. During analysis, however, you may not have been

10.4 format text, tables, and lists effectively;

10.5 explain how to assess usability and describe how
variations in users, tasks, technology, and
environmental characteristics influence the
usability of forms and reports; and

10.6 discuss guidelines for the design of forms and
reports for Internet-based electronic commerce
systems.

Learning Objectives

After studying this chapter, you should be able to

10.1 explain the process of designing forms and
reports and the deliverables for their creation;

10.2 apply the general guidelines for formatting forms
and reports;

10.3 use color and know when color improves the
usability of information;

Designing Forms
and reports10

Chapter

Introduction

354 Part IV Design

concerned with the precise appearance of forms and reports; your concerns likely
focused on which forms or reports need to exist and their contents. You may have
distributed prototypes of forms and reports that emerged during analysis as a way
to confirm requirements with users. Forms and reports are integrally related to
various diagrams developed during requirements structuring. For example, every
input form will be associated with a data flow entering a process on a data flow
diagram (DFD), and every output form or report will be a data flow produced by
a process on a DFD. This means that the contents of a form or report correspond
to the data elements contained in the associated data flow. Further, the data on all
forms and reports must consist of data elements in data stores and on the E-R data
model for the application, or must be computed from these data elements. (In
rare instances, data simply go from system input to system output without being
stored within the system.) It is common that, as you design forms and reports, you
will discover flaws in DFDs and E-R diagrams; these diagrams should be updated as
designs evolve.

If you are unfamiliar with computer-based information systems, it will be helpful
to clarify exactly what we mean by a form or report. A form is a business document that
contains some predefined data and often includes some areas where additional data
are to be filled in. Most forms have a stylized format and are usually not in a simple row
and column format. Examples of business forms are product order forms, employment
applications, and class registration sheets. Traditionally, forms have been displayed on
a paper medium, but today video display technology allows us to duplicate the layout
of almost any printed form, including an organizational logo or any graphic, on a
video display terminal. Forms displayed on a video display may be used for data display
or data entry. Additional examples of forms are an electronic spreadsheet, a computer
sign-on or menu, and an ATM transaction layout. On the Internet, form interaction is
the standard method of gathering and displaying information when consumers order
products, request product information, or query account status.

A report is a business document that contains only predefined data; it is a passive
document used solely for reading or viewing. Examples of reports include invoices,
weekly sales summaries by region and salesperson, or a pie chart of population by

Form
A business document that contains some
predefined data and may include some
areas where additional data are to be
filled in. An instance of a form is typically
based on one database record.

Report
A business document that contains only
predefined data; it is a passive document
used solely for reading or viewing. A report
typically contains data from many unrelated
records or transactions.

DesignImplementation

Planning

Maintenance Analysis

Databases
Forms and Reports
Dialogues and Interfaces
Distributed and Internet Systems

FiguRe 10-1
Systems development life cycle with
logical design phase highlighted

 ChaPter 10 Designing Forms anD reports 355

age categories (see Table 10-1). We usually think of a report as printed on paper, but
it may be printed to a computer file, a visual display screen, or some other medium
such as microfilm. Often a report has rows and columns of data, but a report may
be of any format—for example, mailing labels. Frequently, the differences between
a form and a report are subtle. A report is only for reading and often contains data
about multiple unrelated records in a computer file. In contrast, a form typically
contains data from only one record or is based on one record, such as data about
one customer, one order, or one student. The guidelines for the design of forms and
reports are very similar.

the process of Designing Forms and reports
Designing forms and reports is a user-centered activity that typically follows a prototyp-
ing approach (see Figure 6-7). User-centered design refers to a design approach that
involves an understanding of the target audience, their tasks and goals, information
needs, experience levels, and so on. So, to begin, you must gain an understanding
of the intended user and task objectives by collecting initial requirements during re-
quirements determination. During this process, several questions must be answered.
These questions attempt to answer the “who, what, when, where, and how” related
to the creation of all forms or reports (see Table 10-2). Gaining an understanding of
these questions is a required first step in the creation of any form or report.

For example, understanding who the users are—their skills and abilities—will
greatly enhance your ability to create an effective design (Lazar, 2004; McCracken et
al., 2004; Te’eni et al., 2006). In other words, are your users experienced computer
users or novices? What are the educational level, business background, and task-rel-
evant knowledge of each user? Answers to these questions will provide guidance for
both the format and content of your designs. Also, what is the purpose of the form
or report? What task will users be performing and what information is needed to
complete this task? Other questions are also important to consider. Where will the
users be when performing this task? Will users have access to online systems or will
they be in the field? Also, how many people will need to use this form or report? If,

Table 10-1 Common Types of business Reports
Report Name Description
Scheduled Reports Reports produced at predefined intervals—daily, weekly, or

monthly—to support the routine informational needs of an
organization.

Key-Indicator Reports Reports that provide a summary of critical information on a
recurring basis.

Exception Reports Reports that highlight data that are out of the normal operating
range.

Drill-Down Reports Reports that provide details behind the summary values on a key-
indicator or exception report.

Ad-hoc Reports Unplanned information requests in which information is gathered
to support a nonroutine decision.

Table 10-2 Fundamental Questions When Designing Forms and Reports
1. Who will use the form or report?
2. What is the purpose of the form or report?
3. When is the form or report needed and used?
4. Where does the form or report need to be delivered and used?
5. How many people need to use or view the form or report?

356 Part IV Design

for example, a report is being produced for a single user, the design requirements
and usability assessment will be relatively simple. A design for a larger audience, how-
ever, may need to go through a more extensive requirement collection and usability
assessment process.

After collecting the initial requirements, you structure and refine this infor-
mation into an initial prototype. Structuring and refining the requirements are
completed independently of the users, although you may need to occasionally con-
tact users in order to clarify some issue overlooked during analysis. Finally, you ask
users to review and evaluate the prototype. After reviewing the prototype, users
may accept the design or request that changes be made. If changes are needed, you
will repeat the construction–evaluate–refinement cycle until the design is accepted.
Usually, several iterations of this cycle occur during the design of a single form or
report. As with any prototyping process, you should make sure that these iterations
occur rapidly in order to gain the greatest benefits from this design approach.

The initial prototype may be constructed in numerous environments, includ-
ing Windows, OSX, or, most frequently, for the web. The obvious choice is to employ
standard development tools used within your organization and the target platform
for your system. Often, initial prototypes are simply a series of mock screens that
are not working modules or systems. Mock screens can be produced from a word
processor, computer graphics design package, electronic spreadsheet, or even on
paper (Snyder, 2003). This series of mock screens is commonly referred to as a paper
prototype. In addition to providing a look and feel that can be assessed, the paper
prototype is also used to test content, task flow, and other usability factors. It is im-
portant to remember that the focus of this activity is on the design—content, layout,
and flow—of forms and reports; of course, you must also consider how specific forms
and reports will be implemented. It is fortunate that tools for designing forms and re-
ports are rapidly evolving, making development faster and easier. In the past, inputs
and outputs of all types were typically designed by hand on a coding or layout sheet.
For example, Figure 10-2 shows the layout of a data input form using a coding sheet.

Although coding sheets are still used, their importance has diminished due
to significant changes in system operating environments and the evolution of
 automated design tools. Prior to the creation of graphical operating environments,
for example, analysts designed many inputs and outputs that were 80 columns
(characters) by 25 rows, the standard dimensions for most video displays. These lim-
its in screen dimensions are radically different in graphical operating environments
such as Microsoft’s Windows or the web, where font sizes and screen dimensions
can change from user to user, or from device to device. Consequently, the creation
of new tools and development environments was needed to help analysts and pro-
grammers develop these graphical and flexible designs. Increasingly, developers are
using tools that can quickly create screen mockups, referred to as wireframes, to
show the placement of information elements on a screen and the space needed for
each element. Wireframe can be used to quickly develop a series of screens so that
users can get a sense of the look and feel of a design, as well as the flow and interac-
tion of a series of screens (see Figure 10-3a). Some wireframe development tools, like
Axure, can directly generate HTML code for web applications. For non-web applica-
tions, developers may build screen prototypes using a development language. For
example, Figure 10-3b shows an example of the same data input form as designed in
Microsoft’s Visual Basic.NET. Note the variety of fonts, sizes, and highlighting that
was used. Given the need for rapid, iterative development when designing forms
and reports, tools that seamlessly move prototype designs to functional systems are
becoming standard in most professional development organizations.

Deliverables and outcomes
Each systems development life cycle (SDLC) phase helps you to construct a system.
In order to move from phase to phase, each activity produces a type of deliverable

Paper prototype
A series of mock screens that can be used
to test content, look, and feel, as well as
the task flow and other usability factors.

Wireframe
A simple design to show the placement of
information elements on a screen and the
space needed for each element.

 ChaPter 10 Designing Forms anD reports 357

that is used in a later phase or activity. For example, within the project initiation and
planning phase of the SDLC, the Baseline Project Plan serves as input to many sub-
sequent SDLC activities. In the case of designing forms and reports, design specifica-
tions are the major deliverables and are inputs to the system implementation phase.
Design specifications have three sections:

1. Narrative overview
2. Sample design
3. Testing and usability assessment

The first section of a design specification contains a general overview of the
characteristics of the target users, tasks, system, and environmental factors in which
the form or report will be used. The purpose is to explain to those who will actually

SYSTEM
PROGRAM
PROGRAMMER DATE

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

FiguRe 10-2
The layout of a data input form
using a coding sheet

358 Part IV Design

FiguRe 10-3b
A data input screen designed in
Microsoft’s Visual Basic.NET
(Source: Microsoft Corporation.)

FiguRe 10-3A
A data input screen designed as a
wireframe

develop the final form why this form exists and how it will be used so that they can
make the appropriate implementation decisions. In this section, you list general in-
formation and the assumptions that helped shape the design. For example, Figure
10-4 shows an excerpt of a design specification for a Customer Account Status form
for Pine Valley Furniture (PVF). The first section of the specification, Figure 10-4a,
provides a narrative overview containing the relevant information to developing
and using the form within PVF. The overview explains the tasks supported by the

 ChaPter 10 Designing Forms anD reports 359

form, where and when the form is used, characteristics of the people using the
form, the technology delivering the form, and other pertinent information. For
example, if the form is delivered on a visual display terminal, this section would
describe the capabilities of this device, such as whether it has a touch screen and
whether color and a mouse are available.

In the second section of the specification, Figure 10-4b, a sample design of
the form is shown. This design may be hand drawn using a coding sheet, although
in most instances it is developed using standard development tools. Using actual

(a) Narrative overview

Form: Customer Account Status
Users: Customer account representatives within corporate o	ces
Tasks: Assess customer account information: address, account

balance, year-to-date purchases and payments, credit limit,
discount percentage, and account status

System: Novell Network, Microsoft Windows
Environment: Standard o	ce environment

(b) Sample design

(c) Testing and usability assessment

User Rated Perceptions (average 14 users):
consistency [1 = consistent to 7 = inconsistent]: 1.52
su	ciency [1 = su	cient to 7 = insu	ciency]: 1.43
accuracy [1 = accurate to 7 = inaccurate]: 1.67
. . .

FiguRe 10-4
Design specification for the design of
forms and reports
(Source: Microsoft Corporation.)

360 Part IV Design

development tools allows the design to be more thoroughly tested and assessed. The
final section of the specification, Figure 10-4c, provides all testing and usability assess-
ment information. Procedures for assessing designs are described later in this chap-
ter. Some specification information may be irrelevant when designing some forms
and reports. For example, the design of a simple Yes/No selection form may be so
straightforward that no usability assessment is needed. Also, much of the narrative
overview may be unnecessary unless intended to highlight some exception that must
be considered during implementation.

Formatting Forms anD reports
A wide variety of information can be provided to users of information systems, rang-
ing from text to video to audio. As technology continues to evolve, a greater variety of
data types will be used. Unfortunately, a definitive set of rules for delivering every type
of information to users has yet to be defined, and these rules are continuously evolv-
ing along with the rapid changes in technology. Nonetheless, a large body of human–
computer interaction research has provided numerous general guidelines for format-
ting information. Many of these guidelines will undoubtedly apply to the formatting
of information on yet-to-be-determined devices. Keep in mind that the mainstay of
designing usable forms and reports requires your active interaction with users. If this
single and fundamental activity occurs, it is likely that you will create effective designs.

For example, one of the greatest challenges for designing mobile applications
that run on devices like the iPhone is the human–computer interface (Nielsen and
Budiu, 2012). In particular, the small video display of these devices presents signifi-
cant challenges for application designers. Nevertheless, as these and other comput-
ing devices evolve and gain popularity, standard guidelines will emerge to make the
process of designing interfaces for these devices much less challenging.

general Formatting guidelines
Over the past several years, industry and academic researchers have investi-
gated how the format of information influences individual task performance
and perceptions of usability. Through this work, several guidelines for format-
ting information have emerged (see Table 10-3). These guidelines reflect some of

Table 10-3 General Guidelines for the Design of Forms and Reports
Meaningful Titles:
Clear and specific titles describing content and use of form or report
Revision date or code to distinguish a form or report from prior versions
Current date, which identifies when the form or report was generated
Valid date, which identifies on what date (or time) the data in the form or report were accurate
Meaningful Information:
Only needed information should be displayed
Information should be provided in a manner that is usable without modification
Balance the Layout:
Information should be balanced on the screen or page
Adequate spacing and margins should be used
All data and entry fields should be clearly labeled
Design an Easy Navigation System:
Clearly show how to move forward and backward
Clearly show where you are (e.g., page 1 of 3)
Notify user when on the last page of a multipaged sequence

 ChaPter 10 Designing Forms anD reports 361

the general truths that apply to the formatting of most types of information (for
more information, the interested reader should see the books by Flanders and
Peters, 2002; Johnson, 2007; Krug, 2014; Nielson, 1999; Nielson and Loranger,
2006; and Shneiderman et al., 2009). The differences between a well-designed
form or report and one that is poorly designed will often be obvious. For example,
Figure 10-5a shows a poorly designed form for viewing the current account bal-
ance for a PVF customer. Figure 10-5b (page 2 of 2) is a better design that incor-
porates several general guidelines from Table 10-3.

The first major difference between the two forms has to do with the title. The
title on Figure 10-5a is ambiguous, whereas the title on Figure 10-5b clearly and spe-
cifically describes the contents of the form. The form in Figure 10-5b also includes
the date on which the form was generated so that, if printed, it will be clear to the
reader when this occurred. Figure 10-5a displays information that is extraneous to
the intent of the form—viewing the current account balance—and provides infor-
mation that is not in the most useful format for the user. For example, Figure 10-5a

Vague title
Di�cult to read: information

is packed too tightly

No summary
of account activity

No navigation information

FiguRe 10-5
Contrasting customer information forms
(Pine Valley Furniture)
(Source: Microsoft Corporation.)
(a) Poorly designed form

362 Part IV Design

provides all customer data as well as account transactions and a summary of year-
to-date purchases and payments. The form does not, however, provide the current
outstanding balance of the account; a user who desires this information must make
a manual calculation. The layout of information between the two forms also varies
in balance and information density. Gaining an understanding of the skills of the
intended system users and the tasks they will be performing is invaluable when con-
structing a form or report. By following these general guidelines, your chances of
creating effective forms and reports will be enhanced. In the next sections, we will
discuss specific guidelines for highlighting information, using color, displaying text,
and presenting numeric tables and lists.

Highlighting information
As display technologies continue to improve, a greater variety of methods will be
available to you for highlighting information. Table 10-4 provides a list of the most
commonly used methods for highlighting information. Given this vast array of
 options, it is more important than ever to consider how highlighting can be used to
enhance an output and not prove a distraction. In general, highlighting should be
used sparingly to draw the user to or away from certain information and to group

Easy to read:
clear, balanced layout Clear title

Summary of
account information

Clear navigation
information

FiguRe 10-5 (continued)
(b) Improved design for form
(Source: Microsoft Corporation)

Table 10-4 Methods of
Highlighting
Blinking and audible tones
Color differences
Intensity differences
Size differences
Font differences
Reverse video
Boxing
Underlining
All capital letters
Offsetting the position of

nonstandard information

 ChaPter 10 Designing Forms anD reports 363

together related information. There are several situations when highlighting can be
a valuable technique for conveying special information:

•	 Notifying users of errors in data entry or processing
•	 Providing warnings to users regarding possible problems such as unusual data

values or an unavailable device
•	 Drawing attention to keywords, commands, high-priority messages, and data that

have changed or gone outside normal operating ranges

Additionally, many highlighting techniques can be used singularly or in tan-
dem, depending upon the level of emphasis desired by the designer. Figure 10-6
illustrates a form where several types of highlighting are used. In this example, boxes
clarify different categories of data, capital letters and different fonts distinguish labels
from actual data, and bold is used to draw attention to important data.

Much research has focused on the effects of varying highlighting techniques
on task performance and user perceptions. A general guideline resulting from this
research is that highlighting should be used conservatively. For example, blinking
and audible tones should be used only to highlight critical information requiring an
immediate response from the user. Once a response is made, these highlights should
be turned off. Additionally, highlighting methods should be consistently used and
selected based upon the level of importance of the emphasized information. It is also
important to examine how a particular highlighting method appears on all possible

All capital lettersFont size, intensity

Boxing Intensity di�erences

FiguRe 10-6
Customer account status display using
various highlighting techniques (Pine
Valley Furniture)
(Source: Microsoft Corporation.)

364 Part IV Design

output devices that could be used with the system. For example, some color combina-
tions may convey appropriate information on one display configuration but wash out
and reduce legibility on another.

The continued evolution of graphical operating environments such as
Windows, Macintosh, and the web has provided designers with some standard high-
lighting guidelines. However, these guidelines are often quite vague and are continu-
ously evolving, leaving a great deal of control in the hands of the systems developer.
Therefore, in order for organizations to realize the benefits of using standard graphi-
cal operating environments—such as reduced user training time and interoperability
among systems—you must be disciplined in how you use highlighting.

Color versus no Color
Color is a powerful tool for the designer in influencing the usability of a system.
When applied appropriately, color provides many potential benefits to forms and
reports, which are summarized in Table 10-5. As the use of color displays became
widely available during the 1980s, a substantial amount of color versus no color
 research was conducted. The objective of this research was to gain a better under-
standing of the effects of color on human task performance (e.g., see Benbasat,
Dexter, and Todd, 1986).

The general findings from this research were that the use of color had positive
effects on user task performance and perceptions when the user was under time
constraints for the completion of a task. Color was also beneficial for gaining greater
understanding from a display or chart. An important conclusion from this research
was that color was not universally better than no color. The benefits of color only seem
to apply if the information is first provided to the user in the most appropriate presentation
format. That is, if information is most effectively displayed in a bar chart, color can
be used to enhance or supplement the display. If information is displayed in an inap-
propriate format, color has little or no effect on improving understanding or task
performance.

Several problems are associated with using color, also summarized in Table 10-5.
Most of these dangers are related more to the technical capabilities of the display and
hard-copy devices than misuse. However, color blindness is a particular user issue that
is often overlooked in the design of systems; approximately 8 percent of the males in
the European and North American communities have some form of color blindness
(Shneiderman et al., 2009). It is recommended that you first design video displays for

Table 10-5 benefits and Problems from Using Color

Benefits from Using Color:
Soothes or strikes the eye.
Accents an uninteresting display.
Facilitates subtle discriminations in complex displays.
Emphasizes the logical organization of information.
Draws attention to warnings.
Evokes more emotional reactions.
Problems from Using Color:
Color pairings may wash out or cause problems for some users (e.g., color blindness).
Resolution may degrade with different displays.
Color fidelity may degrade on different displays.
Printing or conversion to other media may not easily translate.

(Source: Based on Shneiderman et al., 2009; Benbasat, Dexter, and Todd, 1986.)

 ChaPter 10 Designing Forms anD reports 365

monochrome and allow color (or better yet, a flexible palette of colors) to be a user-
activated option. Shneiderman et al. (2009) also suggest that you limit the number
of colors and where they are applied, using color primarily as a tool to assist in the
highlighting and formatting of information.

Displaying text
In business-related systems, textual output is becoming increasingly important
as text-based applications such as electronic mail, bulletin boards, and informa-
tion services (e.g., Dow Jones) are more widely used. The display and format-
ting of system help screens, which often contain lengthy textual descriptions and
examples, is one example of textual data that can benefit from following a few
simple guidelines that have emerged from past research. These guidelines appear
in Table 10-6. The first guideline is simple: You should display text using common
writing conventions such as mixed uppercase and lowercase letters and appropri-
ate punctuation. For large blocks of text, if space permits, text should be double-
spaced. However, if the text is short, or rarely used, it may be appropriate to use
single spacing and place a blank line between each paragraph. You should also
left-justify text and use a ragged-right margin—research shows that a ragged-right
margin makes it easier to find the next line of text when reading than when text
is both left and right justified.

When displaying textual information, you should also be careful not to
 hyphenate words between lines or use obscure abbreviations and acronyms.
Users may not know whether the hyphen is a significant character if it is used
to continue words across lines. Information and terminology that are not widely
 understood by the intended users may significantly influence the usability of the
system. Thus, you should use abbreviations and acronyms only if they are signifi-
cantly shorter than the full text and are commonly known by the intended sys-
tem users. Figure 10-7 shows two versions of a help screen from an application
system at PVF. Figure 10-7a shows many violations of the general guidelines for
displaying text, whereas Figure 10-7b shows the same information but follows the
general guidelines for displaying text. Formatting guidelines for the entry of text
and alphanumeric data are also a very important topic. These guidelines are pre-
sented in Chapter 11, “Designing Interfaces and Dialogues,” where we focus on
issues of human–computer interaction.

Designing tables and Lists
Unlike textual information, where context and meaning are derived through
reading, the context and meaning of tables and lists are derived from the for-
mat of the information. Consequently, the usability of information displayed in
tables and alphanumeric lists is likely to be much more heavily influenced by

Table 10-6 Guidelines for Displaying Text

Case Display text in mixed uppercase and lowercase and use conventional
punctuation.

Spacing Use double spacing if space permits. If not, place a blank line
between paragraphs.

Justification Left-justify text and leave a ragged-right margin.
Hyphenation Do not hyphenate words between lines.
Abbreviations Use abbreviations and acronyms only when they are widely

understood by users and are significantly shorter than the full text.

366 Part IV Design

Fixed, uppercase textVague title

Single spacing

FiguRe 10-7
Contrasting the display of textual help
information
(Source: Microsoft Corporation.)
(a) Poorly designed help screen with
many violations of the general guidelines
for displaying text

Mixed caseClear title

Spacing between sections

(b) An improved design for a help screen
(Source: Microsoft Corporation.)

 ChaPter 10 Designing Forms anD reports 367

effective layout than most other types of information display. As with the display
of textual information, tables and lists can also be greatly enhanced by following
a few simple guidelines. These are summarized in Table 10-7. You should review
these guidelines and carefully apply them to ensure that your tables and lists are
highly usable.

Figure 10-8 displays two versions of a form design from a PVF application sys-
tem that displays customer year-to-date transaction information in a table format.
Figure 10-8a displays the information without consideration of the guidelines pre-
sented in Table 10-7, and Figure 10-8b (only page 2 of 2 is shown) displays this infor-
mation after consideration of these guidelines.

One key distinction between these two display forms relates to labeling. The
information reported in Figure 10-8b has meaningful labels that more clearly
stand out as labels compared with the display in Figure 10-8a. Transactions are
sorted by date, and numeric data are right justified and aligned by decimal point
in Figure 10-8b, which helps to facilitate scanning. Adequate space is left between
columns, and blank lines are inserted after every five rows in Figure 10-8b to help
ease the finding and reading of information. Such spacing also provides room for
users to annotate data that catch their attention. Use of the guidelines presented
in Table 10-7 helped the analyst to create an easy-to-read layout of the information
for the user.

Most of the guidelines in Table 10-7 are rather obvious, but this and other
tables serve as a quick reference to validate that your form and report designs will
be usable. It is beyond our scope here to discuss each of these guidelines, but you
should read each carefully and think about why each is appropriate. For example,
why are labels repeated on subsequent screens and pages (the third guideline in
Table 10-7)? One explanation is that pages may be separated or copied and the origi-
nal labels will no longer be readily accessible to the reader of the data. Why should
long alphanumeric data (see the last guideline) be broken into small groups? (If you
have a credit card or bank check, look at how your account number is displayed.)
One reason is that the characters will be easier to remember as you read and type
them. Another reason is that there will be a natural and consistent place to pause
when you speak them over the phone; for example, when you are placing a phone
order for products in a catalog.

Table 10-7 General Guidelines for Displaying Tables and lists

Use Meaningful Labels:
All columns and rows should have meaningful labels.
Labels should be separated from other information by using highlighting.
Redisplay labels when the data extend beyond a single screen or page.

Formatting Columns, Rows, and Text:
Sort in a meaningful order (e.g., ascending, descending, or alphabetic).
Place a blank line between every five rows in long columns.
Similar information displayed in multiple columns should be sorted vertically (i.e., read from top

to bottom, not left to right).
Columns should have at least two spaces between them.
Allow white space on printed reports for user to write notes.
Use a single typeface, except for emphasis.
Use same family of typefaces within and across displays and reports.
Avoid overly fancy fonts.

Formatting Numeric, Textual, and Alphanumeric Data:
Right-justify numeric data and align columns by decimal points or other delimiter.
Left-justify textual data. Use short line length, usually 30–40 characters per line (this is what

newspapers use, and it is easier to speed-read).
Break long sequences of alphanumeric data into small groups of three to four characters each.

368 Part IV Design

When you design the display of numeric information, you must determine
whether a table or a graph should be used. A considerable amount of research
 focusing on this topic has been conducted (e.g., see Jarvenpaa and Dickson[1988]
for very specific guidelines on the use of tables and graphs). In general, this
research has found that tables are best when the user’s task is related to find-
ing an individual data value from a larger data set, whereas line and bar graphs
are more appropriate for gaining an understanding of data changes over time
(see Table 10-8). For example, if the marketing manager for PVF needed to re-
view the actual sales of a particular salesperson for a particular quarter, a tabular
 report like the one shown in Figure 10-9 would be most useful. This report has
been annotated to emphasize good report-design practices. The report has both
a printed date as well as a clear indication, as part of the report title, of the period
over which the data apply. There is also sufficient white space to provide some
room for users to add personal comments and observations. Often, to provide
such white space, a report must be printed in landscape, rather than portrait,

Single column
for all types of data

No
column labels

Numeric data are left justified

FiguRe 10-8
Contrasting the display of tables and lists
(Pine Valley Furniture)
(Source: Microsoft Corporation.)]
(a) Poorly designed form

Table 10-8 Guidelines for Selecting
Tables versus Graphs

Use Tables For:
Reading individual data values

Use Graphs For:
Providing a quick summary of data
Detecting trends over time
Comparing points and patterns of

different variables
Forecasting activities
Reporting vast amounts of

information when relatively simple
impressions are to be drawn

(Source: Based on Jarvenpaa and Dickson,
1988.)

 ChaPter 10 Designing Forms anD reports 369

Clear and separate column labels
for each data type

Numeric data are right justified

FiguRe 10-8 (continued)
(b) Improved design for form
(Source: Microsoft Corporation.)

orientation. Alternatively, if the marketing manager wished to compare the over-
all sales performance of each sales region, a line or bar graph would be more
appropriate (see Figure 10-10). As with other formatting considerations, the key
consideration as to when you should select a table or a graph is the task being
performed by the user.

paper versus electronic reports
When a report is produced on paper rather than on a computer display, there
are some additional things that you need to consider. For example, laser printers
 (especially color laser printers) and ink jet printers allow you to produce a report
that looks exactly as it does on the display screen. Thus, when using these types of
printers, you can follow our general design guidelines to create a report with high
 usability. However, other types of printers are not able to closely reproduce the dis-
play screen image onto paper. For example, many business reports are produced
using high-speed impact printers that produce characters and a limited range of
graphics by printing a fine pattern of dots. The advantages of impact printers are
that they are very fast, very reliable, and relatively inexpensive. Their drawbacks
are that they have a limited ability to produce graphics and have a somewhat lower
print quality. In other words, they are good at rapidly producing reports that con-
tain primarily alphanumeric information, but they cannot exactly replicate a screen

370 Part IV Design

report onto paper. Because of this, impact printers are mostly used for producing
large batches of reports, such as a batch of phone bills for a telephone company, on
a wide range of paper widths and types. When designing reports for impact printers,
you use a coding sheet like that displayed in Figure 10-2, although coding sheets for
designing printer reports typically can have up to 132 columns. Like the process for
designing all forms and reports, you follow a prototyping process and carefully con-
trol the spacing of characters in order to produce a high-quality report. However,

Superscript characters
can be used to alert

reader of more
detailed information

Sort columns in some
meaningful order
(names are sorted

alphabetically
within region)

Long sequence of
alphanumeric data

is grouped into
smaller segments

Right justify
all numeric data

Try to fit table
onto a single page
to help in making

comparisons

Place meaningful
labels on all

columns and rows

Alphabetic text
is left justified

Use a
meaningful

title

Box the table data to
improve the appearance

of the table

Northwest & Mountain

Midwest & Mid-Atlantic

New England

Baker
Hawthorne
Hodges

Franklin
Stephenson1

Swenson

Brightman
Kennedy

999-99-9999
999-99-9999
999-99-9999

999-99-9999
999-99-9999
999-99-9999

999-99-9999
999-99-9999

Quarterly Actual Sales
Region Salesperson SSN First Second Third Fourth

195,000
220,000
110,000

110,000
75,000

110,000

250,000
310,000

146,000
175,000
95,000

120,000
66,000
98,000

280,000
190,000

133,000
213,000
170,000

170,000
80,000

100,000

260,000
270,000

120,000
198,000
120,000

90,000
80,000
90,000

330,000
280,000

Pine Valley Furniture
Salesperson Annual Summary Report, 2016

January 10, 2017 Page 1 of 2

 1Sales reflect July 1, 2016 – December 31, 2016.

FiguRe 10-9
Tabular report illustrating numerous
design guidelines (Pine Valley Furniture)

S
al

es
 V

ol
um

e
(0

00
0)

Quarter
Northwest & Mountain Region

FourthThirdSecondFirst

30

25

20

15

10

5

0

Pine Valley Furniture
Quarterly Sales Report

Salesperson

Hawthorne
Baker
Hodges

FiguRe 10-10
Graphs for comparison
(a) Line graph

 ChaPter 10 Designing Forms anD reports 371

unlike other form and report designs, you may be limited in the range of format-
ting, text types, and highlighting options. Nonetheless, you can easily produce a
highly usable report of any type if you carefully and creatively use the formatting
options that are available.

assessing UsabiLity
There are many factors to consider when you design forms and reports. The objec-
tive for designing forms, reports, and all human–computer interactions is usability.
Usability typically refers to the following three characteristics:

1. Speed. Can you complete a task efficiently?
2. Accuracy. Does the system provide what you expect?
3. Satisfaction. Do you like using the system?

In other words, usability means that your designs should assist, not hinder, user
performance. Thus, usability refers to an overall evaluation of how a system performs
in supporting a particular user for a particular task. In the remainder of this section,
we describe numerous factors that influence usability and several techniques for as-
sessing the usability of a design.

Usability success Factors
Research and practical experience have found that design consistency is the key
ingredient in designing usable systems (Cooper et al., 2014; Krug, 2014; Nielsen
and Loranger, 2006; Shneiderman et al., 2009). Consistency significantly influ-
ences users’ ability to gain proficiency when interacting with a system. Consistency
means, for example, that titles, error messages, menu options, and other design
elements appear in the same place and look the same on all forms and reports.
Consistency also means that the same form of highlighting has the same meaning
each time it is used and that the system will respond in roughly the same amount
of time each time a particular operation is performed. Other important factors
include efficiency, ease (or understandability), format, and flexibility. Each of
these usability factors, with associated guidelines, is described in more detail in
Table 10-9.

When designing outputs, you must also consider the context in which the screens,
forms, and reports will be used. As mentioned, numerous characteristics play an im-
portant role in shaping a system’s usability. These characteristics are related to the in-
tended users and task being performed in addition to the technological, social, and

usability
An overall evaluation of how a system
performs in supporting a particular user for
a particular task.

S
al

es
 V

ol
um

e
(0

00
0)

Quarter
Northwest & Mountain Region

FourthThirdSecondFirst

30

25

20

15

10

5

0

Pine Valley Furniture
Quarterly Sales Report

Salesperson

Hawthorne
Baker
Hodges

FiguRe 10-10 (continued)
(b) Bar graph

372 Part IV Design

Table 10-9 General Design Guidelines for Usability of Forms and Reports
Usability Factor Guidelines for Achievement of Usability
Consistency Consistent use of terminology, abbreviations, formatting, titles, and

navigation within and across outputs. Consistent response time each
time a function is performed.

Organization Formatting should be designed with an understanding of the task being
performed and the intended user. Text and data should be aligned
and sorted for efficient navigation and entry. Entry of data should be
avoided where possible (e.g., computing rather than entering totals).

Clarity Outputs should be self-explanatory and not require users to remember
information from prior outputs in order to complete tasks. Labels should
be extensively used, and all scales and units of measure should be
clearly indicated.

Format Information format should be consistent between entry and display.
Format should distinguish each piece of data and highlight, not bury,
important data. Special symbols, such as decimal places, dollar signs,
and ± signs, should be used as appropriate.

Flexibility Information should be viewed and retrieved in a manner most convenient
to the user. For example, users should be given options for the
sequence in which to enter or view data and for use of shortcut
keystrokes, and the system should remember where the user stopped
during the last use of the system.

Table 10-10 Characteristics for Consideration When Designing Forms and Reports
Characteristic Consideration for Form and Report Design
User Issues related to experience, skills, motivation, education, and personality

should be considered.
Task Tasks differ in amount of information that must be obtained from or

provided to the user. Task demands such as time pressure, cost of errors,
and work duration (fatigue) will influence usability.

System The platform on which the system is constructed will influence interaction
styles and devices.

Environment Social issues such as the users’ status and role should be considered
in addition to environmental concerns such as lighting, sound, task
interruptions, temperature, and humidity. The creation of usable forms
and reports may necessitate changes in the users’ physical work
facilities.

(Source: Based on Norman, 1991.)

physical environment in which the system and outputs are used. Table 10-10 lists several
factors that influence the usability of a design. Your role is to gain a keen awareness of
these factors so that your chances of creating highly usable designs are increased.

measures of Usability
User-friendliness is a term often used, and misused, to describe system usability.
Although the term is widely used, it is too vague from a design standpoint to pro-
vide adequate information because it means different things to different people.
Consequently, most development groups use several methods for assessing usability,
including the following considerations (Shneiderman et al., 2009; Te’eni et al., 2006):

•	 Learnability—How difficult is it for a user to perform a task for the first time?
•	 Efficiency—How quickly can users perform tasks once they know how to perform

them?
•	 Error rate—How many errors might a user encounter, and how easy it is to re-

cover from those errors?

Learnability
A usability dimension concerned with how
difficult it is for the user to perform a task
for the first time.

efficiency
A usability dimension concerned with how
quickly users can perform tasks once they
know how to perform them.

error rate
A usability dimension concerned with how
many errors a user might encounter and
how easy it is to recover from those errors.

 ChaPter 10 Designing Forms anD reports 373

•	 Memorability—How easy is it to remember how to accomplish a task when revisit-
ing the system after some period of time?

•	 Satisfaction and aesthetics—How enjoyable is the system’s visual appeal and how
enjoyable is the system to use?

In assessing usability, you can collect information by observation, interviews, key-
stroke capturing, and questionnaires. Time to learn simply reflects how long it takes
the average system user to become proficient using the system. Equally important is the
extent to which users remember how to use inputs and outputs over time. The man-
ner in which the processing steps are sequenced and the selection of one set of key-
strokes over others can greatly influence learning time, the user’s task performance,
and error rates. For example, the most commonly used functions should be quickly
accessed with the fewest number of steps possible (e.g., pressing one key to save your
work). Additionally, the layout of information should be consistent, both within and
across applications, whether the information is delivered on a screen display or on a
hard-copy report.

eLeCtroniC CommerCe appLiCations:
Designing Forms anD reports For pine
VaLLey FUrnitUre’s Webstore
Designing the forms and reports for an Internet-based electronic commerce appli-
cation is a central and critical design activity. Because this is where a customer will
interact with a company, much care must be put into its design. Like the process
followed when designing the forms and reports for other types of systems, a prototyp-
ing design process is most appropriate. Although the techniques and technology for
building Internet sites are rapidly evolving, several general design guidelines have
emerged. In this section, we examine some of these as they apply to the design of
PVF’s WebStore.

general guidelines
When designing forms and reports, there are several errors that are specific to web-
site design. It is unfortunately beyond the scope of this book to critically examine all
possible design problems within contemporary websites. Here, we will simply sum-
marize those errors that commonly occur and that are particularly detrimental to
the user’s experience (see Table 10-11). Fortunately, there are numerous excellent
sources for learning more about designing useful websites (Ash et al., 2012; Cooper
et al., 2014; Flanders and Peters, 2002; Johnson, 2007; Krug, 2014; Nielson, 1999;
Nielsen and Loranger, 2006; Shneiderman et al., 2009; www.nngroup.com; www.web-
pagesthatsuck.com).

Designing Forms and reports at pine Valley Furniture
When Jim Woo and the PVF development team focused on designing the forms and re-
ports (i.e., the “pages”) for the WebStore, they first reviewed many popular electronic
commerce websites. From this review, they established the following design guidelines:

•	 Use lightweight graphics.
•	 Establish forms and data integrity rules.
•	 Use stylesheet-based HTML.

In order to ensure that all team members understood what was meant by each
guideline, Jim organized a design briefing to explain how each guideline would be
incorporated into the WebStore interface design.

Memorability
A usability dimension concerned with how
easy it is to remember how to accomplish
a task when revisiting the system after a
period of time.

Satisfaction and aesthetics
A usability dimension concerned with how
enjoyable a system’s visual appeal is and
how enjoyable the system is to use.

http://www.nngroup.com
http://www.web-pagesthatsuck.com
http://www.web-pagesthatsuck.com

374 Part IV Design

Lightweight graphics
In addition to easy menu and page navigation, the PVF development team wants
a system where web pages load quickly. A technique that can assist in making
pages load quickly is the use of lightweight graphics. Lightweight graphics are
small, simple images that allow a page to load as quickly as possible. “Using light-
weight graphics allows pages to load quickly and helps users to reach their final
location in the site—hopefully the point of purchase area—as quickly as possible.
Large color images will only be used for displaying detailed product pictures that
customers explicitly request to view,” explained Jim. Experienced web designers
have found that customers are not willing to wait at each hop of navigation for a
page to load, just so they have to click and wait again. The quick feedback that a
website with lightweight graphics can provide will help to keep customers at the
WebStore longer.

Forms and Data integrity rules
Because the goal of the WebStore is to have users place orders for products, all
forms that request information should be clearly labeled and provide adequate
room for input. If a specific field requires a specific input format such as a date of
birth or phone number, it must provide a clear example for the user so that data

Lightweight graphics
Small, simple images that allow a web
page to be displayed more quickly.

Table 10-11 Common errors When Designing the layout of Web Pages
Error Recommendation
Nonstandard Use

of GUI Widgets
Make sure that when using standard design items, they behave in

accordance with major interface design standards. For example,
the rules for radio buttons state that they are used to select one
item among a set of items, that is, not confirmed until “OK’ed” by
a user. In many websites selecting radio buttons is used as both
selection and action.

Anything That Looks
Like Advertising

Because research on web traffic has shown that many users have
learned to stop paying attention to web advertisements, make
sure that you avoid designing any legitimate information in a
manner that resembles advertising (e.g., banners, animations,
pop-ups).

Bleeding-Edge
Technology

Make sure that users don’t need the latest browsers or plug-ins to
view your site.

Scrolling Test and
Looping Animations

Avoid scrolling text and animations because they are both hard to
read and users often equate such content with advertising.

Nonstandard Link
Colors

Avoid using nonstandard colors to show links and for showing links
that users have already used; nonstandard colors will confuse the
user and reduce ease of use.

Outdated
Information

Make sure your site is continuously updated so that users “feel” that
the site is regularly maintained and updated. Outdated content is
a sure way to lose credibility.

Slow Download
Times

Avoid using large images, lots of images, unnecessary animations,
or other time-consuming content that will slow the downloading
time of a page.

Fixed-Formatted Text Avoid fixed-formatted text that requires users to scroll horizontally to
view content or links

Displaying Long Lists
as Long Pages

Avoid requiring users to scroll down a page to view information,
especially navigational controls. Manage information by showing
only N items at a time, using multiple pages, or by using a
scrolling container within the window.

 ChaPter 10 Designing Forms anD reports 375

errors can be reduced. Additionally, the site must clearly designate which fields
are optional, which are required, and which have a range of values.

Jim emphasized, “All of this seems to be overkill, but it makes processing the
data much simpler. Our site will check all data before submitting it to the server for
processing. This will allow us to provide quicker feedback to the user on any data
entry error and eliminate the possibility of writing erroneous data into the perma-
nent database. Additionally, we want to provide a disclaimer to reassure our custom-
ers that the data will be used only for processing orders, that it will never be sold to
marketers, and that it will be kept strictly confidential.”

stylesheet-based HtmL
When Jim talked with the consultants about the WebStore during the analysis
phase, they emphasized the advantages of using stylesheet-based HTML He was
told that when displaying individual products, it would be very advantageous to try
to have a few “stylesheets” that could be used where appropriate in order to make
sure that all pages within the WebStore had the same look and feel. Stylesheets
describe how information will be presented (i.e., its style). Thus, stylesheet-based
HTML design allows the content of a web page to remain separate from the way
it is formatted. By separating the content from its formatting information, it is
much easier to update the look and feel of the website and make sure that all
pages have a similar appearance. Jim explained, “We need to look for ways to
make the website consistent and easy to update. By using stylesheets, we not only
get all the pages looking the same, we can also update the look of the website by
making changes in a few stylesheets, rather than in hundreds of web pages. For
example, a desk and a filing cabinet are two completely different products. Yet,
stylesheets guarantee that their separate pages will be formatted and look the
same way.”

Stylesheet-based HTML
A web design approach that separates
content from the way in which it is
formatted and presented, making ongoing
maintenance easier and site-wide
consistency much higher.

Summary
This chapter focused on a primary product of information
systems: forms and reports. As organizations move into
more complex and competitive business environments with
greater diversity in the workforce, the quality of the business
processes will determine success. One key to designing qual-
ity business processes is the delivery of the right informa-
tion to the right people in the right format at the right time.
The design of forms and reports concentrates on this goal.
A major difficulty of this process comes from the great vari-
ety of information-formatting options available to designers.

Specific guidelines should be followed when design-
ing forms and reports. These guidelines, proven over years
of experience with human–computer interaction, help
you to create professional, usable systems. This chapter
presented a variety of guidelines covering the use of titles,
layout of fields, navigation between pages or screens, high-
lighting of data, use of color, format of text and numeric
data, appropriate use and layout of tables and graphs,
avoidance of bias in information display, and achievement
of usable forms and reports.

Form and report designs are created through a
prototyping process. Once created, designs may be
stand-alone or integrated into actual working systems.
The purpose, however, is to show users what a form or
report will look like when the system is implemented.
The outcome of this activity is the creation of a specifica-
tion document where characteristics of the users, tasks,
system, and environment are outlined along with each
form and report design. Performance testing and us-
ability assessments may also be included in the design
specification.

The goal of form and report design is usability.
Usability means that users can use a form or report quickly,
accurately, and with a high level of satisfaction. To be us-
able, designs must be consistent, efficient, self-explanatory,
well formatted, and flexible. These objectives are achieved
by applying a wide variety of guidelines concerning aspects
such as navigation; the use of highlighting and color; and
the display of text, tables, and lists.

376 Part IV Design

Key TermS

10.1 Efficiency
10.2 Error rate
10.3 Form
10.4 Learnability

10.5 Lightweight graphics
10.6 Memorability
10.7 Paper prototype
10.8 Report

10.9 Satisfaction and aesthetics
10.10 Stylesheet-based HTML
10.11 Usability
10.12 Wireframe

Match each of the key terms above with the definition that best
fits it.

____ A usability dimension concerned with how difficult it is for
the user to perform a task for the first time.

____ A web design approach that separates content from the
way in which it is formatted and presented, making ongo-
ing maintenance easier and site-wide consistency much
higher.

____ A simple design to show the placement of information ele-
ments on a screen and the space needed for each element.

____ An overall evaluation of how a system performs in support-
ing a particular user for a particular task.

____ A usability dimension concerned with how quickly users
can perform tasks once they know how to perform them.

____ A business document that contains only predefined data;
it is a passive document used only for reading or viewing.
It typically contains data from many unrelated records or
transactions.

____ A usability dimension concerned with how many errors a
user might encounter and how easy it is to recover from
those errors.

____ A business document that contains some predefined data
and may include some areas where additional data are to
be filled in. An instance on such a document is typically
based on one database record.

____ A usability dimension concerned with how easy it is to re-
member how to accomplish a task when revisiting the sys-
tem after a period of time.

____ Small, simple images that allow a web page to be displayed
more quickly.

____ A usability dimension concerned with how enjoyable a sys-
tem’s visual appeal is and how enjoyable the system is to
use.

____ A series of mock screens that can be used to test content,
look, and feel, as well as the task flow and other usability
factors.

revIew QueSTIonS
 10.13 Describe the prototyping process of designing forms and

reports. What deliverables are produced from this pro-
cess? Are these deliverables the same for all types of sys-
tem projects? Why or why not?

 10.14 What initial questions must be answered for an analyst to
build an initial prototype of a system output?

 10.15 When can highlighting be used to convey special informa-
tion to users?

 10.16 Discuss the benefits, problems, and general design pro-
cess for the use of color when designing system output.

 10.17 How should textual information be formatted on a help
screen?

 10.18 What type of labeling can you use in a table or list to
 improve its usability?

 10.19 What column, row, and text formatting issues are impor-
tant when designing tables and lists?

 10.20 Describe how numeric, textual, and alphanumeric data
should be formatted in a table or list.

 10.21 What is meant by usability and what characteristics of an
interface are used to assess a system’s usability?

 10.22 What measures do many development groups use to assess
a system’s usability?

 10.23 List and describe common website design errors.

 10.24 Provide some examples where variations in users, tasks,
systems, and environmental characteristics might affect
the design of system forms and reports.

 ChaPter 10 Designing Forms anD reports 377

ProblemS and exercISeS
 10.25 Imagine that you are to design a budget report for a col-

league at work using a spreadsheet package. Following the
prototyping discussed in the chapter (see also Figure 6-7),
describe the steps you would take to design a prototype of
this report.

 10.26 Consider a system that produces budget reports for your
department at work. Alternatively, consider a registration
system that produces enrollment reports for a depart-
ment at a university. For whichever system you choose,
answer the following design questions: Who will use the
output? What is the purpose of the output? When is the
output needed and when is the information that will be
used within the output available? Where does the output
need to be delivered? How many people need to view the
output?

 10.27 Imagine the worst possible reports from a system. What
is wrong with them? List as many problems as you can.
What are the consequences of such reports? What could
go wrong as a result? How does the prototyping process
help guard against each problem?

 10.28 Imagine an output display form for a hotel registration
system. Using a software package for drawing such as Mi-
crosoft Visio, follow the design suggestions in this chapter
and design this form entirely in black and white. Save the
file and then, following the color design suggestions in
this chapter, redesign the form using color. Based on this
exercise, discuss the relative strengths and weaknesses of
each output form.

 10.29 Consider reports you might receive at work (e.g., budgets
or inventory reports) or at a university (e.g., grade reports
or transcripts). Evaluate the usability of these reports in
terms of speed, accuracy, and satisfaction. What could be
done to improve the usability of these outputs?

 10.30 List the PC-based software packages you like to use. De-
scribe each package in terms of the following usability
characteristics: time to learn, speed of performance, rate
of errors by users, retention over time, and subjective
satisfaction. Which of these characteristics has made you
want to continue to use this package?

 10.31 Given the guidelines presented in this chapter, identify
flaws in the design of the Report of Customers that fol-
lows. What assumptions about users and tasks did you
make in order to assess this design? Redesign this report
to correct these flaws.

Report of Customers 26-Oct-2017

Cust-ID Organization
AC-4 A.C. Nielson Co.
ADTRA-20799 Adran
ALEXA-15812 Alexander & Alexander, Inc.
AMERI-1277 American Family Insurance
AMERI-28157 American Residential Mortgage
ANTAL-28215 Antalys
ATT-234 AT&T Residential Services
ATT-534 AT&T Consumer Services
…
DOLE-89453 Dole United, Inc.
DOME-5621 Dome Caps, Inc.
DO-67 Doodle Dandies
…
ZNDS-22267 Zenith Data System

 10.32 Review the guidelines for attaining usability of forms and
reports in Table 10-9. Consider an online form you might
use to register a guest at a hotel. For each usability factor,
list two examples of how this form could be designed to
achieve that dimension of usability. Use examples other
than those mentioned in Table 10-9.

 10.33 How can differences in user, task, system, or the environ-
ment influence the design of a form or report? Provide an
example that contrasts characteristics for each difference.

 10.34 Go to the Internet and find commercial websites that dem-
onstrate each of the common errors listed in Table 10-11.

 10.35 Use a tool for generating wireframe screen designs, such
as Visio or Axure, to create a wireframe of Figure 10-5b.

 10.36 Use a tool for generating wireframe screen designs, such
as Visio or Axure, to create a wireframe of some popular
homepage.

FIeld exercISeS
 10.37 Find your last grade report. Given the guidelines pre-

sented in this chapter, identify flaws in the design of this
grade report. Redesign this report to correct these flaws.

 10.38 As stated in this chapter, most forms and reports are de-
signed for contemporary information systems by using
software to prototype output. Packages such as Microsoft
Visual Studio.NET have very sophisticated output design

modules. Gain access to such a tool at your university or
where you work and study all the features the software
provides for the design of printed output. Write a report
that lists and explains all the features for layout, highlight-
ing, summarizing data, etc.

 10.39 Investigate the displays used in another field (e.g., avia-
tion). What types of forms and reports are used in this

378 Part IV Design

field? What standards, if any, are used to govern the use of
these outputs?

 10.40 Interview a variety of people you know about the different
types of forms and reports they use in their jobs. Ask to ex-
amine a few of these documents and answer the following
questions for each one:

a. What types of tasks does each support and how is it
used?

b. What types of technologies and devices are used to de-
liver each one?

c. Assess the usability of each form or report. Is each us-
able? Why or why not? How could each be improved?

 10.41 Scan the annual reports of a dozen or so companies for
the past year. These reports can usually be obtained from

a university library. Describe the types of information and
the ways that information has been presented in these re-
ports. How have color and graphics been used to improve
the usability of information? Describe any instances where
formatting has been used to hide or enhance the under-
standing of information.

 10.42 Choose a PC-based software package you like to use and
choose one that you don’t like to use. Interview other us-
ers to determine their evaluations of these two packages.
Ask each individual to evaluate each package in terms of
speed, accuracy, and satisfaction as described in this chap-
ter. Is there a consensus among these evaluations or do
the respondents’ evaluations differ from each other or
from your own evaluations? Why?

reFerenceS
Ash, T., M. Ginty, and R. Page. 2012. Landing Page Optimization: The

Definitive Guide to Testing and Tuning for Conversion, 2nd ed.
New York: Sybex

Benbasat, I., A. S. Dexter, and P. Todd. 1986. “The Influence of
Color and Graphical Information Presentation in a Mana-
gerial Decision Simulation.” Human—Computer Interaction 2:
65–92

Cooper, A., R. Reimann, D. Cronin, and C. Noessel. 2014. About
Face: The Essentials of Interaction Design, 4th ed. New York:
 Wiley and Sons

Flanders, V., and D. Peters. 2002. Son of Web Pages That Suck:
Learn Good Design by Looking at Bad Design. Alameda, CA:
 Sybex Publishing

Jarvenpaa, S. L., and G. W. Dickson. 1988. “Graphics and Mana-
gerial Decision Making: Research Based Guidelines.” Com-
munications of the ACM 31(6): 764–74

Johnson, J. 2007. GUI Bloopers 2.0: Common User Interface Design
Don’ts and Dos, 2nd ed. New York: Morgan Kaufmann

Krug, S. 2014. Don’t Make Me Think: A Common Sense Approach to
Web Usability, 3rd ed. Upper Saddle River, NJ: Prentice Hall

Lazar, J. 2004. User-Centered Web Development: Theory into Practice.
Sudbury, MA: Jones & Bartlett

McCracken, D. D., R. J. Wolfe, and J. M. Spoll. 2004. User-Cen-
tered Web Site Development: A Human–Computer Interaction
 Approach. Upper Saddle River, NJ: Prentice Hall

Nielsen, J. 1999. “User Interface Directions for the Web.” Com-
munications of the ACM 42(1): 65–71

Nielsen, J., and R. Budiu. 2012. Mobile Usability. Indianapolis, IN:
New Riders Publishing

Nielsen, J., and H. Loranger. 2006. Prioritizing Web Usability. Upper
Saddle River, NJ: Prentice Hall

Norman, K. L. 1991. The Psychology of Menu Selection. Norwood,
NJ: Ablex

Shneiderman, B., C. Plaisant, M. Cohen, and S. Jacobs. 2009.
Designing the User Interface: Strategies for Effective Human-Com-
puter Interaction, 5th ed. Reading, MA: Addison-Wesley

Snyder, C. 2003. Paper Prototyping: The Fast and Easy Way to Design
and Refine User Interfaces. San Francisco: Morgan Kaufmann
Publishers

Sun Microsystems. 2001. Java Look and Feel Guidelines. Palo Alto,
CA: Sun Microsystems

Te’eni, D., J. Carey, and P. Zhang. 2006. Human–Computer Inter-
action: Developing Effective Organizational Information Systems.
New York: John Wiley & Sons

 ChaPter 10 Designing Forms anD reports 379

PetrIe eLeCtrOnICs

Chapter 10: Designing Forms and Reports

It was late. Sally Fukuyama, assistant director of market-
ing, knocked on the slightly open door of Jim Watanabe’s
office. Jim was the project director for the “No Customer
Escapes” customer loyalty system for Petrie Electronics.

“Yeah, come in,” Jim called.
“Hi, Jim,” Sally said, pushing the door open further. “Are

you getting ready to leave?”
“Well, I was thinking about it, but something tells me

that I’m probably not leaving any time soon. What’s up?”
“I just got an e-mail from John [John Smith, the head of

marketing at Petrie]. He has a whole bunch of reports he
wants this system to generate,” Sally replied. She took the
stuffed manila folder in her hand and dropped it on Jim’s
desk.

“What is all this?” he moaned.
“John says all of these reports are absolutely essential.

He says you should be able to generate all of the neces-
sary data from the new customer loyalty system.”

“It will take forever to work out the specific designs on
all of these reports,” Jim said. “I’m going to need a lot of
help on this.” Jim dropped the folder on his desk.

“Sorry, Jim,” Sally said. “I’ll help you tomorrow, but I re-
ally need to go.”

“OK, bye,” Jim said, as Sally left his office.
He opened the folder and started to look at what was

there. Some of the report requirements were more com-
plete than others. One of the reports near the top of the
heap focused on listing the best customers, based on how

much they had spent in a particular month. “I’ll start with
this one,” Jim thought. “I think I’ll do a quick design in
Excel.”

Jim worked on the report design for 15 minutes. His first
cut is featured in PE Figures 10-1 and 10-2. PE Figure 10-1
shows the high-level summary report, which lists only the
names of the customers, where they are from, and the to-
tal they spent during a given month. PE Figure 10-2 shows
the details of what each customer bought.

“Well,” Jim thought, “these are certainly practical de-
signs for the reports. They show what John says he wants,
but they sure are ugly. I wonder how I can make them
look better. No time for that now. I have to start work on
all of these other report designs. How many are there? A
hundred? Sure seems like it. Maybe I can get the interns
to work on some of this. It would be good for them.”

Jim looked over the next suggestion for a report from
John’s stack of requests.

Case Questions

 10.43 How would you make the reports in PE Figures
10-1 and 10-2 “look better”? After you improve the
design of the reports, explain why you make the
changes you did.

 10.44 What other reports do you think John would ask
for, based on the data that would be available from
Petrie’s customer loyalty system? Make a list. Then
take the first two reports on your list and design
how they would look.

Pe FiguRe 10-1
Initial design for Best Customers Monthly
Summary Report
(Source: Microsoft Corporation.)

380 Part IV Design

Pe FiguRe 10-2
Initial design for Best Customers Monthly
Detail Report
(Source: Microsoft Corporation.)

 10.45 Using the text as one source and what you can find
on the Internet as another source, make a list of the
10 most important things to consider when design-
ing reports.

 10.46 Do you belong to any customer loyalty programs
such as an airline’s frequent flyer program or a

program at a national retailer? If not, maybe your
parents or other relatives do. Take the monthly
report that a loyalty program sends to customers.
Identify all of the data elements needed to create
the report and use that information to create an
E-R diagram.

381

In this chapter, you will learn about system interface
and dialogue design. Interface design focuses on how
information is provided to and captured from users; dia-
logue design focuses on the sequencing of interface dis-
plays. Dialogues are analogous to a conversation between
two people. The grammatical rules followed by each per-
son during a conversation are analogous to the interface.
Thus, the design of interfaces and dialogues is the process
of defining the manner in which humans and comput-
ers exchange information. A good human– computer
interface provides a uniform structure for finding, view-
ing, and invoking the different components of a system.
This chapter complements Chapter 10, which addressed
design guidelines for the content of forms and reports.
Here, you will learn about navigation between forms,
 alternative ways for users to cause forms and reports to
appear, and how to supplement the content of forms and
reports with user help and error messages, among other
topics.

We then describe the process of designing interfaces
and dialogues and the deliverables produced during this
activity. This is followed by a section that describes in-
teraction methods and devices. Next, interface design is
described. This discussion focuses on layout design, data
entry, providing feedback, and designing help menus. We
then examine techniques for designing human–computer

dialogues. Finally, we examine the design of interfaces
and dialogues within electronic commerce applications.

Designing interfaces anD
Dialogues
This is the third chapter that focuses on design within the
systems development life cycle (see Figure 11-1). In Chapter
10, you learned about the design of forms and reports. As
you will see, the guidelines for designing forms and reports
also apply to the design of human–computer interfaces.

the Process of Designing interfaces and
Dialogues
Similar to designing forms and reports, the process of
 designing interfaces and dialogues is a user-focused
 activity. This means that you follow a prototyping method-
ology of iteratively collecting information, constructing a
prototype, assessing usability, and making refinements. To
design usable interfaces and dialogues, you must answer
the same who, what, when, where, and how questions used
to guide the design of forms and reports (see Table 10-2).
Thus, this process parallels that of designing forms and
reports (see Lazar, 2004; McCracken et al., 2004).

11.4 design human–computer dialogues and
understand how dialogue diagramming can be
used to design dialogues;

11.5 design graphical user interfaces; and

11.6 discuss guidelines for the design of interfaces and
dialogues for Internet-based electronic commerce
systems.

Learning Objectives

After studying this chapter, you should be able to

11.1 explain the process of designing interfaces and
dialogues and the deliverables for their creation;

11.2 contrast and apply several methods for interacting
with a system;

11.3 describe and apply the general guidelines for
designing interfaces and specific guidelines
for layout design, structuring data entry fields,
providing feedback, and system help;

Designing interfaces
and Dialogues11

chapter

Introduction

382 Part IV Design

Deliverables and outcomes
The deliverable and outcome from system interface and dialogue design is the cre-
ation of a design specification. This specification is also similar to the specification
produced for form and report designs—with one exception. Recall that the design
specification document discussed in Chapter 10 had three sections (see Figure 10-4):

1. Narrative overview
2. Sample design
3. Testing and usability assessment

For interface and dialogue designs, one additional subsection is included: a
section outlining the dialogue sequence—the ways a user can move from one display
to another. Later in this chapter, you will learn how to design a dialogue sequence by
using dialogue diagramming. An outline for a design specification for interfaces and
dialogues is shown in Figure 11-2.

interaction MethoDs anD Devices
The human–computer interface defines the ways in which users interact with an in-
formation system. All human–computer interfaces must have an interaction style and
use some hardware device(s) for supporting this interaction. In this section, we de-
scribe various interaction methods and guidelines for designing usable interfaces.

Methods of interacting
When designing the user interface, the most fundamental decision you make relates
to the methods used to interact with the system. Given that there are numerous ap-
proaches for designing the interaction, we briefly provide a review of those most
commonly used. (Readers interested in learning more about interaction methods
are encouraged to see the books by Johnson [2007], Seffah and Javahery[2003],
Shneiderman et al.[2009], and Te’eni et al.[2006].) Our review will examine the

Interface
A method by which users interact with an
information system.

DesignImplementation

Planning

Maintenance Analysis

Databases
Forms and Reports
Dialogues and Interfaces
Distributed and Internet Systems

FIgure 11-1
Systems development life cycle

 ChaPter 11 Designing interfaces anD Dialogues 383

basics of five widely used styles: command language, menu, form, object, and natural
language. We will also describe several devices for interacting, focusing primarily on
their usability for various interaction activities.

Command Language Interaction In command language interaction, the user en-
ters explicit statements to invoke operations within a system. This type of interac-
tion requires users to remember command syntax and semantics. For example, to
rename a copy of a file called “file.doc” in the current directory as “newfile.doc” at
the command prompt within Linux, you would type:

$ cp file.doc newfile.doc

Command language interaction places a substantial burden on the user to
 remember names, syntax, and operations. Most newer or large-scale systems no lon-
ger rely entirely on a command language interface. Yet command languages are
good for experienced users, for systems with a limited command set, and for rapid
interaction with the system.

A relatively simple application such as a word processor may have hundreds
of commands for operations such as saving a file, deleting words, canceling the cur-
rent action, finding a specific piece of data, or switching between windows. Some of
the burden of assigning keys to actions has been taken off users’ shoulders through
the development of user interface standards such as those for Apple and Windows-
based systems (Pogue, 2015; Schooley, 2013). For example, Figure 11-3a shows a help
screen from Microsoft Word describing keyboard shortcuts, and Figure 11-3b shows
the same screen for Microsoft PowerPoint. Note how many of the same keys have
been assigned the same function. Also note that designers still have great flexibility
in how they interpret and implement these standards. This means that you still need
to pay attention to usability factors and conduct formal assessments of designs.

Menu Interaction A significant amount of interface design research has stressed
the importance of a system’s ease of use and understandability. Menu interaction is
a means by which many designers have accomplished this goal. A menu is simply a
list of options; when an option is selected by the user, a specific command is invoked
or another menu is activated. Menus have become the most widely used interface

Command language
interaction
A human–computer interaction method
whereby users enter explicit statements into
a system to invoke operations.

Menu interaction
A human–computer interaction method in
which a list of system options is provided
and a specific command is invoked by user
selection of a menu option.

FIgure 11-2
Specification outline for the design of
interfaces and dialogues

Design Specification

1. Narrative Overview
a. Interface/Dialogue Name
b. User Characteristics
c. Task Characteristics
d. System Characteristics
e. Environmental Characteristics

2. Interface/Dialogue Designs
a. Form/Report Designs
b. Dialogue Sequence Diagram(s) and Narrative Description

3. Testing and Usability Assessment
a. Testing Objectives
b. Testing Procedures
c. Testing Results

i) Time to Learn
ii) Speed of Performance
iii) Rate of Errors
iv) Retention over Time
v) User Satisfaction and Other Perceptions

384 Part IV Design

method because the user only needs to understand simple signposts and route op-
tions to effectively navigate through a system.

Menus can differ significantly in their design and complexity. The variation of
their design is most often related to the capabilities of the development environment,
the skills of the developer, and the size and complexity of the system. For smaller and
less complex systems with limited system options, you may use a single menu or a lin-
ear sequence of menus. A single menu has obvious advantages over a command lan-
guage but may provide little guidance beyond invoking the command. An example
of a single menu can be found on the “Tabs” settings under the “Options” menu in
the popular Firefox web browser, as shown in Figure 11-4.

For large and more complex systems, you can use menu hierarchies to provide
navigation between menus. These hierarchies can be simple tree structures or varia-
tions wherein children menus have multiple parent menus. Some of these hierarchies
may allow multilevel traversal. Variations as to how menus are arranged can greatly
influence the usability of a system. For instance, Microsoft has recently deployed its
“ribbon menu” system in recent Office products. Figure 11-5 shows a variety of ways
in which menus can be structured and traversed. An arc on this diagram signifies the
ability to move from one menu to another. Although more complex menu structures
provide greater user flexibility, they may also confuse users about exactly where they

FIgure 11-3
Function key assignments in Microsoft
Office 2013
(Source: Microsoft Corporation.)

(a) Help screen from Microsoft Word
 describing keyboard commands

(b) Help screen from Microsoft
PowerPoint describing keyboard
commands

 ChaPter 11 Designing interfaces anD Dialogues 385

FIgure 11-4
Single-level menu on the “Tabs” settings
under the “Options” menu in the Firefox
web browser
(Source: Mozilla Firefox.)

Single Menu

Linear Sequence Menu

Multilevel Tree Menu
Multilevel Tree Menu
with Multiple Parents

Multilevel Tree Menu
with Multiple Parents and
Multilevel Traversal

FIgure 11-5
Various types of menu configurations
(Source: Based on Shneiderman et al.,
2009.)

are in the system. Structures with multiple parent menus also require the application
to remember which path has been followed so that users can correctly backtrack.

There are two common methods for positioning menus. With a pop-up menu
(also called a dialogue box), menus are displayed near the current cursor position so
users don’t have to move the position or their eyes to view system options (Figure 11-6a).

Pop-up menu
A menu-positioning method that places a
menu near the current cursor position.

386 Part IV Design

FIgure 11-6
Menus from Mozilla Firefox
(a) Pop-up menu
(Source: Mozilla Firefox.)

(b) Drop-down menu

 ChaPter 11 Designing interfaces anD Dialogues 387

Table 11-1 Guidelines for Menu Design

Wording •	Each menu should have a meaningful title
•	Command verbs should clearly and specifically describe operations
•	Menu items should be displayed in mixed uppercase and lowercase letters and have a clear,

unambiguous interpretation
Organization •	A consistent organizing principle should be used that relates to the tasks the intended users

perform; for example, related options should be grouped together, and the same option should
have the same wording and codes each time it appears

Length •	 The number of menu choices should not exceed the length of the screen
•	Submenus should be used to break up exceedingly long menus

Selection •	Selection and entry methods should be consistent and reflect the size of the application and
sophistication of the users

•	How the user is to select each option and the consequences of each option should be clear
(e.g., whether another menu will appear)

Highlighting •	Highlighting should be minimized and used only to convey selected options (e.g., a check
mark) or unavailable options (e.g., dimmed text)

A pop-up menu has a variety of potential uses. One is to show a list of commands
relevant to the current cursor position (e.g., delete, clear, copy, or validate current
field). Another is to provide a list of possible values (from a look-up table) to fill in
for the current field. For example, in a customer order form, a list of current custom-
ers could pop up next to the customer number field so the user can select the correct
customer without having to know the customer’s identifier. With a drop-down menu,
menus drop down from the top line of the display (Figure 11-6b). Drop-down menus
have become very popular in recent years because they provide consistency in menu
location and operation among applications and efficiently use display space. Most
advanced operating environments, such as Microsoft Windows or the Apple OSX,
provide a combination of both pop-up and drop-down menus.

When designing menus, several general rules should be followed, and these are
summarized in Table 11-1. For example, each menu should have a meaningful title and
be presented in a meaningful manner to users. A menu option of Quit, for instance, is
ambiguous—does it mean return to the previous screen or exit the program? To more
easily see how to apply these guidelines, Figure 11-7 contrasts a poorly designed menu

Drop-down menu
A menu-positioning method that places
the access point of the menu near the top
line of the display; when accessed, menus
open by dropping down onto the display.

SYSTEM OPTIONS

01
02
03
04
05
06

ENTER OPTION (01):__

ORDER INFO
ORDER STATUS
SALESPERSON INFO
REPORTS
HELP
QUIT

Vague title

Vague command names

All uppercase letters

Vague exit statement

Two-key selection

Common options
are not separated and

assigned a standard key

FIgure 11-7
Contrasting menu designs
(a) Poor menu design

388 Part IV Design

with a menu that follows the menu design guidelines. Annotations on the two parts of
this figure highlight poor and improved menu interface design features.

Many advanced programming environments provide powerful tools for design-
ing menus. For example, Microsoft’s Visual Basic.NET allows you to quickly design a
menu structure for a system. For example, Figure 11-8 shows a design form in which a
menu structure is being defined; menu items are added by selecting the “Type Here”
tags and typing the words that represent each item on the menu. With the use of a
few easily invoked options, you can also assign shortcut keys to menu items, connect
help screens to individual menu items, define submenus, and set usage properties

Customer Information System
Main Menu

1
2
3
4

9
0

Type option number (1):__

Query Information on a Specific Order
Check Status of a Specific Order
Review Salesperson Information
Produce Order and Sales Reports

Help
Exit to Operating System

Clear title

Descriptive command
names with

mixed-case letters

Clear exit statement

One-key selection

Common options
are separated and

assigned a standard key

FIgure 11-7 (continued)
(b) Improved menu design

FIgure 11-8
Menu building with Microsoft Visual
Basic.NET
(Source: Microsoft Corporation.)

 ChaPter 11 Designing interfaces anD Dialogues 389

(see the Properties window within Figure 11-8). Usage properties, for example, in-
clude the ability to dim the color of a menu item while a program is running, indicat-
ing that a function is currently unavailable. Menu-building tools allow a designer to
quickly and easily prototype a design that will look exactly as it will in the final system.

Form Interaction The premise of form interaction is to allow users to fill in the blanks
when working with a system. Form interaction is effective for both the input and presen-
tation of information. An effectively designed form includes a self-explanatory title and
field headings, has fields organized into logical groupings with distinctive boundaries,
provides default values when practical, displays data in appropriate field lengths, and
minimizes the need to scroll windows (Shneiderman and Plaisant, 2004). You saw many
other design guidelines for forms in Chapter 10. Form interaction is the most commonly
used method for data entry and retrieval in business-based systems. Figure 11-9 shows a
form from the Google Advanced Search Engine. Using interactive forms, organizations
can easily provide all types of information to web surfers.

Object-Based Interaction The most common method for implementing object-
based interaction is through the use of icons. Icons are graphic symbols that look like
the processing option they are meant to represent. Users select operations by point-
ing to the appropriate icon with some type of pointing device. The primary advan-
tages to icons are that they take up little screen space and can be quickly understood
by most users. An icon may also look like a button that, when selected or depressed,
causes the system to take an action relevant to that form, such as cancel, save, edit a
record, or ask for help. For example, Figure 11-10 illustrates an icon-based interface
when setting Options within the Firefox web browser.

Form interaction
A highly intuitive human–computer
interaction method whereby data fields
are formatted in a manner similar to paper-
based forms.

Object-based interaction
A human–computer interaction method
in which symbols are used to represent
commands or functions.

Icon
Graphical picture that represents specific
functions within a system.

FIgure 11-9
Example of form interaction from the
Google Advanced Search Engine
(Source: Google.)

390 Part IV Design

Natural Language Interaction One branch of artificial intelligence research
 studies techniques for allowing systems to accept inputs and produce outputs in a
conventional language such as English. This method of interaction is referred to as
natural language interaction. Presently, natural language interaction is not as viable
an interaction style as the other methods presented. Current implementations can
be tedious, frustrating, and time consuming for the user and are often built to accept
input in narrowly constrained domains (e.g., database queries). Natural language
interaction is being applied within both keyboard and voice entry systems.

hardware options for system interaction
In addition to the variety of methods used for interacting with a system, there is also
a growing number of hardware devices employed to support this interaction (see
Table 11-2 for a list of interaction devices along with brief descriptions of the typical
usage of each). The most fundamental and widely used device is the keyboard, which
is the mainstay of most computer-based applications for the entry of alphanumeric
information. Keyboards vary, from the typewriter kind of keyboards used with per-
sonal computers to special-function keyboards on point-of-sale or shop-floor devices.
The growth in graphical user environments, however, has spurred the broader use of
pointing devices such as mice, joysticks, trackballs, and graphics tablets. The creation
of notebook and pen-based computers with trackballs, joysticks, or pens attached
directly to the computer has also brought renewed interest to the usability of these
various devices.

Research has found that each device has its strengths and weaknesses. These
strengths and weaknesses must guide your selection of the appropriate devices to

Natural language interaction
A human–computer interaction method
whereby inputs to and outputs from a
computer-based application are in a
conventional spoken language such as
English.

FIgure 11-10
Object-based (icon) interface from the
Option menu in the Firefox web browser
(Source: Mozilla Firefox.)

 ChaPter 11 Designing interfaces anD Dialogues 391

aid users in their interaction with an application. The selection of an interaction
device must be made during logical design because different interfaces require dif-
ferent devices. Table 11-3 summarizes much of the usability assessment research by
relating each device to various types of human–computer interaction problems. For

Table 11-2 Common Devices for Interacting with an Information System
Device Description and Primary Characteristics or Usage
Keyboard Users push an array of small buttons that represent symbols that are then translated into words

and commands. Keyboards are widely understood and provide considerable flexibility
for interaction.

Mouse A small plastic box that users push across a flat surface and whose movements are translated into cursor
movement on a computer display. Buttons on the mouse tell the system when an item is selected. A
mouse works well on flat desks but may not be practical in dirty or busy environments, such as a shop
floor or check-out area in a retail store. Newer pen-based mice provide the user with more of the feel
of a writing implement.

Joystick A small vertical lever mounted on a base that steers the cursor on a computer display. Provides similar
functionality to a mouse.

Trackball A sphere mounted on a fixed base that steers the cursor on a computer display. A suitable replacement
for a mouse when work space for a mouse is not available.

Touch Screen Selections are made by touching a computer display. This works well in dirty environments or for users
with limited dexterity or expertise.

Light Pen Selections are made by pressing a pen-like device against the screen. A light pen works well when the
user needs to have a more direct interaction with the contents of the screen.

Graphics Tablet Moving a pen-like device across a flat tablet steers the cursor on a computer display. Selections are
made by pressing a button or by pressing the pen against the tablet. This device works well for
drawing and graphical applications.

Voice Spoken words are captured and translated by the computer into text and commands. This is most
appropriate for users with physical challenges or when hands need to be free to do other tasks while
interacting with the application.

Table 11-3 Summary of Interaction Device Usability Problems
Problem

Device
Visual

Blocking User Fatigue
Movement

Scaling Durability
Adequate
Feedback Speed

Pointing
Accuracy

Keyboard n n ■ n ■ ■ n
Mouse n n ■ n ■ n n
Joystick n n ■ n ■ n ■

Trackball n n ■ ■ ■ n n
Touch

Screen
■ ■ n ■ n n ■

Light Pen ■ ■ n n n n ■

Graphics
Tablet

n n ■ n ■ n n

Voice n n ■ n ■ n ■

Key:
 n = little or no usability problems
 ■ = potentially high usability problems for some applications
 Visual Blocking = extent to which device blocks display when using
 User Fatigue = potential for fatigue over long use
 Movement Scaling = extent to which device movement translates to equivalent screen movement
 Durability = lack of durability or need for maintenance (e.g., cleaning) over extended use
 Adequate Feedback = extent to which device provides adequate feedback for each operation
 Speed = cursor movement speed
 Pointing Accuracy = ability to precisely direct cursor

392 Part IV Design

example, for many applications, keyboards do not give users a precise feel for cursor
movement, do not provide direct feedback on each operation, and can be a slow way
to enter data (depending on the typing skill of the user). Another means to gain an
understanding of device usability is to highlight which devices have been found most
useful for completing specific tasks. The results of this research are summarized in
Table 11-4. The rows of this table list common user–computer interaction tasks, and
the columns show three criteria for evaluating the usability of the different devices.
After reviewing these three tables, it should be evident that no device is perfect and
that some are more appropriate for performing some tasks than others. To design
the most effective interfaces for a given application, you should understand the capa-
bilities of various interaction methods and devices.

Designing interfaces
Building on the information provided in Chapter 10 on the design of content for
forms and reports, here we discuss issues related to the design of interface layouts.
This discussion provides guidelines for structuring and controlling data entry fields,
providing feedback, and designing online help. Effective interface design requires
that you gain a thorough understanding of each of these concepts.

Designing layouts
To ease user training and data recording, you should use standard formats for com-
puter-based forms and reports similar to those used on paper-based forms and re-
ports for recording or reporting information. A typical paper-based form for report-
ing customer sales activity is shown in Figure 11-11. This form has several general
areas common to most forms:

•	 Header information
•	 Sequence and time-related information
•	 Instruction or formatting information
•	 Body or data details

Table 11-4 Summary of General Conclusions from experimental Comparisons of Input Devices in
Relation to Specific Task activities

Task Most Accurate Shortest Positioning Most Preferred

Target Selection trackball, graphics
tablet, mouse,
joystick

touch screen, light pen,
mouse, graphics
tablet, trackball

touch screen, light pen

Text Selection mouse mouse —
Data Entry light pen light pen —
Cursor Positioning — light pen —
Text Correction light pen, cursor keys light pen light pen
Menu Selection touch screen — keyboard, touch screen

Key:
 Target Selection = moving the cursor to select a figure or item
 Text Selection = moving the cursor to select a block of text
 Data Entry = entering information of any type into a system
 Cursor Positioning = moving the cursor to a specific position
 Text Correction = moving the cursor to a location to make a text correction
 Menu Selection = activating a menu item
 — = no clear conclusion from the research

 ChaPter 11 Designing interfaces anD Dialogues 393

Header

Body

Authorization

Totals

Sequence and
Time Information

PINE VALLEY FURNITURE

Sales Invoice

INVOICE No.
Date:

SOLD TO:

SOLD BY:

Customer Number:
Name:

Address:
City:

Phone:

Customer Signature:
Date:

State: Zip:

Product
Number Description

Quantity
Ordered

Unit
Price

Total
Price

Total Order Amount
Less Discount____%

Total Amount

FIgure 11-11
Paper-based form for reporting customer
sales activity (Pine Valley Furniture)

•	 Totals or data summary
•	 Authorization or signatures
•	 Comments

In many organizations, data are often first recorded on paper-based
forms and then later recorded within application systems. When designing lay-
outs to record or display information on paper-based forms, you should try to
make both as similar as possible. Additionally, data entry displays should be
 consistently formatted across applications to speed data entry and reduce errors.
Figure 11-12 shows an equivalent computer-based form to the paper-based form
shown in Figure 11-11.

Another concern when designing the layout of computer-based forms is
the design of between-field navigation. Because you can control the sequence
for users to move between fields, standard screen navigation should flow from
left to right and top to bottom just as when you work on paper-based forms. For

394 Part IV Design

example, Figure 11-13 contrasts the flow between fields on a form used to record
business contacts. Figure 11-13a uses a consistent left-to-right, top-to-bottom flow.
Figure 11-13b uses a flow that is nonintuitive. When appropriate, you should also
group data fields into logical categories with labels describing the contents of the
category. Areas of the screen not used for data entry or commands should be inac-
cessible to the user.

When designing the navigation procedures within your system, flexibility and
consistency are primary concerns. Users should be able to freely move forward and
backward or to any desired data entry fields. Users should be able to navigate each
form in the same way or in as similar a manner as possible. Additionally, data should
not usually be permanently saved by the system until the user makes an explicit re-
quest to do so. This allows the user to abandon a data entry screen, back up, or move
forward without adversely affecting the contents of the permanent data.

Consistency extends to the selection of keys and commands. Each key or
command should have only one function, and this function should be consistent
throughout the entire system and across systems, if possible. Depending upon the ap-
plication, various types of functional capabilities will be required to provide smooth
navigation and data entry. Table 11-5 provides a list of the functional requirements
for providing smooth and easy navigation within a form. For example, a functional
and consistent interface will provide common ways for users to move the cursor to
different places on the form, edit characters and fields, move among form displays,

FIgure 11-12
Computer-based form reporting customer
sales activity (Pine Valley Furniture)
(Source: Microsoft Corporation.)

 ChaPter 11 Designing interfaces anD Dialogues 395

and obtain help. These functions may be provided by keystrokes, mouse or other
pointing device operations, or menu selection or button activation. It is possible that,
for a single application, all of the functional capabilities listed in Table 11-5 may not
be needed in order to create a flexible and consistent user interface. Yet the capabili-
ties that are used should be consistently applied to provide an optimal user environ-
ment. As with other tables in Chapters 10 and 11, Table 11-5 can serve as a checklist
for you to validate the usability of user interface designs.

structuring Data entry
Several rules should be considered when structuring data entry fields on a form (see
Table 11-6). The first is simple, but it is often violated by designers. To minimize data
entry errors and user frustration, never require the user to enter information that is
already available within the system or information that can be easily computed by the
system. For example, never require the user to enter the current date and time be-
cause each of these values can be easily retrieved from the computer system’s internal
calendar and clock. By allowing the system to do this, the user simply confirms that
the calendar and clock are working properly.

FIgure 11-13
Contrasting the navigation flow within a
data entry form
(Source: Microsoft Corporation.)

(a) Proper flow between data entry field

(b) Poor flow between data entry fields

396 Part IV Design

Table 11-5 Data entry Screen Functional Capabilities

Cursor Control Capabilities:
Move the cursor forward to the next data field
Move the cursor backward to the previous data field
Move the cursor to the first, last, or some other designated data field
Move the cursor forward one character in a field
Move the cursor backward one character in a field
editing Capabilities:
Delete the character to the left of the cursor
Delete the character under the cursor
Delete the whole field
Delete data from the whole form (empty the form)
exit Capabilities:
Transmit the screen to the application program
Move to another screen/form
Confirm the saving of edits or go to another screen/form
Help Capabilities:
Get help on a data field
Get help on a full screen/form

Other rules are equally important. For example, suppose that a bank customer
is repaying a loan on a fixed schedule with equal monthly payments. Each month
when a payment is sent to the bank, a clerk needs to record into a loan process-
ing system that the payment has been received. Within such a system, default values
for fields should be provided whenever appropriate. This means that only in the
instances where the customer pays more or less than the scheduled amount should
the clerk have to enter data into the system. In all other cases, the clerk would simply
verify that the check is for the default amount provided by the system and press a
single key to confirm the receipt of payment.

When entering data, the user should also not be required to specify the di-
mensional units of a particular value. For example, a user should not be required to
specify that an amount is in dollars or that a weight is in tons. Field formatting and
the data entry prompt should make clear the type of data being requested. In other
words, a caption describing the data to be entered should be adjacent to each data
field. Within this caption, it should be clear to the user what type of data is being re-
quested. As with the display of information, all data entered onto a form should auto-
matically justify in a standard format (e.g., date, time, money). Table 11-7 illustrates a

Table 11-6 Guidelines for Structuring Data entry Fields

Entry Never require data that are already online or that can be computed; for example, do not enter customer data
on an order form if those data can be retrieved from the database, and do not enter extended prices that
can be computed from quantity sold and unit prices.

Defaults Always provide default values when appropriate; for example, assume today’s date for a new sales invoice,
or use the standard product price unless overridden.

Units Make clear the type of data units requested for entry; for example, indicate quantity in tons, dozens, pounds, etc.
Replacement Use character replacement when appropriate; for example, allow the user to look up the value in a table or

automatically fill in the value once the user enters enough significant characters.
Captioning Always place a caption adjacent to fields; see Table 11-7 for caption options.
Format Provide formatting examples when appropriate; for example, automatically show standard embedded

symbols, decimal points, credit symbol, or dollar sign.
Justify Automatically justify data entries; numbers should be right justified and aligned on decimal points, and text

should be left justified.
Help Provide context-sensitive help when appropriate; for example, provide a hot key, such as the F1 key, that

opens the help system on an entry that is most closely related to where the cursor is on the display.

 ChaPter 11 Designing interfaces anD Dialogues 397

few options appropriate for printed forms. For data entry on video display terminals,
you should highlight the area in which text is entered so that the exact number of
characters per line and number of lines are clearly shown. You can also use check
boxes or radio buttons to allow users to choose standard textual responses. And you
can use data entry controls to ensure that the proper type of data (alphabetic or nu-
meric, as required) is entered. Data entry controls are discussed next.

controlling Data input
One objective of interface design is to reduce data entry errors. As data are entered
into an information system, steps must be taken to ensure that the input is valid. As
a systems analyst, you must anticipate the types of errors users may make and design
features into the system’s interfaces to avoid, detect, and correct data entry mistakes.
Several types of data errors are summarized in Table 11-8. In essence, data errors can
occur from appending extra data onto a field, truncating characters off a field, tran-
scripting the wrong characters into a field, or transposing one or more characters
within a field. Systems designers have developed numerous tests and techniques for
catching invalid data before saving or transmission, thus improving the likelihood
that data will be valid (see Table 11-9 for a summary of these techniques). These tests
and techniques are often incorporated into both data entry screens and intercom-
puter data transfer programs.

Practical experience has also found that it is much easier to correct erroneous
data before they are permanently stored in a system. Online systems can notify a user
of input problems as data are being entered. When data are processed online as events
occur, it is much less likely that data validity errors will occur and not be caught. In an
online system, most problems can be easily identified and resolved before permanently

Table 11-7 Options for entering or Selecting Text
Options Example

Line Caption Phone Number () -

Drop Caption () -
Phone Number

Boxed Caption Phone Number

Delimited Characters

Phone Number

Check Boxes Method of communication (check one or more)
❏ E-mail
❏ SMS (Text Message)
❏ Phone

Radio Buttons Method of communication (check preferred method)
❍ E-mail
❍ SMS (Text Message)
● Phone

Table 11-8 Sources of Data errors
Data Error Description
Appending Adding additional characters to a field
Truncating Losing characters from a field
Transcripting Entering invalid data into a field
Transposing Reversing the sequence of one or more characters in a field

() -

398 Part IV Design

saving data to a storage device, using many of the techniques described in Table 11-9.
However, in systems where inputs are stored and entered (or transferred) in batch, the
identification and notification of errors is more difficult. Batch processing systems can,
however, reject invalid inputs and store them in a log file for later resolution.

Most of the tests and techniques shown in Table 11-9 are widely used and
straightforward. Some of these tests can be handled by data management technolo-
gies, such as a database management system (DBMS), to ensure that they are applied
for all data maintenance operations. If a DBMS cannot perform these tests, then you
must design the tests into program modules. An example of one item that is a bit
sophisticated, self-checking digits, is shown in Figure 11-14. The figure provides a
description and an outline of how to apply the technique as well as a short example.
The example shows how a check digit is added to a field before data entry or trans-
fer. Once entered or transferred, the check digit algorithm is again applied to the
field to “check” whether the check digit received obeys the calculation. If it does, it
is likely (but not guaranteed because two different values could yield the same check
digit) that no data transmission or entry error occurred. If the transferred value does
not equal the calculated value, then some type of error occurred.

In addition to validating the data values entered into a system, controls must be
established to verify that all input records are correctly entered and that they are pro-
cessed only once. A common method used to enhance the validity of entering batches
of data records is to create an audit trail of the entire sequence of data entry, processing,
and storage. In such an audit trail, the actual sequence, count, time, source location,
human operator, and so on are recorded into a separate transaction log in the event of
a data input or processing error. If an error occurs, corrections can be made by review-
ing the contents of the log. Detailed logs of data inputs are not only useful for resolving
batch data entry errors and system audits, but they also serve as a powerful method for
performing backup and recovery operations in the case of a catastrophic system failure.
These types of file and database controls are discussed further in Hoffer et al. (2016).

Providing feedback
When talking with a friend, you would be concerned if he or she did not provide you
with feedback by nodding and replying to your questions and comments. Without
feedback, you would be concerned that he or she was not listening, likely resulting in
a less-than-satisfactory experience. Similarly, when designing system interfaces, pro-
viding appropriate feedback is an easy method for making a user’s interaction more

Table 11-9 Validation Tests and Techniques to enhance the Validity of Data Input
Validation Test Description

Class or Composition Test to ensure that data are of proper type (e.g., all numeric, all alphabetic, all alphanumeric)
Combinations Test to see if the value combinations of two or more data fields are appropriate or make sense

(e.g., Does the quantity sold make sense given the type of product?)
Expected Values Test to see if data are what is expected (e.g., match with existing customer names, payment amount, etc.)
Missing Data Test for existence of data items in all fields of a record (e.g., Is there a quantity field on each line item

of a customer order?)
Pictures/Templates Test to ensure that data conform to a standard format (e.g., Are hyphens in the right places for a

student ID number?)
Range Test to ensure data are within proper range of values (e.g., Is a student’s grade point average between

0 and 4.0?)
Reasonableness Test to ensure data are reasonable for situation (e.g., pay rate for a specific type of employee)
Self-Checking Digits Test where an extra digit is added to a numeric field in which its value is derived using a standard

formula (see Figure 11-14)
Size Test for too few or too many characters (e.g., Is social security number exactly nine digits?)
Values Test to make sure values come from set of standard values (e.g., two-letter state codes)

 ChaPter 11 Designing interfaces anD Dialogues 399

Description Techniques where extra digits are added to a field to assist in verifying
its accuracy

Method 1. Multiply each digit of a numeric field by a weighting factor (e.g.,
1, 2, 1, 2, _).

2. Sum the results of weighted digits.
3. Divide sum by modulus number (e.g., 10).
4. Subtract remainder of division from modulus number to deter-

mine check digit.
5. Append check digits to field.

Example Assume a numeric part number of: 12473
1-2. Multiply each digit of part number by weighting factor from right

to left and sum the results of weighted digits:

1 2 4 7 3
×1 ×2 ×1 ×2 ×1

141 + 4 + 4 + + 3 = 26

3. Divide sum by modulus number.

26/10 = 2 remainder 6

4. Subtract remainder from modulus number to determine check
digit.

check digit = 10 – 6 = 4

5. Append check digits to field.

Field value with appended check digit = 124734

FIgure 11-14
Using check digits to verify data
correctness

enjoyable; not providing feedback is a sure way to frustrate and confuse. There are
three types of system feedback:

1. Status information
2. Prompting cues
3. Error or warning messages

Status Information Providing status information is a simple technique for keep-
ing users informed of what is going on within a system. For example, relevant status
information such as displaying the current customer name or time, placing appropri-
ate titles on a menu or screen, or identifying the number of screens following the
current one (e.g., Screen 1 of 3) all provide needed feedback to the user. Providing
status information during processing operations is especially important if the opera-
tion takes longer than a second or two. For example, when opening a file you might
display “Please wait while I open the file” or, when performing a large calculation,
flash the message “Working … ” to the user. Further, it is important to tell the user
that besides working, the system has accepted the user’s input and that the input
was in the correct form. Sometimes it is important to give the user a chance to ob-
tain more feedback. For example, a function key could toggle between showing a
“Working … ” message and giving more specific information as each intermediate
step is accomplished. Providing status information will reassure users that nothing is
wrong and will make them feel in command of the system, not vice versa.

Prompting Cues A second feedback method is to display prompting cues. When
prompting the user for information or action, it is useful to be specific in your re-
quest. For example, suppose a system prompted users with the following request:

READY FOR INPUT: ___________

400 Part IV Design

With such a prompt, the designer assumes that the user knows exactly what to enter.
A better design would be specific in its request, possibly providing an example, default
values, or formatting information. An improved prompting request might be as follows:

Enter the customer account number (123–456–7): ____-____-__

Errors and Warning Messages A final method available to you for providing sys-
tem feedback is using error and warning messages. Practical experience has found
that a few simple guidelines can greatly improve their usefulness. First, messages
should be specific and free of error codes and jargon. Additionally, messages should
never scold the user and should attempt to guide the user toward a resolution. For
example, a message might say, “No customer record found for that Customer ID.
Please verify that digits were not transposed.” Messages should be in user, not com-
puter, terms. Hence, such terms as end of file, disk I/O error, or write protected may be
too technical and not helpful for many users. Multiple messages can be useful so that
a user can get more detailed explanations if wanted or needed. Also, error messages
should appear in roughly the same format and placement each time so that they are
recognized as error messages and not as some other information. Examples of good
and bad messages are provided in Table 11-10. Using these guidelines, you will be
able to provide useful feedback in your designs. A special type of feedback is answer-
ing help requests from users. This important topic is described next.

Providing help
Designing how to provide help is one of the most important interface design issues
you will face. When designing help, you need to put yourself in the user’s place.
When accessing help, the user likely does not know what to do next, does not un-
derstand what is being requested, or does not know how the requested information
needs to be formatted. A user requesting help is much like a ship in distress sending
an SOS. In Table 11-11, we provide our SOS guidelines for the design of system help:
simplicity, organize, and show. Our first guideline, simplicity, suggests that help mes-
sages should be short and to the point, and use words that enable understanding.
This leads to our second guideline, organize, which means that help messages should

Table 11-10 examples of Poor and Improved error Messages
Poor Error Messages Improved Error Messages

ERROR 56 OPENING FILE The file name you typed was not found. Press F2 to list
valid file names.

WRONG CHOICE Please enter an option from the menu.
DATA ENTRY ERROR The prior entry contains a value outside the range of

acceptable values. Press F9 for list of acceptable
values.

FILE CREATION ERROR The file name you entered already exists. Press F10 if you
want to overwrite it. Press F2 if you want to save it to
a new name.

Table 11-11 Guidelines for Designing Usable Help
Guideline Explanation

Simplicity Use short, simple wording, common spelling, and complete sentences.
Give users only what they need to know, with the option to find
additional information.

Organize Use lists to break information into manageable pieces.
Show Provide examples of proper use and the outcomes of such use.

 ChaPter 11 Designing interfaces anD Dialogues 401

be written so that information can be easily absorbed by users. Practical experience
has found that long paragraphs of text are often difficult for people to understand.
A better design organizes lengthy information in a manner that is easier for users to
digest through the use of bulleted and ordered lists. Finally, it is often useful to ex-
plicitly show users how to perform an operation and the outcome of procedural steps.
Figures 11-15a and 11-15b show the contrasts between two help screen designs, one
that employs our guidelines and one that does not.

FIgure 11-15
Contrasting help screens
(Source: Microsoft Corporation.)

(a) Poorly designed help display

(b) Improved design for help display

402 Part IV Design

Many commercially available systems provide extensive system help. For exam-
ple, Table 11-12 lists the range of help available in a popular electronic spreadsheet.
Many systems are also designed so that users can vary the level of detail provided.
Help may be provided at the system level, screen or form level, and individual field
level. The ability to provide field level help is often referred to as “context-sensitive”
help. For some applications, providing context-sensitive help for all system options
is a tremendous undertaking that is virtually a project in itself. If you do decide to
design an extensive help system with many levels of detail, you must be sure that you
know exactly what the user needs help with, or your efforts may confuse users more
than help them. After leaving a help screen, users should always return to where they
were prior to requesting help. If you follow these simple guidelines, you will likely
design a highly usable help system.

As with the construction of menus, many programming environments provide
powerful tools for designing system help. For example, Microsoft’s HTML Help envi-
ronment allows you to quickly construct hypertext-based help systems. In this environ-
ment, you use a text editor to construct help pages that can be easily linked to other
pages containing related or more specific information. Linkages are created by embed-
ding special characters into the text document that make words hypertext buttons—
that is, direct linkages—to additional information. HTML Help transforms the text doc-
ument into a hypertext document. For example, Figure 11-16 shows a hypertext-based

Table 11-12 Types of Help
Type of Help Example of Question

Help on Help How do I get help?
Help on Concepts What is a customer record?
Help on Procedures How do I update a record?
Help on Messages What does “Invalid File Name” mean?
Help on Menus What does “Graphics” mean?
Help on Function Keys What does each Function key do?
Help on Commands How do I use the “Cut” and “Paste” commands?
Help on Words What do “merge” and “sort” mean?

FIgure 11-16
Hypertext-based help system from Firefox
(Source: Mozilla Firefox.)

 ChaPter 11 Designing interfaces anD Dialogues 403

help screen from the Firefox browser. Hypertext-based help systems have become the
standard for most commercial applications. This has occurred for two primary reasons.
First, standardizing system help across applications eases user training. Second, hyper-
text allows users to selectively access the level of help they need, making it easier to
provide effective help for both novice and experienced users within the same system.

Designing Dialogues
The process of designing the overall sequences that users follow to interact with an
information system is called dialogue design. A dialogue is the sequence in which in-
formation is displayed to and obtained from a user. As the designer, your role is to
select the most appropriate interaction methods and devices (described earlier) and
to define the conditions under which information is displayed to and obtained from
users. The dialogue design process consists of three major steps:

1. Designing the dialogue sequence
2. Building a prototype
3. Assessing usability

A few general rules that should be followed when designing a dialogue are sum-
marized in Table 11-13. For a dialogue to have high usability, it must be consistent
in form, function, and style. All other rules regarding dialogue design are mitigated
by the consistency guideline. For example, the effectiveness of how well errors are
handled or feedback is provided will be significantly influenced by consistency in de-
sign. If the system does not consistently handle errors, the user will often be at a loss
as to why certain things happen.

One example of these guidelines concerns removing data from a database or
file (see the Reversal entry in Table 11-13). It is good practice to display the infor-
mation that will be deleted before making a permanent change to the file. For ex-
ample, if the customer service representative wanted to remove a customer from
the database, the system should ask only for the customer ID in order to retrieve
the correct customer account. Once found, and before allowing the confirmation of
the deletion, the system should display the account information. For actions making

Dialogue
The sequence of interaction between a user
and a system.

Table 11-13 Guidelines for the Design of Human–Computer Dialogues
Guideline Explanation

Consistency Dialogues should be consistent in sequence of actions, keystrokes, and terminology (e.g., the same labels
should be used for the same operations on all screens, and the location of the same information should
be the same on all displays).

Shortcuts and Sequence Allow advanced users to take shortcuts using special keys (e.g., CTRL-C to copy highlighted text). A
natural sequence of steps should be followed (e.g., enter first name before last name, if appropriate).

Feedback Feedback should be provided for every user action (e.g., confirm that a record has been added, rather
than simply putting another blank form on the screen).

Closure Dialogues should be logically grouped and have a beginning, middle, and end (e.g., the last in the
sequence of screens should indicate that there are no more screens).

Error Handling All errors should be detected and reported; suggestions on how to proceed should be made (e.g., suggest
why such errors occur and what user can do to correct the error). Synonyms for certain responses
should be accepted (e.g., accept either “t,” “T,” or “TRUE”).

Reversal Dialogues should, when possible, allow the user to reverse actions (e.g., undo a deletion); data should
not be deleted without confirmation (e.g., display all the data for a record the user has indicated is to
be deleted).

Control Dialogues should make the user (especially an experienced user) feel in control of the system (e.g.,
provide a consistent response time at a pace acceptable to the user).

Ease It should be a simple process for users to enter information and navigate between screens (e.g., provide
means to move forward, backward, and to specific screens, such as first and last).

(Source: Based on Shneiderman et al., 2009.)

404 Part IV Design

permanent changes to system data files and when the action is not commonly per-
formed, many system designers use the double-confirmation technique. With this tech-
nique, users must confirm their intention twice before being allowed to proceed.

Designing the Dialogue sequence
Your first step in dialogue design is to define the sequence. In other words, you
must first gain an understanding of how users might interact with the system. This
means that you must have a clear understanding of user, task, technological, and
environmental characteristics when designing dialogues. Suppose that the market-
ing manager at Pine Valley Furniture (PVF) wants sales and marketing personnel
to be able to review the year-to-date transaction activity for any PVF customer. After
talking with the manager, you both agree that a typical dialogue between a user
and the Customer Information System for obtaining this information might pro-
ceed as follows:

1. Request to view individual customer information
2. Specify the customer of interest
3. Select the year-to-date transaction summary display
4. Review customer information
5. Leave system

As a designer, once you understand how a user wishes to use a system, you can
then transform these activities into a formal dialogue specification.

A formal method for designing and representing dialogues is dialogue
 diagramming. Dialogue diagrams have only one symbol, a box with three sections;
each box represents one display (which might be a full screen or a specific form or
window) within a dialogue (see Figure 11-17). The three sections of the box are used
as follows:

1. Top: Contains a unique display reference number used by other displays for ref-
erencing it.

2. Middle: Contains the name or description of the display.
3. Bottom: Contains display reference numbers that can be accessed from the cur-

rent display.

All lines connecting the boxes within dialogue diagrams are assumed to be bi-
directional and thus do not need arrowheads to indicate direction. This means that
users are allowed to move forward and backward between adjacent displays. If you
desire only unidirectional flows within a dialogue, arrowheads should be placed on
one end of the line. Within a dialogue diagram, you can easily represent the sequenc-
ing of displays, the selection of one display over another, or the repeated use of a
single display (e.g., a data entry display). These three concepts—sequence, selection,
and iteration—are illustrated in Figure 11-18.

Continuing with our PVF example, Figure 11-19 shows a partial dialogue dia-
gram for processing the marketing manager’s request. In this diagram, the analyst
placed the request to view year-to-date customer information within the context
of the overall Customer Information System. The user must first gain access to the

Dialogue diagramming
A formal method for designing and
representing human–computer dialogues
using box and line diagrams.

Unique Reference
Number of Display

Name or Description
of Display

Reference Numbers
of Return Displays

Top

Middle

BottomFIgure 11-17
Sections of a dialogue diagramming box

 ChaPter 11 Designing interfaces anD Dialogues 405

Sequence

Iteration

Selection

Display
A

Display
B

Display
D

Display
C

Display
E

FIgure 11-18
Dialogue diagram illustrating sequence,
selection, and iteration

system through a log-on procedure (item 0). If log-on is successful, a main menu is
displayed that has four items (item 1). Once the user selects the Individual Customer
Information (item 2), control is transferred to the Select Customer display (item
2.1). After a customer is selected, the user is presented with an option to view cus-
tomer information four different ways (item 2.1.1). Once the user views the custom-
er’s year-to-date transaction activity (item 2.1.1.2), the system will allow the user to
back up to select a different customer (2.1), return to the main menu (1), or exit the
system (see bottom of item 2.1.1.2).

Building Prototypes and assessing usability
Building dialogue prototypes and assessing usability are often optional activities.
Some systems may be very simple and straightforward; others may be more complex
but are extensions to existing systems where dialogue and display standards have
already been established. In either case, you may not be required to build prototypes
and do a formal assessment. However, for many other systems, it is critical that you
build prototype displays and then assess the dialogue; this can pay numerous divi-
dends later in the systems development life cycle (e.g., it may be easier to implement
a system or train users on a system they have already seen and used).

Building prototype displays is often a relatively easy activity if you use graphi-
cal development environments such as Microsoft’s Visual Studio.NET. Some systems
development environments include easy-to-use input and output (form, report, or
window) design utilities. Tools called “prototypers” or “demo builders” allow you
to quickly design displays and show how an interface will work within a full sys-
tem. For building web applications, environments that allow you to quickly build
wireframes that can be evolved into a working website are often used for assessing

406 Part IV Design

usability (Figure 11-20). These prototypers typically allow users to enter data and
move through screens as if using the actual system. Such activities are not only useful
for you to show how an interface will look and feel, they are also useful for assessing
usability and for performing user training long before actual systems are completed.
In the next section, we extend our discussion of interface and dialogue design to
consider issues specific to graphical user interface environments.

Login
Screen

Main
Menu

System

0

0, System

1

Reports

0, 1

5

Individual
Customer

Information

0, 1

2

Order
Status

0, 1

3

Select
Customer

1

2.1

Customer
Information

2.1, 1

2.1.1

YTD
Summary

1, 2.1, 0

2.1.1.1

YTD
Transactions

1, 2.1, 0

2.1.1.2

Lifetime
Summary

1, 2.1, 0

2.1.1.3

Lifetime
Transactions

1, 2.1, 0

2.1.1.4

Salesperson
Information

0, 1

4

FIgure 11-19
Dialogue diagram for the customer
information system (Pine Valley Furniture)

 ChaPter 11 Designing interfaces anD Dialogues 407

Designing interfaces anD Dialogues in
graPhical environMents
Graphical user interface (GUI) environments have become the de facto standard
for human–computer interaction. Although all of the interface and dialogue design
guidelines presented previously apply to designing GUIs, additional issues that are
unique to these environments must be considered. Here, we briefly discuss some of
these issues.

graphical interface Design issues
When designing GUIs for an operating environment such as Microsoft Windows or
the Apple OSX, numerous factors must be considered. Some factors are common to
all GUI environments, whereas others are specific to a single environment. We will
not, however, discuss the subtleties and details of any single environment. Instead,
our discussion will focus on a few general truths that experienced designers mention
as critical to the design of usable GUIs (Cooper et al., 2014; Krug, 2014; Nielsen and
Loranger, 2006; Shneiderman et al., 2009). In most discussions of GUI program-
ming, two rules repeatedly emerge as composing the first step to becoming an effec-
tive GUI designer:

1. Become an expert user of the GUI environment.
2. Understand the available resources and how they can be used.

The first step should be an obvious one. The greatest strength of designing
within a standard operating environment is that standards for the behavior of most
system operations have already been defined. For example, how you cut and paste,
set up your default printer, design menus, or assign commands to functions have
been standardized both within and across applications. This allows experienced users
of one GUI-based application to easily learn a new application. Thus, in order to de-
sign effective interfaces in such environments, you must first understand how other
applications have been designed so that you will adopt the established standards for
“look and feel.” Failure to adopt the standard conventions in a given environment
will result in a system that will likely frustrate and confuse users.

FIgure 11-20
Wireframes are often used for testing
usability

408 Part IV Design

The second rule—gaining an understanding of the available resources and how
they can be used—is a much larger undertaking. For example, within Windows you
can use menus, forms, and boxes in many ways. In fact, the flexibility with which
these resources can be used versus the established standards for how most designers
actually use these resources makes design especially challenging. For example, you
have the ability to design menus using all uppercase text, putting multiple words
on the top line of the menu, and other nonstandard conventions. Yet the standards
for menu design require that top-level menu items consist of one word and follow a
specific ordering. Numerous other standards for menu design have also been estab-
lished (see Figure 11-21 for illustrations of many of these standards). Failure to fol-
low standard design conventions will likely prove very confusing to users.

In GUIs, information is requested by placing a window (or form) on the vi-
sual display screen. Like menu design, forms can also have numerous properties
that can be mixed and matched (see Table 11-14). For example, properties about a
form determine whether a form is resizable or movable after being opened. Because
properties define how users can actually work with a form, the effective application
of properties is fundamental to gaining usability. This means that, in addition to
designing the layout of a form, you must also define the “personality” of the form
with its characteristic properties. Fortunately, numerous GUI design tools have been
developed that allow you to “visually” design forms and interactively engage proper-
ties. Interactive GUI design tools have greatly facilitated the design and construction
process.

In addition to the issues related to interface design, the sequencing of displays
turns out to be a bit more challenging in graphical environments. This topic is dis-
cussed next.

Solid circle shows that an item
is selected or mode is turned on

Right arrow () shows that
an item leads to a submenu

No checkmarks indicate that a command
will be executed if selected

Ellipses (. . .) show that a
pop-up menu will appear if selected

Help menu item is always last item (if present)

Edit menu item is always second item (if present)

File menu item is always first item (if present)FIgure 11-21
Highlighting GUI design standards
(Source: Screenshot from Neuro-ID, Inc.
Used with permission.)

 ChaPter 11 Designing interfaces anD Dialogues 409

Dialogue Design issues in a graphical environment
When designing a dialogue, your goal is to establish the sequence of displays (full
screens or windows) that users will encounter when working with the system. This
process can be a bit more challenging due to the GUI’s ability to suspend activities
(without resolving a request for information or exiting the application altogether)
and switch to another application or task. For example, within Microsoft Word,
the spell-checker executes independently from the general word processor. This
means that you can easily jump between the spell-checker and word processor
without exiting either one. Conversely, when selecting the print operation, you
must either initiate printing or abort the request before returning to the word pro-
cessor. This is an example of the concept of “modality” described in Table 11-14.
Thus, Windows-type environments allow you to create forms that either require the
user to resolve a request before proceeding (print example) or selectively choose to
resolve a request before proceeding (the spell-checker). Creating dialogues that
allow the user to jump from application to application or from module to module
within a given application requires that you carefully think through the design of
dialogues.

One easy way to deal with the complexity of designing advanced GUIs is
to require users to always resolve all requests for information before proceed-
ing. For such designs, the dialogue diagramming technique is an adequate de-
sign tool. This, however, would make the system operate in a manner similar to
a traditional non-GUI environment where the sequencing of displays is tightly
controlled. The drawback to such an approach would be the failure to capitalize
on the task-switching capabilities of these environments. Consequently, design-
ing dialogues in environments where the sequence between displays cannot be
predetermined offers significant challenges to the designer. Using tools such as
dialogue diagramming helps analysts to better manage the complexity of design-
ing graphical interfaces.

electronic coMMerce aPPlication:
Designing interfaces anD Dialogues for
Pine valley furniture’s WeBstore
Designing the human interface for an Internet-based electronic commerce applica-
tion is a central and critical design activity. Because this is where a customer will inter-
act with a company, much care must be put into its design. Like the process followed
when designing the interface for other types of systems, a prototyping design process

Table 11-14 Common Properties of Windows and Forms in a GUI environment That Can be active or Inactive
Property Explanation

Modality Requires users to resolve the request for information before proceeding (e.g., need to cancel or save before
closing a window)

Resizable Allows users to resize a window or form (e.g., to make room to
see other windows that are also on the screen)

Movable Allows users to move a window or form (e.g., to allow another window to be seen)
Maximize Allows users to expand a window or form to a full-size screen (e.g., to avoid distraction from other active

windows or forms)
Minimize Allows users to shrink a window or form to an icon (e.g., to get the window out of the way while working on

other active windows)
System Menu Allows a window or form to also have a system menu to directly access system-level functions (e.g., to save or

copy data)

(Source: Based on Wagner, 1994.)

410 Part IV Design

is most appropriate when designing the human interface for an Internet electronic
commerce system. Although the techniques and technology for building the human
interface for Internet sites is rapidly evolving, several general design guidelines have
emerged. In this section, we examine some of these as they apply to the design of
PVF’s WebStore.

general guidelines
Over the years, interaction standards have emerged for virtually all of the commonly
used desktop computing environments such as Windows or OSX. However, some in-
terface design experts believe that the growth of the web has resulted in a big step
backward for interface design. One problem, as discussed in Chapter 10, is that
countless nonprofessional developers are designing commercial web applications. In
addition to this, there are four other important contributing factors (Johnson, 2007):

1. The web’s single “click-to-act” method of loading static hypertext documents
(i.e., most buttons on the web do not provide click feedback)

2. Limited capabilities of most web browsers to support finely grained user
interactivity

3. Limited agreed-upon standards for encoding web content and control
mechanisms

4. Lack of maturity of web scripting and programming languages as well as limita-
tions in commonly used web GUI component libraries

In addition to these contributing factors, designers of web interfaces and di-
alogues are often guilty of many design errors. Although not inclusive of all pos-
sible errors, Table 11-15 summarizes those errors that are particularly troublesome.
Fortunately, there are numerous excellent sources on how to avoid these and other

Table 11-15 Common errors When Designing the Interface and Dialogues of Websites
Error Description

Opening New Browser
Window

Avoid opening a new browser window when a user clicks on a link unless it is clearly marked that
a new window will be opened; users may not see that a new window has been opened, which
will complicate navigation, especially moving backward.

Breaking or Slowing Down the
Back Button

Make sure users can use the back button to return to prior pages. Avoid opening new browser
windows, using an immediate redirect where, when users click the back button, they are pushed
forward to an undesired location, or prevent caching such that each click of the back button
requires a new trip to the server.

Complex URLs Avoid overly long and complex URLs because it makes it more difficult for users to understand
where they are and can cause problems if users want to e-mail page locations to colleagues.

Orphan Pages Avoid having pages with no “parent” that can be reached by using a back button; requires users
to “hack” the end of the URL to get back to some other prior page.

Scrolling Navigation Pages Avoid placing navigational links below where a page opens because many users may miss these
important options that are below the opening window.

Lack of Navigation Support Make sure your pages conform to users’ expectations by providing commonly used icon links
such as a site logo at the top or other major elements. Also place these elements on pages in a
consistent manner.

Hidden Links Make sure you leave a border around images that are links, don’t change link colors from normal
defaults, and avoid embedding links within long blocks of text.

Links That Don’t Provide Enough
Information

Avoid not turning off link-marking borders so that links clearly show which links users have clicked
and which they have not. Make sure users know which links are internal anchor points versus
external links, and indicate if a link brings up a separate browser window from those that do
not. Finally, make sure link images and text provide enough information to users so that they
understand the meaning of the link.

Buttons That Provide No Click
Feedback

Avoid using image buttons that don’t clearly change when being clicked; use web GUI toolkit
buttons, HTML form-submit buttons, or simple textual links.

 ChaPter 11 Designing interfaces anD Dialogues 411

interface and design errors (Cooper et al., 2014; Flanders and Peters, 2002; Krug,
2014; Johnson, 2007; Nielsen, 2000; Seffah and Javahery, 2003; www.nngroup.com;
www.webpagesthatsuck.com).

Designing interfaces and Dialogues at Pine valley furniture
To establish design guidelines for the human–computer interface, Jim Woo and the
PVF development team again reviewed many popular electronic commerce websites.
The key feature they wanted to incorporate into the design was an interface with
“menu-driven navigation with cookie crumbs.” In order to ensure that all team mem-
bers understood what was meant by this guideline, Jim organized a design briefing to
explain how this feature would be incorporated into the WebStore interface.

Menu-Driven navigation with cookie crumbs
After reviewing several sites, the team concluded that menus should stay in the exact
same place throughout the entire site. They concluded that placing a menu in the
same location on every page will help customers to more quickly become familiar
with the site and therefore more rapidly navigate it. Experienced web developers
know that the quicker customers can reach a specific destination at a site, the quicker
they can purchase the product they are looking for or get the information they seek.
Jim emphasized this point by stating, “These details may seem silly, but the second a
user finds themselves ‘lost’ in our site, they’re gone. One mouse click and they’re no
longer shopping at Pine Valley, but at one of our competitor’s sites.”

A second design feature, and one that is being used on many electronic com-
merce sites, is cookie crumbs (see Figure 11-22). Cookie crumbs are “tabs” or se-
quenced links on a web page that show a user where he or she is within a site and
where he or she has been. These tabs or sequenced link are hypertext links that can
be used to quickly move backward in the site. For example, suppose that a site is
four levels deep, with the top level called “Log in,” the second called “Shipping &
Payment,” the third called “Review Order,” and the fourth called “Confirmation.”
As the user moves deeper into the site, a tab or sequenced link is displayed across
the top of the page showing the user where he or she is, giving the user the ability to
quickly jump backward one or more levels. In other words, when first entering the
store, a tab or link will be displayed at the top (or some other standard place) of the
screen with the word “Log in.” After moving down a level, two links will be displayed,
“Log in” and “Shipping & Payment.” After providing the shipping and payment

Cookie crumbs
The technique of placing “tabs” or
sequenced links on a web page that show
a user where he or she is within a site and
where he or she has been.

Cookie
Crumbs

FIgure 11-22
Cookie crumbs help users know where
they are within a website

http://www.nngroup.com
http://www.webpagesthatsuck.com

412 Part IV Design

information on the second level, a third level is displayed where a user can review
the order information. When this level is displayed, a third link is provided with the
label “Review Order.” Finally, if the customer decides to place an order and selects
this option, a fourth-level screen is displayed and a fourth link is displayed with the
label “Confirmation.” In summary.

1. Level 1: Log in
2. Level 2: Log in S Shipping & Payment
3. Level 3: Log in S Shipping & Payment S Review Order
4. Level 4: Log in S Shipping & Payment S Review Order S Confirmation

By using cookie crumbs, users know exactly how far they have wandered from
“home.” If each tab is a link, users can quickly jump back to a broader part of the
store should they not find exactly what they are looking for. Cookie crumbs serve two
important purposes: First, they allow users to navigate to a point previously visited
and will ensure that they are not lost. Second, they clearly show users where they have
been and how far they have gone from home.

Summary
In this chapter, our focus was to acquaint you with the process
of designing human–computer interfaces and dialogues. It
is imperative that you understand the characteristics of vari-
ous interaction methods (command language, menu, form,
object, natural language) and devices (keyboard, mouse,
joystick, trackball, touch screen, light pen, graphics tab-
let, voice). No single interaction style or device is the most
 appropriate in all instances: Each has its strengths and weak-
nesses. You must consider the characteristics of the intended
users, the tasks being performed, and various technical and
environmental factors when making design decisions.

The chapter also reviewed design guidelines for
computer-based forms. You learned that most forms have a
header, sequence or time-related information, instructions,
a body, summary data, authorization, and comments. Users
must be able to move the cursor position, edit data, exit
with different consequences, and obtain help. Techniques
for structuring and controlling data entry were presented
along with guidelines for providing feedback, prompts,
and error messages. A simple, well-organized help function
that shows examples of proper use of the system should be
provided. A variety of help types were reviewed.

Next, guidelines for designing human–computer di-
alogues were presented. These guidelines are consistency,
allowing for shortcuts, providing feedback and closure
on tasks, handling errors, allowing for operations rever-
sal, giving the user a sense of control, and ease of naviga-
tion. We also discussed dialogue diagramming as a design

tool. Assessing the usability of dialogues and procedures
was also reviewed. Several interface and dialogue design is-
sues were described within the context of designing GUIs.
These included the need to follow standards to provide
the capabilities of modality, resizing, moving, and maxi-
mizing and minimizing windows, and to offer a system
menu choice. This discussion highlighted how concepts
presented earlier in this chapter can be applied or aug-
mented in these emerging environments. Finally, inter-
face and dialogue design issues for Internet-based applica-
tions were discussed, and several common design errors
were highlighted.

Our goal was to provide you with a foundation for
building highly usable human–computer interfaces. As
more and more development environments provide
rapid prototyping tools for the design of interfaces and
dialogues, many complying with common interface stan-
dards, the difficulty of designing usable interfaces will be
reduced. However, you still need a solid understanding
of the concepts presented in this chapter in order to suc-
ceed. Learning to use a computer system is like learning
to use a parachute—if a person fails on the first try, odds
are he or she won’t try again (Blattner and Schultz, 1988).
If this analogy is true, it is important that a user’s first ex-
perience with a system be a positive one. By following the
design guidelines outlined in this chapter, your chances of
providing a positive first experience to users will be greatly
enhanced.

Key TermS
11.1 Command language interaction
11.2 Cookie crumbs
11.3 Dialogue
11.4 Dialogue diagramming

11.5 Drop-down menu
11.6 Form interaction
11.7 Icon
11.8 Interface

11.9 Menu interaction
11.10 Natural language interaction
11.11 Object-based interaction
11.12 Pop-up menu

 ChaPter 11 Designing interfaces anD Dialogues 413

Match each of the key terms above to the definition that best
fits it.

____ A method by which users interact with information
systems.

____ A human–computer interaction method whereby users
 enter explicit statements into a system to invoke operations.

____ A formal method for designing and representing human–
computer dialogues using box and line diagrams.

____ A menu-positioning method that places a menu near the
current cursor position.

____ A human–computer interaction method whereby a list of
system options is provided and a specific command is in-
voked by user selection of a menu option.

____ The technique of placing “tabs” or sequenced links on a
web page to show a user where he or she is within a site
and where he or she has been.

____ A menu-positioning method that places the access point of
the menu near the top line of the display; when accessed,
menus open by dropping down onto the display.

____ A highly intuitive human–computer interaction method
whereby data fields are formatted in a manner similar to
paper-based forms.

____ A human–computer interaction method whereby symbols
are used to represent commands or functions.

____ Graphical pictures that represent specific functions within
a system.

____ A human–computer interaction method whereby inputs to
and outputs from a computer-based application are in a
conventional speaking language such as English.

____ The sequence of interaction between a user and a system.

revIew QueSTIonS
 11.13 Contrast the following terms:

a. Dialogue, interface
b. Command language interaction, form interaction,

menu interaction, natural language interaction, ob-
ject-based interaction

c. Drop-down menu, pop-up menu

 11.14 Describe the process of designing interfaces and dia-
logues. What deliverables are produced from this process?
Are these deliverables the same for all types of system
projects? Why or why not?

 11.15 Describe five methods of interacting with a system. Is one
method better than all others? Why or why not?

 11.16 Describe several input devices for interacting with a sys-
tem. Is one device better than all others? Why or why not?

 11.17 Describe the general guidelines for the design of menus.
Can you think of any instances when it would be appropri-
ate to violate these guidelines?

 11.18 List and describe the general sections of a typical business
form. Do computer-based and paper-based forms have the
same components? Why or why not?

 11.19 List and describe the functional capabilities needed in
an interface for effective entry and navigation. Which

capabilities are most important? Why? Will this be the
same for all systems? Why or why not?

 11.20 Describe the general guidelines for structuring data entry
fields. Can you think of any instances when it would be
 appropriate to violate these guidelines?

 11.21 Describe four types of data errors.

 11.22 Describe the methods used to enhance the validity of data
input.

 11.23 Describe the types of system feedback. Is any form of feed-
back more important than the others? Why or why not?

 11.24 Describe the general guidelines for designing usable help.
Can you think of any instances when it would be appropri-
ate to violate these guidelines?

 11.25 What steps do you need to follow when designing a dia-
logue? Of the guidelines for designing a dialogue, which
is most important? Why?

 11.26 Describe the properties of windows and forms in a GUI
environment. Which property do you feel is most impor-
tant? Why?

 11.27 List and describe the common interface and dialogue
 design errors found on websites.

ProblemS and exercISeS
 11.28 Consider software applications that you regularly use that

have menu interfaces, whether they be PC- or mainframe-
based applications. Evaluate these applications in terms of
the menu design guidelines outlined in Table 11-1.

 11.29 Consider the design of a registration system for a hotel. Fol-
lowing the design specification items in Figure 11-2, briefly
describe the relevant users, tasks, and displays involved in
such a system.

 11.30 Imagine the design of a system used to register students
at a university. Discuss the user, task, system, and environ-
mental characteristics (see Table 10-10) that should be
considered when designing the interface for such a system.

 11.31 For the three common methods of system interaction—
command language, menus, and objects—recall a soft-
ware package that you have used recently and list what
you liked and disliked about each package with regard

414 Part IV Design

FIeld exercISeS
 11.41 Research the topic “natural language interface” on the

web. Determine the status of applications available with
natural language interaction. Forecast how long it will be
before natural language capabilities are prevalent in in-
formation systems use.

 11.42 Examine two PC-based GUIs (e.g., Microsoft’s Windows
and Apple’s OSX). If you do not own these interfaces, you
are likely to find them at your university or workplace, or
at a computer retail store. You may want to supplement
your hands-on evaluation with recent formal evalua-
tions published on the web. In what ways are these two
interfaces similar and different? Are these interfaces in-
tuitive? Why or why not? Is one more intuitive than the
other? Why or why not? Which interface seems easier
to learn? Why? What types of system requirements does

each interface have? What are the costs of each interface?
Which do you prefer? Why?

 11.43 Interview a variety of people about the various ways they
interact, in terms of inputs, with systems at their work-
places. What types of technologies and devices are used to
deliver these inputs? Are the input methods and devices
easy to use, and do they help these people complete their
tasks effectively and efficiently? Why or why not? How
could these input methods and devices be improved?

 11.44 Interview systems analysts and programmers in an organi-
zation where GUIs are used. Describe the ways that these
interfaces are developed and used. How does the use of
such interfaces enhance or complicate the design of in-
terfaces and dialogues?

to the interface. What were the strengths and weak-
nesses of each interaction method for this particular pro-
gram? Which type of interaction do you prefer for which
 circumstances? Which type do you believe will become
most prevalent? Why?

 11.32 Briefly describe several different business tasks that are
good candidates for form-based interaction within an
 information system.

 11.33 List the physical input devices described in this chap-
ter that you have seen or used. For each device, briefly
 describe your experience and provide your personal eval-
uation. Do your personal evaluations parallel the evalua-
tions provided in Tables 11-3 and 11-4?

 11.34 Propose some specific settings where natural language
 interaction would be particularly useful and explain why.

 11.35 Examine the help systems for some software applications
that you use. Evaluate each using the general guidelines
provided in Table 11-11.

 11.36 Design one sample data entry screen for a hotel registra-
tion system using the data entry guidelines provided in
this chapter (see Table 11-6). Support your design with
arguments for each of the design choices you made.

 11.37 Describe some typical dialogue scenarios between us-
ers and a hotel registration system. For hints, reread
the section in this chapter that provides sample dia-
logue between users and the Customer Information
System at PVF.

 11.38 Represent the dialogues from the previous question
through the use of dialogue diagrams.

 11.39 List four contributing factors that have acted to impede
the design of high-quality interfaces and dialogues on In-
ternet-based applications.

 11.40 Go to the Internet and find commercial websites that
demonstrate each of the common errors listed in
Table 11-15.

reFerenceS
Cooper, A., R. Reimann, D. Cronin, and C. Noessel. 2014. About

Face: The Essentials of Interaction Design, 4th ed. New York:
 Wiley and Sons.

Flanders, V., and D. Peters. 2002. Son of Web Pages That Suck:
Learn Good Design by Looking at Bad Design. Alameda, CA:
 Sybex Publishing.

Hoffer, J. A., V. Ramesh, and H. Topi. 2016. Modern Database
Management, 12th ed. Upper Saddle River, NJ: Prentice Hall.

Johnson, J. 2007. GUI Bloopers 2.0: Common User Interface Design
Don’ts and Dos, 2nd ed. New York: Morgan Kaufmann.

Krug, S. 2014. Don’t Make Me Think: A Common Sense Approach to
Web Usability, 3rd ed. Upper Saddle River, NJ: Prentice Hall.

Lazar, J. 2004. User-Centered Web Development: Theory into Practice.
Sudbury, MA: Jones & Bartlett.

McCracken, D. D., R. J. Wolfe, and J. M. Spoll. 2004. User- Centered
Web Site Development: A Human–Computer Interaction Approach.
Upper Saddle River, NJ: Prentice Hall.

Nielsen, J. 2000. Designing Web Usability: The Practice of Simplicity.
Indianapolis, IN: New Riders Publishing.

Nielsen, J., and H. Loranger. 2006. Prioritizing Web Usability.
 Upper Saddle River, NJ: Prentice Hall.

Pogue, D. 2015. OX X Yosemite: The Missing Manual. Sebastopol,
CA: O’Reilly Media.

Schooley, B. 2013. Designing for Windows 8: Fundamentals of Great
Design in Windows Store Apps. New York, NY: Apress

Seffah, A., and H. Javahery. 2003. Multiple User Interfaces: Cross-
Platform Applications and Context-Aware Interfaces. New York:
John Wiley & Sons.

Shneiderman, B., C. Plaisant, M. Cohen, and S. Jacobs. 2009.
Designing the User Interface: Strategies for Effective Human-
Computer Interaction, 5th ed. Reading, MA: Addison-Wesley.

Te’eni, D., J. Carey, and P. Zhang. 2006. Human–Computer Inter-
action: Developing Effective Organizational Information Systems.
New York: John Wiley & Sons.

 ChaPter 11 Designing interfaces anD Dialogues 415

human interfaces. We don’t want the system to look ge-
neric to our loyal customers—we need to make it unique
to Petrie.”

“And we have to integrate the XRA system with our own
operations,” added Sanjay. “For example, we have to inte-
grate our existing marketing and product databases with
the XRA CRM (see PE Figure 7-2). That’s just one piece of
all the technical work we have to do.”

“We’ve already done some preliminary work on sys-
tem functionality and the conceptual database,” Jim said.
“I want to start working on interface issues now. That’s
why Sam is here. What we want to do today is start work
on how the customer account area should look and oper-
ate. And, Sally, the customer loyalty site is a great oppor-
tunity for marketing. We can advertise specials and other
promotions to our best customers on this site. Maybe we
could use it to show offers that are only good for mem-
bers of our loyalty program.”

“Oh yeah,” Sally replied. “That’s a great idea. How would
that look?”

“I have ideas,” said Sam. Using a drawing program on a
tablet PC, he started to draw different zones that would be
part of the interface. “Here at the top we would have a sim-
ple banner that says ‘Petrie’s’ and the name of the program.”

Chapter 11: Designing Interfaces and
Dialogues

Jim Watanabe, project director for the “No Customer
 Escapes” customer loyalty system for Petrie Electronics,
walked into the conference room. Sally Fukuyama, from
marketing, and Sanjay Agarwal, from IT, were already
there. Also at the meeting was Sam Waterston, one of Pet-
rie’s key interface designers.

“Good morning,” Jim said. “I’m glad everyone could be
here today. I know you are all busy, but we need to make
some real progress on the customer account area for ‘No
Customer Escapes.’ We have just awarded the develop-
ment of the system to XRA, and once all the documents
are signed, they will be coming over to brief us on the im-
plementation process and our role in it.”

“I’m sorry,” Sally said, “I don’t understand. If we are
 licensing their system, what’s left for us to do? Don’t we
just install the system and we’re done?” Sally took a big
gulp of coffee from her cup.

“I wish it were that easy,” Jim said. “While it is true that
we are licensing their system, there are many parts of it
that we need to customize for our own particular needs.
One obvious area we need to customize is all of the

PeTrIe elecTronIcS

Pe FIgure 11-1
Preliminary design for the customer
account area
(Source: Microsoft Corporation.)

416 Part IV Design

like a very long time. He glanced over his e-mail and no-
ticed there was a message from Sam. Attached was a
preliminary design for the customer account area. Jim
opened it and looked it over (PE Figure 11-1). Hmmm,
not bad, he thought. This is a good place for us to start.

Case Questions

 11.45 Using the guidelines from this chapter and other
sources, evaluate the usability of the page design
depicted in PE Figure 11-1.

 11.46 Chapter 11 encourages the design of a help sys-
tem early in the design of the human interface.
How would you incorporate help into the interface
shown in PE Figure 11-1?

 11.47 Describe how cookie crumbs could be used in this
system. Are cookie crumbs a desirable navigation
aid for this system? Why or why not?

 11.48 The page design depicted in PE Figure 11-1 links to
an Order History page. Sketch a similar layout for
the Order History page, following guidelines from
Chapter 11.

 11.49 Describe how the use of template-based HTML
might be leveraged in the design of the “No Cus-
tomer Escapes” system.

“It’s not really going to be called ‘No Customer Escapes,’
is it?” asked Sally.

“No, that’s an internal name,” replied Jim, “but I don’t
know what the real name will be yet.”

“OK, so the real name of the program will go in the
banner, after ‘Petrie’s.’ Then on the left side, we’ll have a
sidebar that has overview information about the customer
account, things like name and points balance,” said Sam,
drawing in a sidebar on the left of the screen. “There will
also be links to more detailed information about the ac-
count, so the customer can see more details on past trans-
actions and on his or her profile.”

“So the rest of the screen is open. That would be a per-
fect place for marketing information,” suggested Sally.
“Would we want just one big window for marketing?
Maybe we could divide it up into additional windows, so
we could use one to focus on general promotions and one
to advertise ‘member only’ promotions?”

“Yeah, we can do that,” said Sam.
Just then Jim’s phone beeped. Jim looked at it. Uh-oh, it

was an urgent message from his boss, the director of IT.
“Sorry, I need to take care of this immediately,” he told the
group. “Can you guys work on this some more and then
send me some of the screen designs you come up with?”

Later that afternoon, after the crisis was over, Jim sat
back down at his desk for the first time in what seemed

417

Advances in computing technology and the rapid evolu-
tion of mobile technologies are changing the way today’s
computing systems are being used to meet ever more de-
manding business needs. Existing models of managing
computing resources are quickly evolving to cloud com-
puting- and service oriented-based architectures.

A variety of new opportunities and competitive
pressures are driving the trend toward these technolo-
gies. Corporate restructuring—mergers, acquisitions, and
consolidations—requires the integration of disparate sys-
tems. Applications are being downsized from expensive
mainframes and dedicated data centers to both public
and private cloud-based architectures that are much more
cost effective, scalable, and manageable. The explosion of
electronic and mobile commerce is today’s biggest driver
for developing new types of systems. How systems are
 designed can significantly influence system performance,
usability, and maintenance.

Designing DistributeD
anD internet systems
In this section, we briefly discuss the process and deliver-
ables in designing distributed and Internet systems. Given
the direction of organizational change and technological

evolution, it is likely that most future systems development
efforts will need to consider the issues surrounding the
 design of distributed and Internet-based systems.

the Process of Designing Distributed
and internet systems
This is the last chapter in the text that deals with system
design within the systems development life cycle (see
Figure 12-1). In the previous chapters on system design,
specific techniques for representing and refining data,
screens, interfaces, and design specifications were pre-
sented. In this chapter, however, no specific techniques
will be presented on how to represent the design of
distributed and Internet systems because no generally
 accepted techniques exist. Alternatively, we will focus on
increasing your awareness of common environments for
deploying these systems and the issues you will confront
surrounding their design and implementation. To distin-
guish between distributed and Internet-focused system
design, we will use “distributed” to refer to LAN-based
file server and client/server architectures.

Designing distributed and Internet systems is much
like designing single-location systems. The primary dif-
ference is that, because such a system will be deployed

12.3 Describe standards shaping the design of
Internet-based systems, options for ensuring
Internet design consistency, site management
issues influencing customer loyalty,
trustworthiness, and security.

Learning Objectives

After studying this chapter, you should be able to:

12.1 Distinguish between file server and client/server
environments, contrasting how each is used in a
LAN.

12.2 Describe cloud computing and other current
trends that help organizations address IS
infrastructure-related challenges.

Designing Distributed
and internet systems12

Chapter

Introduction

418 Part IV Design

DesignImplementation

Planning

Maintenance Analysis

Databases
Forms and Reports
Dialogues and Interfaces
Distributed and Internet Systems

Figure 12-1
Systems development life cycle

over two or more locations, many more design issues must be considered that will
influence the reliability, availability, and survivability of the system once it is imple-
mented. Because distributed and Internet systems have more components than a
single-location system—that is, more processors, networks, locations, data, and so
on—there are more potential places for a failure to occur. Consequently, various
strategies can be used when designing and implementing these systems to minimize
points of failure.

Thus, when designing distributed and Internet systems, you will need to con-
sider numerous trade-offs. To create effective designs, you need to understand the
characteristics of the architectures commonly used to support these systems.

Deliverables and Outcomes
When designing distributed and Internet systems, the deliverable is a document
that will consolidate the information that must be considered when implementing
a system design. Figure 12-2 lists the types of information that should be consid-
ered when implementing such a system. In general, the information that must be
considered is the site, processing needs, and data information for each location
(or processor) in the distributed environment. Specifically, information related
to physical distances between locations, counts and usage patterns by users, build-
ing and location infrastructure issues, personnel capabilities, data usage (create,
use, update, or destroy), and local organizational processes should be described.
Additionally, the pros and cons of various implementation solutions for each loca-
tion should be reviewed. The collection of this information, in conjunction with
the physical design information already developed, will provide the basis for imple-
menting the information system in the distributed environment. Note, however,
that our discussion assumes that any required information systems infrastructure
is already in place. In other words, we focus only on those issues in which you will
likely have a choice.

 ChaPter 12 Designing DistributeD anD internet systems 419

Designing Lan anD CLient/server systems
In this section, we focus on issues related to the design of distributed systems that use
LAN-based file server or client/server architectures. The section begins by providing
a high-level description of both architectures. This is followed by a brief description
of advanced client/server designs using middleware to create a more robust system
deployment model.

Designing systems for Lans
Personal computers and workstations can be used as stand-alone systems to support
local applications. However, organizations have discovered that if data is valuable to
one employee, it is probably also valuable to other employees in the same workgroup
or in other workgroups. By interconnecting their computers, workers can exchange
information electronically and can also share devices such as printers that may be too
expensive to be utilized by only a single user.

A local area network (LAN) supports a network of personal computers, each
with its own storage; each computer is able to share common devices and software
attached to the LAN. Each PC and workstation on a LAN is typically within a few hun-
dred feet of another, with a total network cable length of less than 1 mile. Usually,
at least one computer (a microcomputer or larger) is designated as a file server, on
which shared databases and applications are stored. The LAN modules of a DBMS,
for example, add concurrent access controls, possibly extra security features, and
query or transaction queuing management to support concurrent access from mul-
tiple users of a shared database.

File Servers In a basic LAN environment (see Figure 12-3), all data manipulation
occurs at the workstations from which data are requested. One or more file servers
are attached to the LAN. A file server is a device that manages file operations and is
shared by each client PC that is attached to the LAN. In a file server configuration,
each file server acts as an additional hard disk for each client PC. For example, your

Local area network (LAN)
The cabling, hardware, and software
used to connect workstations, computers,
and file servers located in a confined
geographical area (typically within one
building or campus).

File server
A device that manages file operations and is
shared by each client PC attached to a LAN.

1. Description of Site (for each site)
a. geographical information
b. physical location
c. infrastructure information
d. personnel characteristics (education, technical skills, etc.)
e. . . .

2. Description of Data Usage (for each site)
a. data elements used
b. data elements created
c. data elements updated
d. data elements deleted

3. Description of Business Process (for each site)
a. list of processes
b. description of processes

4. Contrasts of Alternative IS Architectures for Site, Data, and Process Needs
(for each site)
a. pros and cons of no technological support
b. pros and cons of non-networked, local system
c. pros and cons of various distributed configurations
d. . . .

Figure 12-2
Outcomes and deliverables from
designing distributed systems

420 Part IV Design

PC might recognize a logical F: drive, which is actually a disk volume stored on a file
server on the LAN. Programs on your PC refer to files on this drive by the typical
path specification, using this drive and any directories, as well as the file name.

When using a DBMS in a file server environment, each client PC is authorized
to use the DBMS application program on that PC. Thus, there is one database on the
file server and many concurrently running copies of the DBMS on each active PC
client. The primary characteristic of a client-based LAN is that all data manipulation
is performed at the client PC, not at the file server. The file server acts simply as a
shared data storage device and is an extension of a typical PC. It also provides ad-
ditional resources (e.g., disk drives, shared printing) and collaborative applications
(e.g., e-mail) in addition to the shared data. Software at the file server only queues
access requests; it is up to the application program at each client PC, working with
the copy of the DBMS on that PC, to handle all data management functions. This
means that, in an application that wants to view a single customer account record in
a database stored on the server, the file containing all customer account records will
be sent over the network to the PC. Once at the PC, the file will be searched to find
the desired record. Additionally, data security checks and file and record locking are
done at the client PCs in this environment, making multiple-user application devel-
opment a relatively complex process.

Limitations of File Servers There are three primary limitations when using file serv-
ers on LANs:

1. Excessive data movement
2. The need for a powerful client workstation
3. Decentralized data control

First, when using a file server architecture, considerable data movement is gen-
erated across the network. For example, when an application program running on
a client PC in Pine Valley Furniture (PVF) wants to access the birch products, the
whole product table is transferred to the client PC; then the table is scanned at the
client to find the few desired records. Thus, the server does very little work, the client

• Requests for
 data
• Requests
 to lock data

• Entire file
 of data
• Lock status

Client
• Process/scan tables
• Application program
 – user interface
 – database processing
 – generate queries
• Handle integrity and security
• Full DBMS

File Server
• File storage
• Record locking
• Acts like extra
 hard disk to client
• Not very busy
• Significant LAN tra�c

Client

Client

Client

File Server

Local Area
Network

Data

Figure 12-3
File server model

 ChaPter 12 Designing DistributeD anD internet systems 421

is busy with extensive data manipulation, and the network is transferring large blocks
of data (see Figure 12-4). Consequently, a client-based LAN places a considerable
burden on the client PC to carry out functions that have to be performed on all
 clients and creates a high network traffic load.

Second, because each client workstation must devote memory to a full ver-
sion of the DBMS, there is less room on the client PC to rapidly manipulate data in
high-speed random access memory (RAM). Often, data must be swapped between
RAM and a relatively slower hard disk when processing a particularly large database.
Further, because the client workstation does most of the work, each client must be
rather powerful to provide a suitable response time. File server architectures also
benefit from having a very fast hard disk and cache memory in both clients and the
server to enhance their ability to transfer files to and from the network, RAM, and
hard disk.

Third, and possibly most important, the DBMS copy in each workstation must
manage the shared database integrity. In addition, each application program must
recognize, for example, locks on data and take care to initiate the proper locks.
A lock is necessary to stop users from accessing data that are in the process of being
updated. Thus, application programmers must be rather sophisticated to understand
the various subtle conditions that can arise in a multiple-user database environment.
Programming in such an environment is complex because you have to program each
application with the proper concurrency, recovery, and security controls.

Designing systems for a Client/server architecture
An improvement in LAN-based systems is the client/server architecture in which
 application processing is divided (not necessarily evenly) between client and server.
The client workstation is most often responsible for managing the user interface,
including presenting data, and the database server is responsible for database stor-
age and access, such as query processing. The typical client/server architecture is
illustrated in Figure 12-5.

Client/server architecture
A LAN-based computing environment in
which a central database server or engine
performs all database commands sent to
it from client workstations, and application
programs on each client concentrate on
user interface functions.

Client
Server

Entire file sent to client

File Server Architecture

Client request for data

Figure 12-4
File servers transfer files when data are
requested from a client

Client
Server

ONLY result of request

Client/Server Architecture

Client request for data

Figure 12-5
The required data after a request from a
client

422 Part IV Design

Advantages of the Client/Server Architecture In the typical client/server architec-
ture, all database recovery, security, and concurrent access management are central-
ized at the server; this is the responsibility of each user workstation in a simple LAN.
These central DBMS functions are often called a database engine in a client/server
environment (Hoffer et al., 2016). Some people refer to the central DBMS func-
tions as the back-end functions and the client-based delivery of applications to users
using PCs and workstations as the front-end applications. Further, in the client/server
architecture, the server executes all requests for data so that only data that match
the requested criteria are passed across the network to client stations. This is a sig-
nificant advantage of client/server over simple file server designs. Because the server
provides all shared database services, this leaves the client software to concentrate on
user interface and data manipulation functions. The trade-off is that the server must
be more powerful than the server in a file server environment.

An application built using the client/server architecture is also different from
a centralized database system on a mainframe. The primary difference is that each
client is an intelligent part of the application processing system. In other words, the
application program executed by a user is running on the client, not on the server.
The application program handles all interactions with the user and local devices
(printer, keyboard, screen, etc.). Thus, there is a division of duties between the server
(database engine) and the client. The database engine handles all database access
and control functions, and the client handles all user interaction and data manipula-
tion functions. The client PC sends database commands to the database engine for
processing. Alternatively, in a mainframe environment, all parts of the information
system are managed and executed by the central computer.

Another advantage of client/server architectures is the ability to decouple
the client environment from the server environment. Clients can consist of multi-
ple types (e.g., different computers, operating systems, and application programs),
which means that the client can be running any application system that can generate
the proper commands (often SQL) to request data from the server. For example, the
application program might be written in Visual Basic, a report writer, a sophisticated
screen painter, or any fourth-generation language that has an application program
interface (API) for the database engine. The database engine might be DB2 on an
IBM mainframe or midrange computer or MySQL, Sybase, or Oracle running on a
variety of platforms. An API calls library routines that transparently route SQL com-
mands from the front-end client application to the database server. An API might
work with existing front-end software, such as a third-generation language or custom
report generator, and it might include its own facilities for building applications.
When APIs exist for several program development tools, then you have considerable
independence to develop client applications in the most convenient front-end pro-
gramming environment, yet still draw from a common server database. With some
APIs, it is possible to access data from both the client and server in one database
operation, as if the data were in one location managed by one DBMS (see Hoffer et
al., 2016; Kroenke, 2016).

In sum, several significant benefits can be realized by adopting a client/server
architecture:

1. It allows companies to leverage the benefits of microcomputer technology.
 Today’s workstations deliver impressive computing power at a fraction of the cost
of a mainframe.

2. It allows most processing to be performed close to the source of processed data,
thereby improving response times and reducing network traffic.

3. It facilitates the use of graphical user interfaces and visual presentation tech-
niques commonly available for workstations.

4. It allows for and encourages the acceptance of open systems.

Table 12-1 summarizes some of the key differences between file server and
client/server architectures. Now that you have an understanding of the general

Database engine
The (back-end) portion of the client/server
database system running on the server that
provides database processing and shared
access functions.

Client
The (front-end) portion of the client/server
database system that provides the user
interface and data manipulation functions.

Application program inter-
face (APi)
Software building blocks that are used to
ensure that common system capabilities,
such as user interfaces and printing, as
well as modules are standardized to
facilitate data exchange between clients
and servers.

 ChaPter 12 Designing DistributeD anD internet systems 423

differences between file server and client/server architectures, we will briefly
 examine advanced client/server architectures.

Advanced Forms of Client/Server Architectures Client/server architectures repre-
sent the way different application system functions can be distributed between client
and server computers. These variations are based on the concept that there are three
general components to any information system:

1. Data management. These functions manage all interaction between software and
files and databases, including data retrieval/querying, updating, security, concur-
rency control, and recovery.

2. Data presentation. These functions manage just the interface between system
 users and the software, including the display and printing of forms and reports
and possibly validating system inputs.

3. Data analysis. These functions transform inputs into outputs, including simple
summarization to complex mathematical modeling such as regression analysis.

Different client/server architectures distribute, or partition, each of these func-
tions, and others (e.g., load balancing), to one or both of the client or server com-
puters, and increasingly, into a third computer, referred to as the application server.
In fact, it is becoming commonplace to use three or more distinct computers in many
advanced client/server architectures (see Bass et al., 2012; Marchioni, 2014). It is
also important to note, however, as hardware and software has gotten more powerful
and sophisticated, the partitioning of these various functions across separate physical
computers has decreased. Increasingly, these different features may reside on virtual
machines. A virtual machine is a software emulation of a physical computer system,
both hardware and operating system, that allows more efficient sharing of physical
hardware resources. Virtualization, a foundation of modern distributed computing
architectures like cloud computing (see below), refers to the act of creating virtual
(rather than physical) versions of a variety of computing capabilities including hard-
ware platforms, operating systems, storage devices, and networks.

This evolution in client/server computing to separate various functions across
different physical or virtual machines, has resulted in two important concepts, three-
tiered client/server architecture and middleware, to represent this evolution. Three-
tiered client/server architectures allow three logical and distinct functions of a com-
puting system—data management, presentation, and analysis—to be developed and
maintained as independent modules that often reside on separate physical or vir-
tual machines. Increasingly, an n-tiered architecture is being utilized by many organiza-
tions because it enables the development of more flexible and reusable applications.
By segregating a system into multiple tiers, developers can modify an existing tier,
or add a completely new tier, rather than reworking the entire system when new
capabilities are needed. These one or more tiers between data management and

Application server
A computing server where data analysis
functions primarily reside.

Virtual machine
A software emulation of a physical
computer system, both hardware and
operating system, that allows more efficient
sharing of physical hardware resources.

Virtualization
The act of creating virtual (rather than
physical) versions of a variety of computing
capabilities including hardware platforms,
operating systems, storage devices, and
networks.

Three-tiered client/server
architecture
Advanced client/server architectures
in which there are three logical and
distinct applications—data management,
presentation, and analysis—that are
combined to create a single information
system.

Middleware
A combination of hardware, software,
and communication technologies that
brings data management, presentation,
and analysis together into a three-tiered (or
n-tiered) client/server environment.

Table 12-1 Several Differences between File Server and Client/Server architectures
Characteristic File Server Client/Server
Processing Client only Both client and server
Concurrent Data Access Low—managed by each

client
High—managed by server

Network Usage Large file and data transfers Efficient data transfers
Database Security and

Integrity
Low—managed by each

client
High—managed by server

Software Maintenance Low—software changes just
on server

Mixed—some new parts must
be delivered to each client

Hardware and System
Software Flexibility

Client and server decoupled
and can be mixed

Need for greater coordination
between client and server

424 Part IV Design

presentation are referred to as “middleware.” Middleware brings together the dis-
tinct hardware, software, and communication technologies in order to create a three-
tiered (or n-tiered) client/server environment. As shown in Figure 12.6.

The easiest way to think of middleware is as plumbing. In your house, you don’t
see plumbing, you see water that fills your glass (DiMaggio, 2008). When interacting
with an information system, you see applications and data. You are clearly aware of
the Web interface that you are using on your PC or smartphone, which is similar to
water; you can see it, feel it, and taste it. You are also likely aware of the databases and
systems that store and provide information to your devices; this would be analogous
to the water purification plant (i.e., we know the water [and data] is coming from
somewhere). Further, how the water gets from the plant and into your glass, this is
the plumbing. Likewise, the way in which the information gets to your client device,
whether it be a PC or smartphone, is provided by middleware (i.e., the technological
plumbing). Like plumbing components, middleware provides a lot of benefits. First,
it remains mostly invisible. It is there, but you don’t usually see it or interact with it
too much. Second, it provides a standard way to connect devices to applications and
data by using standards, libraries, and APIs. Third, it provides a consistent way to tie
together various parts of a complex system; like in your home, where you want water
to various locations, you also want data to various applications and devices located
throughout an organization or around the world.

In addition to these benefits, there are other good reasons for creating three-
tiered (or n-tiered) client/server architectures (Bass et al., 2012). First, applica-
tions can be partitioned in a way that best fits organizational computing needs. For
 example, in a traditional two-tiered client/server system, the application (data analy-
sis) resides on the client, which would access information such as customer data from
a database server. In advanced architectures, data analysis can reside on a powerful
application server, resulting in substantially faster response times for users. In addi-
tion, a multi-tiered architecture provides greater flexibility by allowing the partition-
ing of applications in different ways for different users, thus optimizing performance
for each type of client.

A second advantage is that because most or all of the data analysis is contained
in the application server, making global changes or customizing processes for indi-
vidual users is relatively easy. This allows developers to easily create custom versions
of large-scale systems without creating a completely separate system. Also, because
the data analysis is separate from the user interface, it is a lot easier to change one
or both without having a major maintenance effort. By separating the data analysis
from the data presentation (the user interface), either can be changed indepen-
dently without affecting the other, greatly simplifying system maintenance. Lastly,

Server and
Applications

Server and
Applications

Server and
Applications

Middleware

Figure 12-6
Middleware ties together diverse
applications and devices

 ChaPter 12 Designing DistributeD anD internet systems 425

this architecture provides data presentation device independence, allowing for the
use of thin clients, like tablet computers and smartphones, to access information from
powerful enterprise-wide information systems. Thin clients are most appropriate for
doing a minimal amount of client-side processing, essentially displaying informa-
tion sent to the client from the server (Robbins, 2013). The combinations of these
 benefits—application partitioning, easier customization, easier maintenance, and
device independence—are driving many organizations to adopt this powerful archi-
tecture for developing applications.

CLOuD COmPuting
Managing the information systems infrastructure – the hardware, software, data,
 facilities, human resources, and services used by organizations to support their deci-
sion making, business processes, and competitive strategy – can be a challenge for
many organizations, due to the evolution of hardware and software, the demand for
more storage and networking bandwidth, and the rising costs of energy. Further,
 organizations need dedicated staff to support their infrastructure, which incurs fur-
ther costs; often, managing the IS infrastructure is not among the organization’s core
competencies, so others may be better at managing the infrastructure for them (see
Valacich and Schneider, 2016).

In many organizations, the IS infrastructure has grown over the years, lead-
ing to a fragmented infrastructure that tends to be difficult to consolidate. However,
 efficiency, effectiveness, and agility are key for successfully competing in the digital
world, and organizations require a flexible, scalable infrastructure for their applica-
tions and databases. As a result, over the past decades, there has been a shift away
from thinking about developing and maintaining the IS infrastructure toward think-
ing about what services the infrastructure should deliver. For example, people and
organizations want to use e-mail rather than having to think about purchasing an
e-mail server and dealing with associated issues such as administration, maintenance,
storage, energy consumption, and so on. In addition, organizations increasingly buy
or rent, rather than build, applications (except for highly specialized systems that
help gain or sustain competitive advantage, as is the case with Amazon.com or Dell)
to support their business processes; in other words, organizations leave the building
and managing of applications to other parties, and assume that these applications
will work. Given this trend, a solid infrastructure is important, as the infrastructure
determines how quickly new systems can be implemented, and how well they will
function; turning over the responsibility for the lower levels of the infrastructure to
other organizations allows a business to focus on developing and implementing those
applications that help to gain or sustain competitive advantage. This becomes even
more important as any lack of robustness or integration of an organization’s infra-
structure will be immediately noticed by customers or other stakeholders, potentially
leading to loss of business, trust, or goodwill.

What is Cloud Computing?
Technological advances such as faster processing, increasing Internet bandwidth,
 improving data management and processing frameworks like Hadoop and Bigtable,
as well as improving methods for virtualization, have given rise to cloud computing
(the “cloud” is a metaphor for the Internet; see Figure 12-7). As introduced in
Chapter 2, cloud computing refers to the provision of applications over the Internet
where customers do not have to invest in the hardware and software resources
needed to run and maintain the applications, but are charged on a per-use basis (see
Erl et al., 2013). Cloud computing is a utility computing model (i.e., organizations
“renting” resources such as processing, data storage, or networking from an exter-
nal provider on an as-needed basis, and pay only for what is actually used). Cloud

Thin client
A client device designed so that most
processing and data storage occur on the
server.

information systems
infrastructure
The hardware, software, data, facilities,
human resources, and services used by
organizations to support their decision
making, business processes, and
competitive strategy.

utility computing
A form of on-demand computing where
resources in terms of processing, data
storage, or networking are rented on an as-
needed basis. The organization only pays
for the services used.

426 Part IV Design

computing thus helps to transform IT infrastructure costs from a capital expendi-
ture to an operational expenditure (Figure 12-8). One prime example of a cloud
computing provider is Amazon Web Services (AWS); having built an immense infra-
structure (in terms of both information technology and logistics) for supporting its
online store, Amazon.com has decided to use these resources to generate additional
revenue streams. For example, individuals and organizations can rent storage space
on Amazon’s Simple Storage Service (S3) or computing time on Amazon’s Elastic
Compute Cloud (EC2), all on an as-needed basis. The ability to create an entire in-
frastructure by combining Amazon’s various services has facilitated many successful
startup companies, such as the social scrapbooking site Pinterest or the community
travel marketplace Airbnb. As Airbnb grew in popularity with travelers all over the
globe, the company found itself being limited by challenges and constraints imposed

Processing
Storage

Transmission

Figure 12-7
Processing, storage, and transmission of
data taking place in the cloud.
(Source: Valacich, Joseph, and Schneider,
Christoph, Information Systems Today:
Managing in the Digital World, 7th ed.,
©2016, pp. 112, 113, 114, 115, 116, 118.
Reprinted and electronically reproduced
by permission of Pearson Education,
Inc., New York, NY.)

Figure 12-8
Cloud computing uses a utility computing
model, allowing companies to pay for
computing resources on an as-needed
basis.
(Source: Valacich, Joseph, and Schneider,
Christoph, Information Systems Today:
Managing in the Digital World, 7th ed.,
©2016, pp. 112, 113, 114, 115, 116, 118.
Reprinted and electronically reproduced
by permission of Pearson Education,
Inc., New York, NY.)

 ChaPter 12 Designing DistributeD anD internet systems 427

by their original service provider. Moving to AWS allowed Airbnb to quickly obtain
200 servers without needing to negotiate service contracts or commit to minimum
usage. Flexibly scaling the infrastructure would have been close to impossible were
Airbnb using its own data center because of both the time and the money needed
to acquire this number of servers; and, at the time, who knew whether Airbnb’s busi-
ness would actually take off? With a traditional in-house infrastructure, Airbnb would
have had to add capacity in “chunks,” leading to either having too many unused
resources or not being able to satisfy its users’ demand; using a cloud infrastructure,
Airbnb can elastically scale the resources to be just above what is needed to keep the
users satisfied (Figure 12-9).

Cloud Characteristics The cloud computing model has several unique and essen-
tial characteristics that distinguish cloud computing from an in-house infrastruc-
ture and provide various benefits to users (NIST, 2011). These characteristics are
 discussed next.

On-Demand Self-Service To allow for most flexibility, users can access cloud
 resources in a buffet-style fashion on an as-needed basis without the need for lengthy
negotiations with the service provider; in many cases, resources in the cloud are
 accessible by the customer with no need for human interaction with the provider. In
the case of AWS, a customer needs only a credit card (for billing purposes) and can
set up server instances or expand storage space via a Web-based control panel. For
businesses, whose needs may rapidly change, this allows for unprecedented flexibility,
as it greatly facilitates scaling the infrastructure up or down as needed.

Rapid Elasticity Typically, servers and other elements of an IS infrastructure take
several weeks to be delivered and days or weeks to be configured (as a company’s IS
personnel has to install and configure system software, databases, and application soft-
ware, depending on the organization’s needs); in contrast, in a cloud environment,
computing resources can be scaled up or down almost instantaneously and often
automatically, based on user needs. Hence, there is no need to purchase expensive
equipment to prepare for an anticipated surge in demand (which ultimately may
not materialize) during the holiday season. If, however, the surge in demand does
materialize, businesses can access the required resources instantaneously at almost
any quantity.

Broad Network Access As cloud services are accessed via the Internet, they are
 accessible from almost anywhere and from almost any Web-enabled device. For
 organizations, this enables real-time management of business processes, as applica-
tions hosted in the cloud can be accessed whenever needed, from any location, be
it from one’s desktop or laptop, or using an iPhone, iPad, or Android smartphone
app. Thus, knowledge workers can swiftly respond to anything that may require their
 immediate attention, without having to be physically in their office.

Demand

Demand

Capacity

Capacity

In-House Infrastructure Cloud Infrastructure

Figure 12-9
It is difficult to match demand
using an in-house infrastructure;
with a cloud infrastructure,
resources can be added
incrementally, on an as-needed
basis.
(Source: Valacich, Joseph, and
Schneider, Christoph, Information
Systems Today: Managing in the
Digital World, 7th ed., ©2016, pp.
112, 113, 114, 115, 116, 118. Re-
printed and electronically repro-
duced by permission of Pearson
Education, Inc., New York, NY.)

428 Part IV Design

Resource Pooling Rather than renting out space or time to each customer on one
specific, physical machine, cloud providers manage multiple distributed resources
that are dynamically assigned to multiple customers based on their needs. Hence, the
customer only rents a resource, with no knowledge or control over how it is provided
or where it is located. In some cases, however, service providers allow for specifying
particular geographic areas of the resources; for example, a California company may
want to rent resources located in California (close to its customers) so as to reduce
response latency, or a European company may need to rent storage space on servers
located in Europe so as to comply with data protection directives.

Measured Service Service is typically provided using a utility computing model,
where customers pay only for what they use, and the metering depends on type of
resource. For example, customers are charged on an hourly basis for the use of server
instances (the price typically depends on the instance’s computing power, memory,
and operating system), based on volume of data stored, and/or on data transferred
into or out of the cloud. For customers, the fixed costs associated with the IS infrastruc-
ture are thus transformed into variable costs, which are very easy to track and monitor.

Service Models As can be seen from the previously mentioned examples, various
services are provided in the cloud. Whereas some users require access only to certain
software, others want to have more control, being able to run the software of their
choice on a server in the cloud (Figure 12-10). Different cloud computing service
models (NIST, 2011) are discussed next.

Infrastructure as a Service In the infrastructure as a service (IaaS) model, only the
basic capabilities of processing, storage, and networking are provided. Hence, the
customer has the most control over the resources. For example, using AWS, custom-
ers can choose computing power, memory, operating system, and storage based on
individual needs and requirements, thus being able to build (almost) their entire
 infrastructure in the cloud. Using such infrastructure, Netflix migrated its own IT
 infrastructure to AWS using EC2 and S3 to transcode movies into various formats,
power its customer-focused Web site, and host other mission-critical applications. The
IaaS model provides the customer with the greatest flexibility; on the other hand,
while the infrastructure is provided, managing software licenses is still the responsi-
bility of the customer, and setup costs are relatively high.

Platform as a Service In the platform as a service (PaaS) model, customers can run
their own applications, which are typically designed using tools provided by the ser-
vice provider. In this model, the user has control over the applications but has limited
or no control over the underlying infrastructure. One example is Microsoft’s Win-
dows Azure, which acts as a cloud services operating system that customers can use

infrastructure as a service
(iaaS)
A cloud computing model in which only the
basic capabilities of processing, storage,
and networking are provided.

Platform as a service (PaaS)
A cloud computing model in which
the customer can run his or her own
applications that are typically designed
using tools provided by the service
provider; the customer has limited or no
control over the underlying infrastructure.

P
aaS

IaaS

Operating System
Web Server
Database Management System
Programming Language

Application Software
Salesforce.com

S
aaS

Figure 12-10
Services by SaaS, PaaS, and IaaS
providers.
(Source: Valacich, Joseph, and Schneider,
Christoph, Information Systems Today:
Managing in the Digital World, 7th ed.,
©2016, pp. 112, 113, 114, 115, 116, 118.
Reprinted and electronically reproduced
by permission of Pearson Education,
Inc., New York, NY.)

 ChaPter 12 Designing DistributeD anD internet systems 429

to deploy custom applications. Using this platform, Outback Steakhouse launched a
viral marketing campaign when it first introduced its Facebook Fan Page. To support
the spikes in demand, Outback developed and deployed an e-mail marketing cam-
paign using Windows Azure. As the underlying computing platform is provided, the
customer does not have to worry about purchasing software licenses, for example,
for the Web servers’ operating systems or for database management systems, and the
service provider manages the functioning and updating of the platform provided.

Software as a Service In the software as a service (SaaS) model, the customer uses
only applications provided via a cloud infrastructure. Typically, such applications
 include Web-based e-mail services (e.g., Google’s Gmail) and Web-based produc-
tivity suites (such as Zoho or Google Docs), but also advanced applications such as
 Customer Relationship Management system, as provided by salesforce.com. Typically,
the customer cares only about the application, with no knowledge or control over the
 underlying infrastructure, and typically has only limited ability to control or configure
application-specific settings. Applications under the SaaS model are typically easiest
to deploy, because the customer does not have to worry about maintaining or updat-
ing the software, the underlying platform, or the hardware infrastructure.

Types of Clouds Cloud service providers such as Amazon.com offer what is referred
to as a public cloud. Services in a public cloud can be used by any interested party on
a pay-per-use basis; hence, they are often used for applications that need rapid scal-
ability (i.e., the ability to adapt to increases or decreases in demand for processing
or data storage), or in cases where there is insufficient capital or other resources to
build or expand an IT infrastructure. In contrast, a private cloud (or internal cloud)
is internal to an organization and can help the organization to balance demand and
supply of computing resources within the organization; similar to a public cloud, a
private cloud provides self-service access to resources, allowing business users to pro-
vision resources on-demand using a utility computing model. A private cloud does
not free an organization from the issues associated with managing the cloud infra-
structure, but it does give the organization a high degree of customizability, flexibil-
ity, and control over their data and applications (Figure 12-11).

managing the Cloud
Because of its various benefits, cloud computing has gained much popularity, espe-
cially among executives who try to harness the potential of scalability and increase the
business’ agility. However, there are also various issues management should consider

Software as a service (SaaS)
A cloud computing model in which a
service provider offers applications via a
cloud infrastructure.

Private Cloud

Availability Control

Privacy
Security

Increased
e�ciency

Capital
expenditure

Owned by client

Centralized

Public Cloud

Operational
expenditure

Flexible
Standardized Fast & easy setup

Owned by
service provider

Pay per use
Elastic

Figure 12-11
Public clouds versus private clouds.
(Source: Valacich, Joseph, and Schneider,
Christoph, Information Systems Today:
Managing in the Digital World, 7th ed.,
©2016, pp. 112, 113, 114, 115, 116, 118.
Reprinted and electronically reproduced
by permission of Pearson Education,
Inc., New York, NY.)

430 Part IV Design

when moving their infrastructure to the public cloud. The first consideration is which
applications, services, or data to move to the cloud. Typically, there is no single cloud
computing provider that can meet all needs of most organizations. Rather, organi-
zations often have to partner with different service providers, selecting IaaS, PaaS,
and SaaS models based on the business’ needs, often combining public and private
clouds; as there is not one solution that fits all, organizations have to carefully weigh
the benefits and downsides of cloud computing. In addition, organizations must care-
fully consider which cloud services provider to choose. Some of the long-term, strate-
gic issues that management should consider when evaluating different public cloud
service providers include availability, reliability, scalability, viability, security, privacy,
compliance, diversity of offerings, openness, and cost (Figure 12-12). These are dis-
cussed next (see also Hofmann and Woods, 2010).

Availability/Reliability The availability of the service is a primary concern for
most organizations. As shown by examples from Google, Amazon, or Microsoft, not
even the largest public cloud computing providers are immune from failures, be
it hardware failures, programming errors, or some network outage. Organizations
thus have to evaluate which applications to move to the cloud, and how to ensure
the availability of cloud-based applications. In addition to examining what the prom-
ised uptime of the application/system is, what backups are made to the servers and
storage, or whether sufficient bandwidth will be provided to access large amounts
of data, organizations have to implement their own precautionary measures. As it is
often too costly (e.g., in terms of lost business or goodwill) to be affected by negative
events, organizations should plan ahead and replicate their cloud-based infrastruc-
ture in different locations. Related to this, an important criterion to consider is the
provider’s support policies. In case something does not work as promised, how will
issues be resolved? One of the advantages of cloud computing is self-service, allowing
clients to provision resources as needed. At the same time, this can be a potential
downside, as there is not always the guarantee of having help available, if needed.
Thus, organizations must ensure that acceptable support capabilities and person-
nel are available, especially for mission-critical applications, to rapidly solve technical
 issues when they arise.

Scalability One of the biggest promises of cloud computing is scalability, such that
organizations can scale up or down their infrastructure as needed. Yet, not every pro-
vider will be able to meet every organization’s demands. Thus, organizations have to
carefully evaluate to what extent the provider will be able to meet current and future
business needs in terms of data storage, transaction volumes, and so on.

Viability Another important issue is associated with the viability and stability of the
provider in the long run. As an organization moves to a public cloud infrastructure,
it puts much data and processing capabilities into the hands of an outside entity. If
this outside entity happens to go out of business, this can have many repercussions
for the organization, such as costs and efforts involved in setting up a new infrastruc-
ture, migrating applications, or transferring the data from the old provider to the
new infrastructure.

Viability

Costs
Openness

Privacy

Security Availability
Reliability

Compliance Diversity of Offerings

Scalability

Figure 12-12
Organizations have to consider various
issues when managing their cloud
infrastructure.
(Source: Valacich, Joseph, and Schneider,
Christoph, Information Systems Today:
Managing in the Digital World, 7th ed.,
©2016, pp. 112, 113, 114, 115, 116, 118.
Reprinted and electronically reproduced
by permission of Pearson Education,
Inc., New York, NY.)

 ChaPter 12 Designing DistributeD anD internet systems 431

Security, Privacy, and Compliance In addition to concerns related to availability,
reliability, scalability, and viability of the vendor, security, privacy, and compliance
are critical aspects to consider when deciding which data and applications to move
to the cloud, and which provider to select. Especially when sensitive data are con-
cerned, organizations have to question how secure the data will be from outside
intruders, how the privacy of customer data will be protected, and whether the
data storage complies with regulations such as the Sarbanes–Oxley Act, the Health
Insurance Portability and Accountability Act (HIPAA), or standards such as the
Payment Card Industry Data Security Standard. In addition, many organizations are
faced with responding to data requests as part of civil or criminal litigation. Without
proper planning, responding to such data requests can end up costing many times
the amount saved by utilizing cloud based services. By definition, a public cloud
infrastructure is shared among different companies, with different applications run-
ning on the same hardware; as a result, it is impossible for organizations to know
where exactly (physically) the data are located, and thus auditing who has access to
the data is extremely difficult, if not impossible. Whereas in an in-house infrastruc-
ture, a company has complete control over its own data, this control is lost in a cloud
infrastructure, and organizations have less legal rights if their data are stored in the
cloud. Similarly, cloud computing providers may be asked to hand over sensitive
data stored on their servers to law enforcement, leaving the organization with little
control. Especially for industries heavily concerned with privacy and data protection,
such as firms in the medical or legal fields, these issues are of critical importance.
On the other hand, public cloud computing providers are certainly aware of these
issues, and organizations have to weigh which applications or data to move to the
cloud, and which to keep in-house.

Issues such as availability, reliability, and security are normally covered in ser-
vice-level agreements, which are contracts specifying the level of service provided in
terms of performance (e.g., as measured by uptime), warranties, disaster recovery,
and so on. A big caveat is that such service-level agreements do not guarantee the
availability of resources; rather, they only promise certain service levels and provide
for refunds or discounts if these promises are not met, and can thus be regarded
mostly as a vehicle for resolving conflicts in case of problems.

For businesses, this poses a serious dilemma, as such refunds and discounts only
cover the costs paid for the service, but can never offset the opportunity costs arising
from lost business. On the other hand, when evaluating the benefits and drawbacks
of moving the infrastructure to the public cloud, organizations also have to criti-
cally evaluate how they would be able to maintain certain uptime using an in-house
infrastructure, and at what costs; often, organizations realize that even though cer-
tain SLAs may not be met by the provider, the provider can still offer better uptime
than a poorly managed in-house infrastructure. In evaluating their options, organi-
zations often choose a hybrid approach, having certain mission-critical applications
in-house, while moving other, less demanding applications (in terms of uptime, etc.)
to the public cloud.

Diversity of Offerings As discussed earlier, there are various providers of cloud
computing services, ranging from IaaS to SaaS. As a larger number and diversity of
providers is more difficult to manage, many organizations prefer to deal with fewer
providers that can meet all needs. Thus, an important question to ask is which pro-
vider can offer the services needed both currently and in the future.

Openness A related question organizations face is the issue of interoperability.
Most cloud providers use different infrastructures, different ways to store data,
and so on. This, however, makes migrating data between providers extremely dif-
ficult, and can lead a company to be locked in by a certain provider. In addi-
tion to different infrastructures and storage models, existing network bandwidth
(and data transmission costs) poses an additional limitation to interoperability,

432 Part IV Design

as moving terabytes of data from one provider to another, even using very high-
speed networks, can prove extremely time consuming and expensive (as cloud
computing providers often charge for transferring data into or out of their
infrastructure).

Costs A final issue to consider when moving to a public cloud infrastructure is
costs. The utility computing model used by cloud computing providers gives orga-
nizations control over the resources used and paid for—the organization only pays
for the resources used, and can scale the resources up or down when needed. Thus,
this provides the organization with much transparency over the cost of the resources.
Yet, there is considerable disagreement over whether moving to the public cloud is
cheaper than maintaining an in-house infrastructure. For example, the online game
developer Zynga recently moved from a public cloud infrastructure to an in-house
private cloud, and decided to own, rather than rent, its infrastructure. Comparing
the costs of owning versus renting is not an easy feat. Whereas it is easy to calculate
the costs per month of a server in Amazon’s EC2 cloud, many organizations do not
know how much exactly it costs to run a comparable server in an in-house infra-
structure, including the costs of the server itself, the fees for software licenses, the
electricity, the data center, the staff, and so on. Thus, organizations have to carefully
balance the benefits and costs of the flexibility and scalability the cloud offers, such
as by using a cloud infrastructure only for periods of peak demand; needless to say,
this adds another layer of complexity to the IT operations.

In sum, there are various issues to consider when moving to a cloud infrastruc-
ture, and each organization has to make various informed choices about how to har-
ness the opportunities the cloud offers while minimizing potential drawbacks. In the
next section, we will provide a brief discussion of various other applications enabled
by the cloud.

service-Oriented architecture
In order to achieve greater flexibility and agility, organizations have tried to move
away from deploying large, monolithic applications in favor of a service-oriented
 architecture (SOA). Using SOA, business processes are broken down into individual
components (or services) that are designed to achieve the desired results for the
service consumer (which can either be an application, another service, or a person).
To illustrate this concept, think about the next oil change for your car. As you can’t
be an expert in everything, it is probably more effective to have someone change the
oil for you. You may take your car to the dealership, you may go to an independent
garage or oil change service, or you may ask your friend to do it for you. For you, all
that matters is that the service will be provided at the expected level of quality and
cost, but you typically do not care if different service providers do things differently
or use different tools.

By breaking down business processes into individual services, organizations can
more swiftly react to changing business needs. For example, using an SOA approach,
multiple services (such as “check inventory” or “order supplies”) would be orches-
trated to handle the individual tasks associated with processing customer orders and
could be changed relatively easily if the business process changes.

To facilitate online collaboration with suppliers, business partners, and custom-
ers, SOA uses and reuses individual services as “building blocks,” so that systems can
be easily built and reconfigured as requirements change. To achieve these benefits,
services have to follow three main principles:

1. Reusability. A service should be usable in many different applications.
2. Interoperability. A service should work with any other service.
3. Componentization. A service should be simple and modular.

Service-oriented architecture
(SOA)
A software architecture in which business
processes are broken down into individual
components (or services) that are designed
to achieve the desired results for the
service consumer (which can be either an
application, another service, or a person).

 ChaPter 12 Designing DistributeD anD internet systems 433

Following these principles, multiple applications can invoke the same services.
For example, both an organization’s point-of-sale system and e-commerce Web site
could invoke the service “process credit card,” and the executive dashboard could
 invoke the services “display products,” “display inventory,” and “display sales”
(Figure 12-13). Hosting and deploying such services in the cloud can help in build-
ing applications using SOA. In addition, various services an organization may need
are available in the cloud, eliminating the need to “reinvent the wheel.” However,
whereas an SOA approach appears to be appealing for many companies, it requires
tremendous effort and expertise to plan the architecture, select the right services
from hundreds or thousands of available services, and orchestrate and deploy the
services. Hence, while an SOA approach helps to increase flexibility, the integration
of various services can be extremely complex and can be well beyond the means of
small enterprises.

Web services
The most common approach for deploying a SOA is through the use of web services.
A web service is a method of communication between two electronic devices over
a network (Web service, 2015). Most organizations today have a complex array of
technologies that need to interact with many different types of systems and devices.
Many of these systems need to exchange data, business logic, or processes with each
other. A web service is a method of communication that allows two software systems,
which may have been written in different languages, to exchange this data over the
Internet. The software system that makes a request is called a service requester, whereas
the software system that would process the request and provide the response is called
a service provider. Web services have specific rules governing the communication be-
tween systems, and utilize XML and JSON files for data exchange (both XML and
JSON are described next). Likewise, web services are not tied to any operating system
or programming language to work together; no custom coding is needed. Because
of this, web services have become a common way to integrate Web-based applica-
tions over the Internet. For instance, web services allow separate organizations to
communicate data without intimate knowledge of each other’s systems behind their
respective firewalls.

eXtensible Markup Language, or XML, is a language that defines a set of rules
for encoding documents in a format which is both human- and machine-readable

Web service
A method of communication between two
electronic devices over a network.

eXtensible Markup Language
(XML)
An Internet authoring language that
allows designers to create customized
tags, enabling the definition, transmission,
validation, and interpretation of data
between applications.

Services Applications

Process
Credit
Card

Ship
Product

Display
Sales

Display
Inventory

Display
Product

E-commerce
Web site

Point-of-Sale
System

Executive
Dashboard

Figure 12-13
Using SOA, multiple applications can
invoke multiple services.
(Source: Valacich, Joseph, and Schneider,
Christoph, Information Systems Today:
Managing in the Digital World, 7th ed.,
©2016, pp. 112, 113, 114, 115, 116, 118.
Reprinted and electronically reproduced
by permission of Pearson Education,
Inc., New York, NY.)

434 Part IV Design

and is used extensively for interchanging data over the internet (see Fawcett et
al., 2012; www.w3.org/XML/). XML is a lot like HTML, with tags, attributes, and
values, but it also allows designers to create customized tags, enabling the defini-
tion, transmission, validation, and interpretation of data between applications.
Whereas HTML has a fixed set of tags, designers can create custom languages—
called vocabularies—for any type of application in XML. This ability to create cus-
tomized languages is at the root of the power of XML; however, this power comes
at a price. Whereas HTML is very forgiving on the formatting of tags, XML is very
strict. Additionally, as mentioned earlier, XML documents do not contain any
formatting information. XML tags simply define what the data mean. For this rea-
son, many believe that HTML will remain a popular tool for developing personal
Web pages; XML has become the tool of choice for many commercial Internet
applications.

A second, and an increasingly popular approach for formatting data within
a web service environment is JavaScript Object Notation, or JSON (pronounced
J-SON). JSON is a lightweight data interchange approach that is relatively easy for
humans to understand and for computers to generate or interpret. JSON is an
 alternative to XML and is considered much more efficient to transfer and process,
and much easier for humans to understand. Because of these advantages, the use of
JSON has dramatically increased.

There are two key technologies, SOAP and REST, which are used to assist in
the communication within a web services environment. The first, SOAP, which re-
fers to Simple Object Access Protocol, facilitates the communication of XML be-
tween applications and the operating system. SOAP builds on existing standards
to provide powerful communication capabilities, most notably, XML for format-
ting messages and Hypertext Transfer Protocol (HTTP) (see below for more infor-
mation on HTTP) and Simple Mail Transfer Protocol (SMTP) for transmitting
messages. In addition to leveraging Internet standard communication protocols
like HTTP and SMTP, SOAP also provides language and platform independence
as well as the ability to navigate through proxies and firewalls. A drawback to
SOAP, however, is that it is relatively verbose to compose and slower than alter-
native approaches to transmit and process. The second approach for facilitating
the communication within web services is called REST, or Representational State
Transfer. REST is a simpler and faster alternative to SOAP, typically communicat-
ing over HTTP utilizing JSON for formatting information. Relative to SOAP and
XML, REST and JSON are much simpler to understand, easier for machines to
process and generate, and easier for humans to design and implement. As such,
REST and JSON are rapidly becoming a dominant standard within the develop-
ment of web services.

Designing internet systems
The vast majority of new systems development in organizations focuses on Internet-
based applications. The Internet can be used for delivering internal organizational
systems, business-to-business systems, or business-to-consumer systems. The rapid
migration to Internet-based systems should not be a surprise; it is motivated by the
desire to take advantage of the global computing infrastructure of the Internet and
the comprehensive set of tools and standards that has been developed. However,
as with any other type of system, there are numerous choices that have to be made
when designing an Internet application. The design choices you make can greatly
influence the ease of development and the future maintainability of any system. In
this section, we focus on several fundamental issues that must be considered when
designing Internet-based systems.

JavaScript Object Notation
(JSON)
A lightweight data interchange approach
that is relatively easy for humans to
understand and for computers to generate
or interpret.

Simple Object Access Protocol
(SOAP)
A protocol for communicating XML data
between web service applications and the
operating system.

representational State
Transfer (reST)
A relatively simple and fast protocol for
communicating JSON data between web
service applications and the operating
system.

http://www.w3.org/XML/

 ChaPter 12 Designing DistributeD anD internet systems 435

internet Design Fundamentals
Standards play a major role when designing Internet-based systems (Zeldman, 2009).
In this section, we examine many fundamental and emerging building blocks of the
Internet and how each of these pieces influences system design.

Standards Drive the Internet Designing Internet-based systems is much simpler
than designing traditional client/server systems because of the use of standards.
For example, information is located throughout the Internet via the use of the stan-
dard domain naming system (BIND) (the “B” in BIND refers to Berkeley, California,
where the standard was first developed at the University of California [BIND stands
for Berkeley Internet Name Domain]; for more information see www.isc.org/
products/BIND/bind-history.html). BIND provides the ability to locate informa-
tion using common domain names that are translated into corresponding Internet
Protocol (IP) addresses. For example, the domain name www.arizona.edu translates
to 128.196.133.50.

Universal user access on a broad variety of clients is achieved through a stan-
dardized communication protocol: the Hypertext Transfer Protocol (HTTP).
HTTP is the agreed-upon format for exchanging information on the World Wide
Web (see www.w3.org/Protocols/ for more information). The HTTP protocol defines
how messages are formatted and transmitted as well as how Web servers and brows-
ers respond to commands. For example, when you enter a URL into your browser,
an HTTP command is sent to the appropriate Web server requesting the desired
Web page.

Beyond the naming standards of BIND and the transfer mechanism of HTTP,
an Internet-based system has another advantage over other types of systems: the
Hypertext Markup Language (HTML). HTML is the standard language for rep-
resenting content on the Web through the use of hundreds of command tags.
Examples of command tags include those to bold text (…), to create tables
(<table>…</table>), or to insert links onto a Web page (<A href=http://www.arizona
.edu/> University of Arizona).

Having standardized naming (BIND), translating (HTTP), and formatting
(HTML) enables designers to quickly craft systems because much of the complexity
of the design and implementation is removed. These standards also free the designer
from much of the worry of delivering applications over a broad range of computing
devices and platforms. Together BIND, HTTP, and HTML provide a standard for
designers when developing Internet-based applications. In fact, without these stan-
dards, the Internet as we know it would not be possible.

Ongoing Evolution The infrastructure currently supporting HTML-based data
exchange is the same infrastructure that will support the widespread use of XML,
JSON, and other emerging standards. As we move beyond desktop computers and
standard Web browsers, the greatest driver of change and evolution of Internet stan-
dards will be the need to support wireless mobile computing devices. As discussed
previously, wireless mobile computing devices are often referred to as thin-client
technologies. Thin clients such as network PCs, tablets, and smartphones are being
designed to operate as clients in Internet-based environments (see Figure 12-14).
Alternatively, a workstation that can provide significant amounts of client-side stor-
age and processing is referred to as a fat client. Current PC workstations connected
to the Internet can be thought of as fat clients. For desktop PC workstations, Internet
browsers render content marked up in HTML documents. However, as thin clients
gain in popularity, designing applications to receive, send, and process XML or JSON
will enable content to be displayed more effectively on any client device, regardless
of the screen size or resolution.

Domain naming system
(BiND)
A method for translating Internet domain
names into Internet Protocol (IP) addresses.
BIND stands for Berkeley Internet Name
Domain.

Hypertext Transfer Protocol
(HTTP)
A communication protocol for exchanging
information on the Internet.

Hypertext Markup Language
(HTML)
The standard language for representing
content on the Web through the use of
hundreds of command tags.

http://www.isc.org/products/BIND/bind-history.html
http://www.arizona.edu
http://www.w3.org/Protocols/
http://www.arizona.edu/
http://www.isc.org/products/BIND/bind-history.html
http://www.arizona.edu/

436 Part IV Design

Regardless of whether the device is a smartphone, tablet, or a desktop PC,
the use of standards will drive Internet-based system design. A well-designed sys-
tem will isolate the content presentation from the business logic and data, allow-
ing any Internet-capable device to become part of the overall distributed system.
Techniques to ensure the consistency of the site’s appearance for any type of device
are discussed next.

site Consistency
A consistent “look and feel” is fundamental to conveying the image that a site
is professionally designed. A site with high consistency is also much easier for
users to navigate, and it is much easier for users to anticipate the meaning of
links. From a practical standpoint, it is a poor design decision to not enforce
a standard look and feel to an entire site. Development and maintenance can
become a nightmare when implementing changes to colors, fonts, or other ele-
ments across thousands of Web pages within a site. In this section, we discuss ways
to help you enforce design consistency across an entire site and to simplify page
maintenance.

Cascading Style Sheets One of the biggest difficulties in developing a large-scale
website is maintaining consistency throughout the site with regard to color, back-
ground, fonts, and other page elements. Experienced website designers have found
that the use of Cascading Style Sheets (CSSs) can greatly simplify site maintenance
and also ensure that pages are consistent (see www.w3.org/Style/CSS/). CSSs are
simply a set of style rules that tell a Web browser how to present a document. The
best way to implement CSSs is through the use of linked style sheets. Using this
method, through HTML’s LINK element, only a single file needs to be updated
when changing style elements across an entire site. The LINK element indicates
some sort of a relationship between an HTML document and some other object or
file (see Figure 12-15). CSSs are the most basic way to implement a standard style
design within a website.

eXtensible Stylesheet Language A second and more sophisticated method
for implementing standard page styles throughout a site is via the eXtensible
Stylesheet Language (XSL). XSL is a specification for separating style from con-
tent when generating XML pages (see www.w3.org/TR/xsl/ for more information).
XSL allows designers to apply single style templates to multiple pages in a man-
ner similar to that of Cascading Style Sheets. XSL allows designers to dictate how
XML should be displayed whether the client device is a Web browser, handheld

Cascading Style Sheets (CSSs)
A set of style rules that tells a Web browser
how to present a document.

eXtensible Stylesheet
Language (XSL)
A specification for separating style from
content when generating XML pages.

Wireless Internet

Figure 12-14
Thin clients used to access the Internet

http://www.w3.org/Style/CSS/
http://www.w3.org/TR/xsl/

 ChaPter 12 Designing DistributeD anD internet systems 437

device, speech output, or some other media. In other words, XSL provides de-
signers with specifications that allow XML content to be seamlessly displayed on
various client devices.

In practical terms, XSL allows designers to separate presentation logic from
site content. This separation standardizes a site’s “look and feel” without having
to customize to the capabilities of individual devices. Given the rapid evolution of
 devices (e.g., desktop computers, mobile computing devices, and televisions), XSL
is a powerful method to ensure that information is displayed in a consistent man-
ner and uses the capabilities of the client device. XSL-based formatting consists of
two parts:

1. Methods for transforming XML documents into a generic comprehensive form
2. Methods for formatting the generic comprehensive form into a device-specific

form

In other words, XML content, queried from a remote data source, is format-
ted based on rules within an associated XSL style sheet (see Figure 12-16). This
content is then translated to a device-specific format and displayed to the user. For
 example, if the user has made the request from a Web browser, the presentation

XML Content
Device-Specific Format

XSL Style Sheet

Generic
“Comprehensive”
Content Format XSL

Transformer
XSL

Transformer

Figure 12-16
Combining XML data with XSL style sheet
to format content

Figure 12-15
Using HTML’s link command for
Cascading Style Sheets

Sample Command :

LINK HREF=“style5.css” REL=StyleSheet TYPE=“text/css” TITLE=“Common Back-
ground Style” MEDIA=“screen, print”>

Command Parameters:

HREF=“filename or URL” Indicate the location of the linked object or
document.

REL=“relationship” Specify the type of relationship between the
document and linked object or document.

TITLE=“object or document title” Declare the title of the linked object or
document.

TYPE=“object to document type” Declare the type of linked object or
document.

MEDIA=“type of media” Declare the type of medium or media to which
the style sheet will be applied (e.g., screen,
print, projection, aural, braille, tty, tv, all).

438 Part IV Design

layer will produce an HTML document. If the request has been made from a wire-
less mobile phone, the content will be delivered as a Wireless Markup Language
(WML) document.

Design issues related to site management
Maintenance is part of the ongoing management of a system. Many design issues will
significantly influence the long-term successful operation of a system. Therefore, in
this section we will discuss those issues that are particularly important when design-
ing an Internet-based system.

Customer Loyalty and Trustworthiness In order for your website to become the
preferred method for your customers to interact with you, they must feel that the
site—and their data—are secure. There are many ways that the design of the site can
convey trustworthiness to your users. Customers build trust from positive experiences
gained while interacting with a site (McKnight et al., 2002). According to Web design
guru Jakob Nielsen (1999), designers can convey trustworthiness in a website in the
following ways:

1. Design quality. A professional appearance and clear navigation convey respect
for customers and an implied promise of good service.

2. Up-front disclosure. Immediately inform users of all aspects of the customer rela-
tionship (e.g., shipping charges, data privacy policy); this conveys an open and
honest relationship.

3. Comprehensive, correct, and current content. Up-to-date content conveys a commit-
ment to provide users with the most up-to-date information.

4. Connected to the rest of the Web. Linking to outside sites is a sign of confidence
and lends credibility; an isolated site feels like it may have something to hide.

In addition to these methods, protecting your customers’ data will also be a
significant factor for conveying trustworthiness. For example, many users are reluc-
tant to disclose their e-mail address for fear of getting frequent unsolicited messages
(spam). As a result, many users have learned to provide a secondary e-mail address—
using services such as Gmail or Yahoo! mail—when trust has not yet been established.
Consequently, if you need to gather a customer’s e-mail address or other information,
you should disclose why this is being done and how this information will be used in
the future (e.g., information will be used only for order confirmation). Failure to
consider how you convey trust to your customers may result in a system design that is
not a success.

Another way to increase loyalty and to convey trustworthiness to customers is
to provide useful, personalized content (see Nielsen, 1998a; Nielsen and Loranger,
2006). Personalization refers to providing content to a user based upon knowledge
of that customer. For example, once you register and place orders on Amazon.com,
each time you visit you are presented with a customized page that is based upon your
prior purchase behavior.

Personalization should not be confused with customization. Customization
 refers to sites that allow a user to customize the content and look of a site based
on his or her personal preferences. For example, the popular Internet portals—
websites that offer a broad array of resources and services, such as Yahoo!, MSN,
and many of the popular search engines—allow users to customize the site based
on their preferences and interests. Many organizations, including universities, are
also using the portal concept for delivering organization-specific information and
applications (Nielsen, 2003; Nielsen and Loranger, 2006).

Because a personalized site knows you, each time you visit you are presented
with new personalized content without having to enter any additional information.

Personalization
Providing Internet content to a user based
upon knowledge of that customer.

Customization
Internet sites that allow users to customize
the content and look of the site based on
their personal preferences.

 ChaPter 12 Designing DistributeD anD internet systems 439

The site is able to personalize content because the system learns each customer’s
preferences and builds a profile based upon this history. This method for personal-
izing site content is a success because users do not have to do anything to set it up.
For example, users typically view the personalized data from Amazon.com favorably.
To personalize each customer’s content, Amazon compares a user’s prior purchases
with the purchasing behavior of millions of other customers to reliably make pur-
chase recommendations that may never have occurred to a customer. Amazon does
a nice job of not making personalization recommendations too obtrusive so that if
the system makes a bad guess at what the user might be interested in, the user isn’t
annoyed by having the site trying to be smarter than it actually is. For example,
many users visit Amazon.com to purchase books as gifts for friends; using these
data to personalize the site may impede the user’s experience when shopping for
personal items.

Links Must Live Forever For commercial Internet sites, your links must live forever.
There are four primary reasons why professional developers have come to this con-
clusion (Nielsen, 1998b):

1. Customer bookmarks. Because customers may bookmark any page on your site,
you cannot ever remove a page without running the risk of losing customers who
would not find a working link if they encountered a dead link.

2. Links from other sites. Like your customers who bookmark pages, other sites may
link directly to pages within your site; removing a page may result in losing cus-
tomer referrals.

3. Search engine referrals. Because search engines are often slow to update their
 databases, this is another source for old and dead pages.

4. Old content adds value. In addition to these practical issues, many users may
actually find value from old content. Old content can remain useful to users
because of historic interest, old product support, or background information
for recent events. Additionally, the cost of keeping old content is relatively
small. However, it is important to maintain old content so that links do not die
and that obsolete or misleading information is corrected or removed. Finally,
make sure that you explicitly date old content, provide disclaimers that point
out what no longer applies or is accurate, and provide forward-pointing links to
current pages.

You should not conclude from this discussion that Web content cannot change
and evolve. However, you should now understand that the links themselves cannot
die. In other words, when users bookmark a page and return to your site, this link
should return something useful to the user; otherwise, you run the risk of losing the
customer. With a small amount of maintenance on your site’s old content, you will
provide a valuable resource to your customers. It should be obvious that customers
who visit your site infrequently should easily be able to find what they are looking for;
otherwise, they will become frustrated, leave, and not come back.

System Security A paradox lies in the fact that, within a distributed system, secu-
rity and ease of use are often in conflict with each other. A secure system is often
much less “user-friendly,” whereas an easy-to-use system is often less secure. When
designing an Internet-based system, successful sites strike an appropriate balance be-
tween security and ease of use. For example, many sites that require a password for
site entry provide the functionality of “remember my password.” This feature will
make a user’s experience at a site much more convenient and smooth, but it also
results in a less secure environment. By remembering the password, anyone utilizing
the user’s computer potentially has access to the initial user’s account and personal
information.

440 Part IV Design

In addition, if you must require customers to register to use your site and gain
access via passwords, experienced designers have learned that it is best to delay cus-
tomer registration and not to require registration to gain access to the top levels of the
site. If you ask for registration too early, before you have demonstrated value to a new
customer, you run the risk of turning away the customer (Nielsen, 1997; Nielsen and
Loranger, 2006). Once a customer chooses to register on your site, make sure that the
process is as simple as possible. Also, if possible, store user information in client- or
server-side cookies rather than requiring users to reenter information each time they
visit your site. Of course, if your site requires high security (e.g., a stock trading site),
you may want to require users to enter an explicit password at each visit. Security is
clearly a double-edged sword. Too much and you might turn customers away; too little
and you run the risk of losing customers because they do not trust the security of the
site. Careful system design is needed to achieve the right balance between security and
ease of use.

Website Content Management In the early days of the Internet, websites were
often maintained by a small group of overworked developers; sites were often filled
with outdated information and inconsistent layouts. To gain consistency in web-
site appearance, organizations have utilized templates and stylesheets as described
previously. To make sure websites contain the most accurate and up-to-date infor-
mation, often from multiple sources, many organizations have turned to using a
content management system (CMS). A CMS is a special type of software application
for collecting, organizing, and publishing website content from multiple organiza-
tional data sources, such as data warehouses, personnel databases, inventories, and
so on. This content is stored in a single repository along with templates for format-
ting any type of Web page within the organization’s website. Because content and
formatting is separated by the CMS, the same underlying content can be presented
differently to different audiences—customers, employees, or suppliers—as well as
for different devices (see Figure 12-17). Popular CMSs include WordPress, Joomla,
and Drupal.

Content management system
(CMS)
A special type of software application
for collecting, organizing, and publishing
website content.

Content Sources

Templates Data

Internet

Content
Management
System

Organizational
Web Server

Figure 12-17
A content management system allows
content from multiple sources to be stored
separately from its formatting to ease
Website management

 ChaPter 12 Designing DistributeD anD internet systems 441

Additionally, a CMS allows numerous content developers and sources to
provide updated information for a website, without having to know anything
about HTML. For example, a personnel manager could author a new job de-
scription and post it at the CMS server using a standard word-processing pro-
gram like Microsoft Word. Once stored at the CMS server, the job posting text
can be merged with a standard template that automatically formats it into a stan-
dard Web page. Once formatted, the Webmaster can review and approve the job
posting before it is published onto the publicly (intranet, Internet, or extranet)
viewed website. In this way, organizations can facilitate timely updates to their
Web sites from throughout the organization, without having to wait for Web de-
velopers to author pages. This separation of content, appearance, and publishing
greatly improves organizational workflow and site management. It is only through
a CMS that organizations can deploy sophisticated websites, containing thousands
of pages with rapidly changing content (e.g., visit a popular website with con-
stantly changing content like cnn.com and imagine how to keep this site up to
date without a CMS).

eLeCtrOniC COmmerCe aPPLiCatiOn:
Designing a DistributeD aDvertisement
server FOr Pine vaLLey Furniture’s
WebstOre
In this chapter, we have examined numerous issues to consider when designing
Internet-based systems. As we saw in the prior two chapters, prototyping can be useful
in conceptualizing the look and feel of a website. The look and feel of a site is a func-
tion of the data presentation layer within an Internet-based application. Prototyping
also provides a view of the transactions and processes within the system. Transactions
and processes are managed by the middle layer, data analysis, of a three-tiered archi-
tecture. In this section, we will see how a distributed system, the advertisement rota-
tion system, is integrated into PVF’s WebStore.

In the prior two chapters, you read how Jim Woo defined specifications for the
forms and reports as well as the interface and dialogues for PVF’s WebStore. In this
design work, he and his development team concluded that they wanted the human–
computer interface of their site to have four key features:

1. Menu-driven navigation with cookie crumbs
2. Lightweight graphics
3. Form and data integrity rules
4. Stylesheet-based HTML

To demonstrate these features to the team, Jim built a prototype (see Figure 12-18).

advertising on Pine valley Furniture’s Webstore
Having reviewed Jim Woo’s throwaway prototype of the WebStore, Jackie Judson
wanted to assess the feasibility of adding advertisements to the site. She came up with
the following list of potential benefits for including advertising:

•	 Potential to increase revenue generated from the WebStore
•	 Potential to create cross-promotions and alliances with other online commerce

systems
•	 Potential to provide customers with improved service when looking for additional

products that accessorize PVF’s product line

442 Part IV Design

Jim agreed with the principles of advertising on the site and researched adver-
tising examples on an array of different Internet sites. He compiled the following
list of potential concerns that need to be addressed in the system design in order to
implement a successful advertisement rotation system within the WebStore:

•	 Advertisements must be served quickly so that site performance is not affected.
•	 Advertisements must be uniform in size and resolution, so they do not disrupt the

site layout.
•	 Advertisement links must not redirect the user’s browser away from the WebStore.

Designing the advertising Component
To begin the process, Jim modified the style sheets of the initial prototype to include
a space where the advertisement would appear. Because all advertisements would be
approved by the marketing department before being included in the rotation, Jim
could rely on the fact that they would be uniform in size and resolution. If an adver-
tisement is clicked, a new, smaller window is opened and directed to the advertiser’s
site. The link is not direct, though. It is first directed to the advertising server within
the WebStore system, the same server the advertisement came from. This “click-thru”
transaction is logged, and the user is sent to the appropriate destination.

Jim identified two distinct sets of data that would be generated by the adver-
tisement rotation system: the number of advertisements served and the number of
“click-thru’s.” The data being generated must be stored quickly and function trans-
parently within the overall operation of the system. The transactional requirements
of the advertisement system are the following:

1. Determine which advertisements apply, based on where the user is in the
WebStore.

2. Personalize the advertisement if the identity of the user has been established and
his or her preferences are known.

3. Check for any seasonal or promotional advertisements.
4. Log the transaction.

These requirements are part of the business rules that govern the rotation sys-
tem. Jim and Jackie want these parameters to be flexible and scalable so that future
systems can incorporate these rules. To demonstrate how an advertisement might be

Figure 12-18
Initial prototype of the WebStore

 ChaPter 12 Designing DistributeD anD internet systems 443

placed on the WebStore, Jim modified the prototype to include a vertical banner ad
along the right edge (see Figure 12-19).

Designing the management reporting Component
Once the transactional requirements of the system were established, Jackie turned her
attention to what reports she and other upper-level managers would like to see gener-
ated. Jim immediately began to write down all of the demographic information stored
in the customer-tracking system and cross-referenced it to the information stored
when an advertisement was clicked. This led Jim and Jackie to identify numerous po-
tential analytical queries that tied information from the customer-tracking system with
the transactional data in the advertisement rotation system. A few of the queries they
came up with included the following:

•	 “How many women, when shopping for desks, clicked on an advertisement for
lamps?”

•	 “How many advertisements were served to shoppers looking at filing cabinets?”
•	 “How many people clicked on the first advertisement they saw?”
•	 “How many people clicked on an advertisement and then purchased something

from the WebStore?”

Being able to analyze these and other results will provide critical feedback from
targeted marketing campaigns, seasonal promotions, and product tie-ins. Using
a distributed, transaction-based advertisement system in the WebStore will keep
maintenance costs low and should increase the revenue generated from the site.
Information derived from the analytical queries of advertisement transaction data
increases the site’s value even further.

Jackie and Jim reviewed the advertising model with the entire marketing staff.
Many of the client account reps expressed interest in seeking a partnership with fre-
quent customers to do advertising on the site. Junior sales staff members were eager
to sell advertising space with the knowledge that they could provide purchasers with
feedback on “click-thru” rates and overall advertisement views. One of the graphic
designers even produced an advertisement on the spot for an upcoming product
release. Everyone seemed to agree that the advertisement rotation system would in-
crease the value of the WebStore to PVF.

Figure 12-19
Adding advertising to the WebStore
prototype

444 Part IV Design

Key Terms
12.1 Application program interface

(API)
12.2 Application server
12.3 Cascading Style Sheets (CSSs)
12.4 Client
12.5 Client/server architecture
12.6 Content management system

(CMS)
12.7 Customization
12.8 Database engine
12.9 Domain naming system

(BIND)
12.10 File server
12.11 Hypertext Markup Language

(HTML)

12.12 Hypertext Transfer Protocol
(HTTP)

12.13 Information systems infrastructure
12.14 Infrastructure as a service (IaaS)
12.15 JavaScript Object Notation

(JSON)
12.16 Local area network (LAN)
12.17 Middleware
12.18 Personalization
12.19 Platform as a service (PaaS)
12.20 Representational State Transfer

(REST)
12.21 Service-oriented architecture

(SOA)

12.22 Simple Object Access Protocol
(SOAP)

12.23 Software as a service (SaaS)
12.24 Thin client
12.25 Three-tiered client/server

architecture
12.26 Utility computing:
12.27 Virtual machine
12.28 Virtualization
12.29 eXtensible Markup Language

(XML)
12.30 eXtensible Stylesheet Language

(XSL)
12.31 Web service

summary
This chapter covered various issues and technologies
 involved in the sharing of systems and data by mul-
tiple people across space and time in distributed and
Internet systems. You learned about the client/server
architecture, which is being used to network personal
computers and workstations and to replace older main-
frame applications. Components of the client/server
architecture, including LANs, database servers, applica-
tion programming interfaces, and application develop-
ment tools, were described.

Two common types of LAN-based architectures—file
server and client/server—were compared. It was shown
that the newer client/server technologies have significant
advantages over the older file servers. We also outlined the
evolution of distributed systems and three-tiered client/
server technologies that are giving analysts more options
for distributed system design.

Cloud computing uses a utility computing business
model, where customers can draw on a variety of com-
puting resources that can be accessed on demand, with
minimal human interaction. Characteristics of cloud
 computing include on-demand self-service, rapid elas-
ticity, broad network access, resource pooling, and mea-
sured service. Typical cloud computing service models are
infrastructure as a service, platform as a service, and soft-
ware as a service. When considering the move to a public
cloud-based infrastructure, organizations have to weigh
issues such as availability, reliability, scalability, viability,
security, privacy, compliance, openness, diversity of offer-
ings, and, not least, cost. Cloud computing supports ser-
vice oriented architectures and the use of Web services to
more easily integrate systems and deploy them on a vari-
ety of devices.

When designing Internet-based systems, standardized
location naming, content translating, and document for-
matting enable designers to quickly craft systems because
much of the complexity of the design and implementation
is removed. These standards also free the designer from
much of the worry of delivering applications over a broad
range of computing devices and platforms. Many commer-
cial Internet applications are vast and can contain thousands
of distinct pages. A consistent “look and feel” is fundamen-
tal to conveying the image that the site is professionally de-
signed. A site with high consistency is also much easier for
users to navigate and is much more intuitive so users can an-
ticipate the meaning of links. Two techniques for enforcing
consistency when designing large-scale Web applications are
the use of CSSs and the XSL. Given the desire to deliver the
Internet to a broader array of client devices, there is a trend
to separate Web content from its delivery. Electronic com-
merce applications are particularly embracing this trend
and are adopting standards such as XML and JSON to au-
thor Web data and XSL to manage content formatting in
addition to using style sheets to enforce consistency in the
design of a website across client devices. Finally, a successful
 design will make users feel that the site—and their data—
are secure. Customers build trust from positive experiences
interacting with a site. Taking steps to convey trustworthi-
ness will help to attract and retain customers.

We did not have the space in this chapter to address
several additional issues concerning distributed and
Internet systems. Many of these issues are handled by
other systems professionals, such as database administra-
tors, telecommunications experts, and computer security
specialists. Systems analysts must work closely with other
professionals to build sound distributed systems.

 ChaPter 12 Designing DistributeD anD internet systems 445

Match each of the key terms above to the definition that best
fits it.

 The cabling, hardware, and software used to connect
workstations, computers, and file servers located in a con-
fined geographical area (typically within one building or
campus).

 A software emulation of a physical computer system, both
hardware and operating system, that allows more efficient
sharing of physical hardware resources.

 A device that manages file operations and is shared by
each client PC attached to a LAN.

 A cloud computing model in which a service provider
 offers applications via a cloud infrastructure.

 A LAN-based computing environment in which a central
database server or engine performs all database com-
mands sent to it from client workstations, and application
programs on each client concentrate on user interface
functions.

 The (back-end) portion of the client/sever database sys-
tem running on the server that provides database process-
ing and shared access functions.

 The (front-end) portion of the client/server database sys-
tem that provides the user interface and data manipula-
tion functions.

 Software building blocks that are used to ensure that com-
mon system capabilities, such as user interfaces and print-
ing, and modules are standardized to facilitate the data
exchange between clients and servers.

 A combination of hardware, software, and communica-
tion technologies that brings together data management,
presentation, and analysis into a three-tiered (or n-tiered)
 client/server environment.

 A cloud computing model in which the customer can run
his or her own applications that are typically designed
using tools provided by the service provider; the cus-
tomer has limited or no control over the underlying
infrastructure.

 A cloud computing model in which only the basic capabili-
ties of processing, storage, and networking are provided.

 A relatively simple and fast protocol for communicating
JSON data between web service applications and the oper-
ating system.

 A method for translating Internet domain names into In-
ternet Protocol (IP) addresses.

 A communications protocol for exchanging information
on the Internet.

 The standard language for representing content on the
Web through the use of hundreds of command tags.

 An Internet authoring language that allows designers to cre-
ate customized tags, enabling the definition, transmission,
validation, and interpretation of data between applications.

 A protocol for communicating XML data between web ser-
vice applications and the operating system.

 A client device designed so that most processing and data
storage occur on the server.

 A set of style rules that tell a Web browser how to present a
document.

 A specification for separating style from content when gen-
erating XML pages.

 Providing Internet content to users based upon knowledge
of that customer.

 Internet sites that allow users to customize information to
their personal preferences.

 A computing server where data analysis functions primar-
ily reside.

 Advanced client/server architectures in which there are
three logical and distinct applications—data management,
presentation, and analysis—that are combined to create a
single information system.

 A lightweight data interchange approach that is relatively
easy for humans to understand and for computers to gen-
erate or interpret.

 A special type of software application for collecting, orga-
nizing, and publishing website content.

 A method of communication between two electronic
 devices over a network.

 A form of on-demand computing where resources in terms
of processing, data storage, or networking are rented on
an as-needed basis. The organization only pays for the ser-
vices used.

 A software architecture in which business processes are
broken down into individual components (or services)
that are designed to achieve the desired results for the
service consumer (which can be either an application, an-
other service, or a person).

 The act of creating virtual (rather than physical) versions
of a variety of computing capabilities including hard-
ware platforms, operating systems, storage devices, and
networks.

 The hardware, software, data, facilities, human resources,
and services used by organizations to support their deci-
sion making, business processes, and competitive strategy.

446 Part IV Design

Problems and exercIses
 12.47 Under what circumstances would you recommend that

a file server approach, as opposed to a client/server
 approach, be used for a distributed information system
application? What warnings would you give the prospec-
tive user of this file server approach? What factors would
have to change for you to recommend the move to a
 client/server approach?

 12.48 Suppose you are responsible for the design of a new or-
der entry and sales analysis system for a national chain of
auto part stores. Each store has a PC that supports office
functions. The company also has regional managers who
travel from store to store working with the local managers
to promote sales. There are four national offices for the
regional managers, who each spend about 1 day a week
in their office and 4 on the road. Stores place orders to
replenish stock on a daily basis, based on sales history and
inventory levels. The company uses the Internet to con-
nect store PCs into the company’s main computer. Each
regional manager has a laptop computer to also connect
with stores and the main office. Recommend a technol-
ogy architecture for supporting the business activities of
the company.

 12.49 The Internet is a network of networks. Using the termi-
nology in this chapter, what type of distributed network
architecture is used on the Internet?

 12.50 Suppose you were designing applications for a standard
file server environment. One issue discussed in this chap-
ter for this distributed processing environment is that the
application software on each client PC must share in the
responsibilities for data management. One data manage-
ment problem that can arise is that applications running
concurrently on two clients may want to update the same
data at the same time. What could you do to manage this
potential conflict? Is there any way this conflict might
result in both PCs making no progress (in other words,
going into an infinite loop)? How might you avoid such
problems?

 12.51 An extension of the three-tiered client/server architec-
ture is the n-tiered architecture, in which there are many
specialized application servers and other functions (e.g.,
load balancers). Extend the reasons for utilizing the
three-tiered architecture outlined in the chapter to an n-
tiered architecture.

revIew QuesTIons
 12.32 Contrast the following terms.

a. File server, client/server architecture, local area network
(LAN)

b. Virtual Machine, Virtualization
c. Infrastructure as a Service (IaaS), Platform as a Service

(PaaS), Software as a Service (SaaS)
d. Private Cloud, Public Cloud
e. Service-Oriented Architecture (SOA), Web Service
f. Simple Object Access Protocol (SOAP), Representa-

tional State Transfer (REST)
g. JavaScript Object Notation (JSON), eXtensible

Markup Language (XML)
h. Hypertext Markup Language (HTML), Hypertext

Transfer Protocol (HTTP), Domain Naming System
(BIND)

i. Cascading Style Sheets (CSSs), eXtensible Stylesheet
Language (XSL)

j. Personalization, Customization

 12.33 Describe the limitations of a file server architecture.

 12.34 Describe the advantages of a client/server architecture.

 12.35 Summarize the reasons for using a three-tiered client/
server architecture.

 12.36 Explain the role of middleware in client/server
computing.

 12.37 Describe the characteristics of the cloud computing
model?

 12.38 Describe and contrast the various cloud computing ser-
vice models.

 12.39 Describe various managerial issues related to deploying a
cloud computing model including availability, reliability,
scalability, viability, security, privacy, compliance, diversity
of offerings, openness, and cost.

 12.40 Describe how JSON and XML relate to SOAP and REST
when implementing web services.

 12.41 In what ways do Internet standards such as BIND, HTTP,
and HTML assist designers in building Internet-based
systems?

 12.42 Why is it important to separate content from display
when designing an Internet-based electronic commerce
system?

 12.43 How can CSSs and XSL help to ensure design consistency
when designing an Internet-based electronic commerce
system?

 12.44 Discuss how you can instill customer loyalty and trust-wor-
thiness when designing an Internet-based electronic com-
merce system.

 12.45 Why is it important that “Links live forever” when design-
ing an Internet-based electronic commerce system?

 12.46 Briefly describe the role of a content management system
and its benefits.

 ChaPter 12 Designing DistributeD anD internet systems 447

 12.52 You read in this chapter about the advantages of client/
server architectures. What operational and management
problems can be created by client/server architectures?
Considering both the advantages and disadvantages of
the client/server model, suggest the characteristics of an
application that could be implemented in a client/server
architecture.

 12.53 There is a strong movement toward wireless mobile com-
puting using thin-client technology. Go to the Web and
visit some of the major computer vendors that are pro-
ducing thin-client products such as smartphones and
tablets. Investigate the features of each category of device
and prepare a report that contrasts each type of device
on at least the following criteria: screen size, networking
 options and speed, permanent memory, and applications.

 12.54 Building on the research conducted in Problem and
 Exercise 12-53, what challenges does each device present
for designers when delivering an electronic commerce ap-
plication? Are some devices more suitable for supporting
some applications than others?

 12.55 How does hardware and software obsolescence affect your
life? Give examples of experiences with outdated hard-
ware or software. How did you deal with these situations?

 12.56 Using information on the Web, find (or try to estimate)
your computer’s energy consumption. What are ways to
decrease your computer’s energy consumption?

 12.57 Are you using any services offered in the cloud? If so, what
service model is offered by your provider? If not, what are
your primary reasons for not using services offered in the
cloud?

 12.58 Design consistency within an Internet site is an important
way to build customer loyalty and trustworthiness. Visit one
of your favorite websites and analyze this site for design
consistency. Your analysis should consider general layout,
colors and fonts, labeling, links, and other such items.

 12.59 Go to the Web and find a site that provides personalized
content and a site that allows you to customize the site’s
content to your preferences. Prepare a report that com-
pares and contrasts personalization and customization. Is
one method better than the other? Why or why not?

FIeld exercIses
 12.60 Visit an organization that has installed a LAN. Explore the

following questions.

a. Inventory all application programs that are delivered
to client PCs using a file server architecture. How many
users use each application? What are their professional
and technical skills? What business processes are sup-
ported by the application? What data are created, read,
updated, or destroyed in each application? Could the
same business processes be performed without using
technology? If so, how? If not, why not?

b. Inventory all application programs that are delivered
to client PCs using a client/server architecture. How
many users use each application? What are their pro-
fessional and technical skills? What business processes
are supported by the application? What data are cre-
ated, read, updated, or destroyed in each application?
Could the same business processes be performed with-
out using technology? If so, how? If not, why not?

 12.61 In this chapter, file servers were described as one way of
providing information to users of a distributed informa-
tion system. What file servers are available, and what are
their relative strengths, weaknesses, and costs? What other
types of servers are available and/or for what other uses
are file servers employed (e.g., print servers)?

 12.62 Search the web for information related to web services
and the associated technology standards being utilized.
Specifically, compare and contrast SOAP and REST using
the various characteristics you identify. Also, compare and
contrast XML and JSON using a similar approach. Your
analysis should include the advantages and disadvantages
of each technology using common criteria.

 12.63 Interview an IS professional about cloud computing. Does
this professional have a preference for public versus pri-
vate clouds? Additionally, find out what data he or she
would most likely entrust to a public cloud?

 12.64 Research the Web for an example of a start-up using a
cloud infrastructure. What were the main reasons for
choosing a cloud infrastructure? What alternatives did the
start-up have?

 12.65 The references in this chapter point to a number of
sources that provide website design guidelines (see addi-
tional references in the References list). Visit these sites
and summarize, in a report, guidelines not addressed in
this chapter. Did you find inconsistencies or contradic-
tions across the sites you studied? Why do these differ-
ences exist?

448 Part IV Design

reFerences
Bass, L., P. Clements, and R. Kazman. 2012. Software Architecture

in Practice, 3rd ed. Boston: Addison-Wesley.
DiMaggio, L. 2008. What is middleware? In plain English,

please. Redhat Magazine. Accessed at: magazine.redhat.
com/2008/03/11/what-is-middleware-in-plain-english-
please/. Accessed on March 1, 2015.

Erl, T., Puttini, R., and Z. Mahmood. 2013. Cloud Computing:
Concepts, Technology & Architecture. Upper Saddle River, NJ:
Prentice Hall.

Fawcett, J., Ayers, D., and L. R. E. Quin. 2012. Beginning XML.
Hoboken, NJ: Wrox.

Hoffer, J. A., V. Ramesh, and H. Topi. 2016. Modern Database
Management, 12th ed. Upper Saddle River, NJ: Prentice Hall.

Hofmann, P., and D. Woods. 2010, November/December. Cloud
computing: The limits of public clouds for business applica-
tions. IEEE Internet Computing, 90-93.

Kroenke, D. M. 2016. Database Processing, 14th ed. Upper Saddle
River, NJ: Prentice Hall.

Marchioni, F. 2014. Enterprise Application Servers CookBook: Part 3:
IBM Websphere. Rome, Italy: ItBuzzPress.

McKnight, D. H., V. Choudhury, and C. Kacmar. 2002. “Develop-
ing and Validating Trust Measures for E-Commerce: An Inte-
grative Typology.” Information Systems Research 13(3): 334–59.

Nielsen, J. 1997. “Loyalty on the Web.” August 1. Available at
www.nngroup.com/articles/loyalty-on-the-web/. Accessed
March 1, 2015.

Nielsen, J. 1998a. “Personalization Is Over-Rated.” October 4.
Available at www.nngroup.com/articles/personalization-is-
over-rated/. Accessed March 1, 2015.

Nielsen, J. 1998b. “Web Pages Must Live Forever.” November 29.
Available at www.nngroup.com/articles/web-pages-must-
live-forever/. Accessed March 1, 2015.

Nielsen, J. 1999. “Trust or Bust: Communicating Trustworthiness
in Web Design.” March 7. Available at www.nngroup.com/
articles/trust-or-bust-communicating-trustworthiness-in-
web-design/. Accessed March 1, 2015.

Nielsen, J. 2003. “Intranet Portals: A Tool Metaphor for Corpo-
rate Information.” March 31. Available at www.nngroup.
com/articles/intranet-portals-a-tool-metaphor/. Accessed
March 1, 2015.

Nielsen, J., and H. Loranger. 2006. Prioritizing Web Usability.
 Upper Saddle River, NJ: Prentice Hall.

NIST. 2011. The NIST definition of cloud computing. National Insti-
tute of Standard and Technology. Retrieved March 2, 2015,
from http://csrc.nist.gov/publications/nistpubs/800-145/
SP800-145.pdf.

Robbins, M. 2013. Thin Client: 23 Success Secrets. Queensland,
Australia: Emereo Publishing.

Valacich,J. S., and C. Schneider. 2016. Information Systems Today:
Managing in the Digital World, 7th ed. Upper Saddle River,
NJ: Pearson.

Web service. (2015, February 25). In Wikipedia, The Free Encyclope-
dia. Retrieved 21:07, March 2, 2015, from http://en.wikipedia.
org/w/index.php?title=Web_service&oldid=648778374

Zeldman, J. 2009. Designing with Web Standards, 3rd ed. Indianap-
olis, IN: Peach Pit Press.

http://www.nngroup.com/articles/loyalty-on-the-web/
http://www.nngroup.com/articles/personalization-is-over-rated/
http://www.nngroup.com/articles/personalization-is-over-rated/
http://www.nngroup.com/articles/web-pages-must-live-forever/
http://www.nngroup.com/articles/web-pages-must-live-forever/
http://www.nngroup.com/articles/trust-or-bust-communicating-trustworthiness-inweb-design/
http://www.nngroup.com/articles/intranet-portals-a-tool-metaphor/
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://en.wikipedia.org/w/index.php?title=Web_service&oldid=648778374
http://www.nngroup.com/articles/trust-or-bust-communicating-trustworthiness-inweb-design/
http://www.nngroup.com/articles/trust-or-bust-communicating-trustworthiness-inweb-design/
http://www.nngroup.com/articles/intranet-portals-a-tool-metaphor/
http://en.wikipedia.org/w/index.php?title=Web_service&oldid=648778374

 ChaPter 12 Designing DistributeD anD internet systems 449

site [www.nngroup.com]. His site is extensive, with many
short articles of helpful hints for making websites usable.”

After visiting Nielsen’s site, the interns came up with
the list of guidelines featured in PE Figure 12-1.

Case Questions

 12.66 Visit the Nielsen website and update PE Figure 12-
1 based on guidelines and articles posted since this
list was compiled. Add only elements you believe
are essential and relevant to the design of “No Cus-
tomer Escapes.”

 12.67 Review Chapters 10 and 11. Combine into your an-
swer to Case Question 12-66 guidelines from these
chapters. How unique do you consider the human
interface design guidelines for a website to be from
general application design guidelines? Justify your
answer.

 12.68 Search for other Web-based resources, besides the
Nielsen website, for website design. (Hint: Look
at the references at the end of this and prior chap-
ters.) In what ways do the design guidelines you
find contradict your answer to Case Question 12-
67? Explain the differences.

 12.69 This chapter introduced the concepts of loyalty
and trustworthiness as necessary for customers
to interact with a website. What elements could be
added to a customer loyalty site such as “No Cus-
tomer Escapes” to improve the levels of loyalty and
trustworthiness of Petrie’s customers?

Chapter 12: Designing Distributed
and Internet Systems

Stephanie Welsh worked for Petrie’s database adminis-
trator. She had been overseeing two interns who were
helping her translate conceptual database designs into
physical designs. As they were finishing up the task she
had assigned to them, she realized that they would soon
need something else to do.

She called Sanjay Agarwal, one of the most talented in-
terface designers in Petrie’s IT shop.

“Hi Sanjay, this is Stephanie. Got a minute?”
“For you, I can make the time,” Sanjay replied.
“Well, this is not about me, this is about my two interns.

They are about done with the database work I assigned
them. They need something else to do, and I thought of
you. Aren’t you starting work on some of the customized
Web designs for ‘No Customer Escapes?’ ”

“Yep,” Sanjay said. “That’s next on my list of two thou-
sand things I have to do this week.”

“So I can send them over? That will be great. They are
both good workers and very bright, so I think you will get
a lot out of them.”

“How much do they know about Web interface design?”
Sanjay asked.

“Not much, I don’t think.”
“Well, that’s not the answer I wanted. OK, I know what

I’ll do. I’ll have them derive a list of guiding principles for
good Web interface design. They can start by looking at
the website design principles listed on Jakob Nielsen’s

PetrIe eLeCtrOnICs

Pe Figure 12-1
Guidelines for design of Petrie’s “No
Customer Escapes”
(Source: Adapted from the following
sources: Jakob Nielsen website www.
nngroup.com, specifically pages: www.
nngroup.com/articles/drop-down-menus-
use-sparingly/, www.nngroup.com/
articles/top-10-mistakes-web-design/,
www.nngroup.com/articles/ten-usability-
heuristics/, www.nngroup.com/articles/
reset-and-cancel-buttons/, and www.
nngroup.com/articles/top-ten-mistakes-
revisited-three-years-later/.)

Feature Guideline

Interacting menus– When users select something on one menu, options
 change in other menus on the same page. These
 changing options confuse users. It’s hard to make a
 preferred option visible when it depends on a selection
 in another menu.

avoid

Very long menus– Long menus require users to scroll through them, and
 they can’t see all of their options at once. It’s better to
 break up the menu as a series of submenus or to
 represent some of the choices as hypertext links.

avoid

Menus of abbreviations– It is usually faster for users to simply type the abbreviation
(e.g., a two-character state code) than to select it from a
drop-down menu. Free-form input requires validation by
a code on the web page or on the server.

avoid

http://www.nngroup.com
http://www.nngroup.com
http://www.nngroup.com
http://www.nngroup.com/articles/drop-down-menus-use-sparingly/
http://www.nngroup.com/articles/drop-down-menus-use-sparingly/
http://www.nngroup.com/articles/drop-down-menus-use-sparingly/
http://www.nngroup.com/articles/top-10-mistakes-web-design/
http://www.nngroup.com/articles/ten-usability-heuristics/
http://www.nngroup.com/articles/reset-and-cancel-buttons/
http://www.nngroup.com/articles/top-ten-mistakes-revisited-three-years-later/
http://www.nngroup.com/articles/top-ten-mistakes-revisited-three-years-later/
http://www.nngroup.com/articles/top-ten-mistakes-revisited-three-years-later/
http://www.nngroup.com/articles/top-10-mistakes-web-design/
http://www.nngroup.com/articles/ten-usability-heuristics/
http://www.nngroup.com/articles/reset-and-cancel-buttons/

450 Part IV Design

Language– Your site’s language should be natural and logical. It
 should be based on the users’ language, not system
 language. The site should feature words and concepts
 familiar to the user, following real-world conventions.

use user’s terms

Fixing mistakes– Users make mistakes and make bad choices. They need a
 way to exit from their mistakes without going through
 an extended dialogue. Your site should support undo,
 redo, and default settings. But a good design that
 minimizes errors is always better than a good
 design message.

make it easy

Actions– Make objects, actions, and options visible. Every part of the
 dialogue should be clear and independent of any other part.
 Instructions should be visible or easily accessible
 when appropriate.

make them obvious

Customize– Design the system for both novice and experienced users.
 Allow users to tailor the system to their frequent actions.for flexibility and e�ciency

Content– Every part of a dialogue should be relevant. Irrelevant
 information competes with necessary information and
 hence diminishes its visibility.

make it relevant

Cancel button – Users have come to rely on the Back button to get out of
 unintended or unpleasant situations. Using the Back
 button is not always the best way out. Include a
 Cancel button as well. Cancel provides an explicit way
 to quit, which allows a feeling of safety that goes beyond
 simply leaving a site.

use sparingly

Menus of well-known data– Selecting well-known data, such as month, city, or
 country, often breaks the flow of typing for users and
 creates other data entry problems.

avoid

Frames– Frames can be confusing when a user tries to print a
 page or when trying to link to another site. Frames can
 prevent a user from e-mailing a URL to other users and
 can be more clumsy for inexperienced users.

use sparingly

Moving page elements – Moving images have an overpowering e�ect on the
 human peripheral vision and can distract a user from
 productive use of other page content. Moving text may
 be di�cult to read.

Scrollings –
minimize

Some users will not scroll beyond the information that is
 visible on the screen. Thus, critical content and
 navigation elements should be obvious (on the top of
 the page, possibly in a frame on the top of the page so
 that these elements never leave the page).

Context –
emphasize

You know more about your site than users do. They have
 di�culty finding information, so the site should be
 designed to provide them the structure and sense of
 place they need. Try to design your site from the user’s
 perspective and relay this structure explicitly to users.

System status –
make visible

The system should always provide information to users
 about what the system is doing. Reasonable feedback
 should be provided within a reasonable time frame.

use sparingly

Pe Figure 12-1 (continued)

451

Part Five

Implementation
and Maintenance

Chapter 13
System Implementation

Chapter 14
Maintaining Information Systems

452

Overview

Implementation and maintenance are the last two phases
of the systems development life cycle. The purpose of im-
plementation is to build a properly working system, install
it in the organization, replace old systems and work meth-
ods, finalize system and user documentation, train users,
and prepare support systems to assist users. Implemen-
tation also involves closedown of the project, including
evaluating personnel, reassigning staff, assessing the suc-
cess of the project, and turning all resources over to those
who will support and maintain the system. The purpose of
maintenance is to fix and enhance the system to respond
to problems and changing business conditions. Mainte-
nance includes activities from all systems development
phases. Maintenance also involves responding to requests
to change the system, transforming requests into changes,
designing the changes, and implementing them.

We address the variety of work done during system
implementation in Chapter 13. For projects based on
Agile Methodologies, coding and testing are done in con-
cert with analysis and design, so systems resulting from
such efforts will begin their implementation phases with
coding and testing already completed. Projects based on
traditional methodologies will begin implementation with
detailed design specifications that are handed over to
programming teams for coding and to quality assurance
teams for testing. In Chapter 13, you will learn about test-
ing systems and system components, and methods to en-
sure and measure software quality. Your role as a systems
analyst may include developing a plan for testing, which
includes developing all the test data required to exercise
every part of the system. You start developing the test plan
early in the project, usually during analysis, because test-
ing requirements are highly related to system functional
requirements. You also will learn how to document each
test case and the results of each test. A testing plan usually
follows a bottom-up approach, beginning with small mod-
ules, followed by extensive alpha testing by the program-
ming group, beta testing with users, and final acceptance
testing. Testing ensures the quality of the software by using
measures and methods such as structured walk-throughs.

Installing a new system involves more than making
technical changes to computer systems. Managing installa-
tion includes managing organizational changes as much as
it does technical changes. We review several approaches to
installation and several frameworks you can use to anticipate
and control human and organizational resistance to change.

Documentation is extensive for any system. You
have been developing most of the system documentation
needed by system maintenance staff by keeping a thor-
ough project workbook or CASE repository. You now need

to finalize user documentation. In Chapter 13, we pro-
vide a generic outline for a user’s guide as well as a wide
range of guidelines you can use to develop high-quality
user documentation. Remember, documentation must be
tested for completeness, accuracy, and readability.

While documentation is being finalized, user sup-
port activities also need to be designed and implemented.
Support includes training, whether through traditional,
instructor-led classes; computer-based tutorials or e-learn-
ing; or vendor-provided training. Electronic performance
support systems deliver on-demand training. Many types of
training are available from various sources over the Internet
or corporate intranets. Once trained, users will still encoun-
ter difficulties. Therefore, you, as an analyst, must consider
ongoing support from help desks, newsletters, user groups,
online bulletin boards, and other mechanisms, and these
sources of support need to be tested and implemented. We
conclude Chapter 13 with a brief review of project close-
down activities because the end of implementation means
the end of the project. We also provide an example of im-
plementation for the Pine Valley Furniture WebStore.

After implementation, however, work on the system is
just beginning. Today, as much as 80 percent of the life cycle
cost of a system occurs after implementation. Maintenance
handles updates to correct flaws and to accommodate new
technologies as well as to meet new business conditions,
regulations, and other requirements. In Chapter 14, you
will learn about your role in systems maintenance.

There are four kinds of maintenance: corrective,
adaptive, perfective, and preventive. You can help con-
trol the potentially monumental cost of a system by mak-
ing systems maintainable. You can affect maintainability
by reducing the number of defects, improving the skill
of users, preparing high-quality documentation, and de-
veloping a sound system structure.

You may also be involved in establishing a mainte-
nance group for a system. You will learn about different or-
ganizational structures for maintenance personnel and the
reasons for each, and you will learn how to measure mainte-
nance effectiveness. Configuration management and decid-
ing how to handle change requests are important. You will
learn how a systems librarian keeps track of baseline software
modules, checks these out to maintenance staff, and then
rebuilds systems. You will also learn about special issues for
maintaining websites and read about an example of a main-
tenance situation for the Pine Valley Furniture WebStore.

Chapter 13 includes the final installment of the
Petrie Electronics project case. This final case segment
helps you to understand implementation issues in an or-
ganizational context.

Part Five

Implementation and Maintenance

453

After maintenance, the implementation phase of the
systems development life cycle (SDLC) is the most expen-
sive and time-consuming phase of the entire life cycle.
Implementation is expensive because so many people are
involved in the process; it is time consuming because of
all the work that has to be completed. In a traditional
plan-driven systems development project, physical design
specifications must be turned into working computer
code, and the code must be tested until most of the
 errors have been detected and corrected. In a systems
development project governed by Agile Methodologies,
design, coding, and testing are done in concert, as you
learned in previous chapters. Regardless of methodology
used, once coding and testing are complete and the sys-
tem is ready to “go live,” it must be installed (or put into
production), user sites must be prepared for the new sys-
tem, and users rely on the new system rather than the
existing one to get their work done.

Implementing a new information system into an
organizational context is not a mechanical process. The
organizational context has been shaped and reshaped by
the people who work in the organization. The work habits,
beliefs, interrelationships, and personal goals of an orga-
nization’s members all affect the implementation process.

Although factors important to successful implementation
have been identified, there are no sure recipes you can
follow. During implementation, you must be attuned to
key aspects of the organizational context, such as history,
politics, and environmental demands—aspects that can
contribute to implementation failure if ignored.

In this chapter, you will learn about the many
 activities that the implementation phase comprises. We
will discuss coding, testing, installation, documentation,
user training, support for a system after it is installed,
and implementation success. Our intent is not to teach
you how to program and test systems—most of you have
already learned about writing and testing programs in
the courses you took before this one. Rather, this chap-
ter shows you where coding and testing fit in the overall
scheme of implementation, especially in a traditional,
plan-driven context. The chapter stresses the view of
 implementation as an organizational change process that
is not always successful.

In addition, you will learn about providing docu-
mentation about the new system for the information sys-
tems personnel who will maintain the system and for the
system’s users. These same users must be trained to use
what you have developed and installed in their workplace.

13.5 Explain why system implementation sometimes
fails.

13.6 Describe the threats to system security and
remedies that can be applied.

13.7 Show how traditional implementation issues apply
to electronic commerce applications.

Learning Objectives

After studying this chapter, you should be able to:

13.1 Provide an overview of the system implementation
process.

13.2 Describe how software applications are tested.

13.3 Apply four installation strategies: direct, parallel,
single-location, and phased installation.

13.4 List the deliverables for documenting the system
and for training and supporting users.

 System Implementation
13
Chapter

Introduction

454 Part v ImplementatIon and maIntenance

Once training has ended and the system has become institutionalized, users will have
questions about the system’s implementation and how to use it effectively. You must
provide a means for users to get answers to these questions and to identify needs for
further training.

As a member of the system development team that developed and imple-
mented the new system, your job is winding down now that installation and conver-
sion are complete. The end of implementation marks the time for you to begin the
process of project closedown. At the end of this chapter, we will turn to the topic of
formally ending the systems development project.

After a brief overview of the coding, testing, and installation processes and
the deliverables and outcomes from these processes, we will talk about software
application testing. We then present the four types of installation: direct, parallel,
single-location, and phased. You then will read about the process of documenting
systems and training and supporting users as well as the deliverables from these
processes. We then discuss the various types of documentation and numerous
methods available for delivering training and support services. You will read about
implementation as an organizational change process, with many organizational
and people issues involved in the implementation effort. You will also read about
the threats to security that organizations face and some of the things that can be
done to make systems more secure. Finally, you will see how the implementation
of an electronic commerce application is similar to the implementation of more
traditional systems.

SySteM IMpleMentatIon
System implementation is made up of many activities. The six major activities we
are concerned with in this chapter are coding, testing, installation, documentation,
training, and support (see Figure 13-1). The purpose of these steps is to convert
the physical system specifications into working and reliable software and hardware,

DesignImplementation

Planning

Maintenance Analysis

Coding
Testing
Installation
Documentation
Training
Support

Figure 13-1
Systems development life cycle with the
implementation phase highlighted

 ChaPter 13 SyStem ImplementatIon 455

document the work that has been done, and provide help for current and future
users and caretakers of the system. Coding and testing may have already been com-
pleted by this point if Agile Methodologies have been followed. Using a plan-driven
methodology, coding and testing are often done by other project team members
besides analysts, although analysts may do some programming. In any case, ana-
lysts are responsible for ensuring that all of these various activities are properly
planned and executed. Next, we will briefly discuss these activities in two groups:
(1) coding, testing, and installation and (2) documenting the system and training
and supporting users.

Coding, testing, and Installation processes
Coding, as we mentioned before, is the process whereby the physical design specifi-
cations created by the analysis team are turned into working computer code by the
programming team. Depending on the size and complexity of the system, coding can
be an involved, intensive activity. Regardless of the development methodology fol-
lowed, once coding has begun, the testing process can begin and proceed in parallel.
As each program module is produced, it can be tested individually, then as part of a
larger program, and then as part of a larger system. You will learn about the different
strategies for testing later in this chapter. We should emphasize that, although testing
is done during implementation, you must begin planning for testing earlier in the
project. Planning involves determining what needs to be tested and collecting test
data. This is often done during the analysis phase because testing requirements are
related to system requirements.

Installation is the process during which the current system is replaced by the
new system. This includes conversion of existing data, software, documentation, and
work procedures to those consistent with the new system. Users must give up the old
ways of doing their jobs, whether manual or automated, and adjust to accomplishing
the same tasks with the new system. Users will sometimes resist these changes, and you
must help them adjust. However, you cannot control all the dynamics of user–system
interaction involved in the installation process.

Deliverables and outcomes from Coding, testing,
and Installation
Table 13-1 shows the deliverables from the coding, testing, and installation pro-
cesses. Some programming languages include utilities to generate documentation
automatically, while others require more effort on the part of the coder to establish
good documentation. But even well-documented code can be mysterious to mainte-
nance programmers who must maintain the system for years after the original system
was written and the original programmers have moved on to other jobs. Therefore,
clear, complete documentation for all individual modules and programs is crucial to
the system’s continued smooth operation. The results of program and system testing

Table 13-1 Deliverables for Coding, Testing, and Installation
1. Coding

a. Code
b. Program documentation

2. Testing
a. Test scenarios (test plan) and test data

b. Results of program and system testing

3. Installation
a. User guides
b. User training plan
c. Installation and conversion plan

i. Software and hardware installation
schedule

ii. Data conversion plan
iii. Site and facility remodeling plan

456 Part v ImplementatIon and maIntenance

are important deliverables from the testing process because they document the tests
as well as the test results. For example, what type of test was conducted? What test
data were used? How did the system handle the test? The answers to these questions
can provide important information for system maintenance because changes will
 require retesting, and similar testing procedures will be used during the mainte-
nance process.

The next two deliverables, user guides and the user training plan, result
from the installation process. User guides provide information on how to use
the new system, and the training plan is a strategy for training users so that they
can quickly learn the new system. The development of the training plan probably
began earlier in the project, and some training, on the concepts behind the new
system, may have already taken place. During the early stages of implementation,
the training plans are finalized and training on the use of the system begins.
Similarly, the installation plan lays out a strategy for moving from the old system
to the new, from the beginning to the end of the process. Installation includes
installing the system (hardware and software) at central and user sites. The in-
stallation plan answers such questions as when the new system will be installed,
which installation strategies will be used, who will be involved, what resources are
 required, which data will be converted and cleansed, and how long the instal-
lation process will take. It is not enough that the system is installed; users must
actually use it.

As an analyst, your job is to ensure that all of these deliverables are produced
and are done well. You may produce some of the deliverables, such as test data, user
guides, and an installation plan; for other deliverables, such as code, you may only
supervise or simply monitor their production or accomplishment. The extent of
your implementation responsibilities will vary according to the size and standards of
the organization you work for, but your ultimate role includes ensuring that all the
implementation work leads to a system that meets the specifications developed in
earlier project phases.

The Processes of Documenting the System, Training Users, and Supporting
Users Although the process of documentation proceeds throughout the life cycle,
it receives formal attention during the implementation phase because the end of
implementation largely marks the end of the analysis team’s involvement in systems
development. As the team is getting ready to move on to new projects, you and the
other analysts need to prepare documents that reveal all of the important informa-
tion you have accumulated about this system during its development and implemen-
tation. There are two audiences for this final documentation: (1) the information
systems personnel who will maintain the system throughout its productive life, and
(2) the people who will use the system as part of their daily lives. The analysis team in
a large organization can get help in preparing documentation from specialized staff
in the information systems department.

Larger organizations also tend to provide training and support to computer
users throughout the organization. Some of the training and support is very spe-
cific to particular application systems, whereas the rest is general to particular
operating systems or off-the-shelf software packages. For example, it is common
to find courses on Microsoft Windows® in organization-wide training facilities.
Analysts are mostly uninvolved with general training and support, but they do
work with corporate trainers to provide training and support tailored to particu-
lar computer applications they have helped to develop. Centralized information
system training facilities tend to have specialized staff who can help with train-
ing and support issues. In smaller organizations that cannot afford to have well-
staffed centralized training and support facilities, fellow users are the best source
of training and support that users have, whether the software is customized or off
the shelf.

 ChaPter 13 SyStem ImplementatIon 457

Deliverables and outcomes from Documenting the System,
training Users, and Supporting Users
Table 13-2 shows the deliverables from documenting the system, training users,
and supporting users. At the very least, the development team must prepare user
documentation. For most modern information systems, documentation includes
any online help designed as part of the system interface. The development team
should think through the user training process: Who should be trained? How
much training is adequate for each training audience? What do different types of
users need to learn during training? The training plan should be supplemented
by actual training modules, or at least outlines of such modules, that at a mini-
mum address the three questions stated previously. Finally, the development team
should also deliver a user support plan that addresses issues such as how users
will be able to find help once the information system has become integrated into
the organization. The development team should consider a multitude of support
mechanisms and modes of delivery. Each deliverable is addressed in more detail
later in this chapter.

Software applICatIon teStIng
As we mentioned previously, in traditional plan-driven systems development
 projects, analysts prepare system specifications that are passed on to program-
mers for coding. Although coding takes considerable effort and skill, the prac-
tices and processes of writing code do not belong in this text. However, because
 software application testing is an activity that analysts plan (beginning in the
analysis phase) and sometimes supervise, depending on organizational stan-
dards, you need to understand the essentials of the testing process. Although this
 section of the text focuses on testing from the perspective of traditional develop-
ment practices, many of the same types of tests can be used during the analyze–
design–code–test cycle common to the Agile Methodologies. Coding and testing
in eXtreme Programming will be discussed briefly toward the end of this section
on testing.

Software testing begins early in the SDLC, even though many of the actual test-
ing activities are carried out during implementation. During analysis, you develop
a master test plan. During design, you develop a unit test plan, an integration test
plan, and a system test plan. During implementation, these various plans are put into
 effect and the actual testing is performed.

The purpose of these written test plans is to improve communication among
all the people involved in testing the application software. The plan specifies what
each person’s role will be during testing. The test plans also serve as checklists you
can use to determine whether the master test plan has been completed. The master
test plan is not just a single document, but a collection of documents. Each of the
component documents represents a complete test plan for one part of the system or

Table 13-2 Deliverables for Documenting the System, Training, and Supporting Users
1. Documentation

a. System documentation
b. User documentation

2. User Training Plan
a. Classes
b. Tutorials

3. User Training Modules
a. Training materials
b. Computer-based training aids

4. User Support Plan
a. Help desk
b. Online help
c. Bulletin boards and other support mechanisms

458 Part v ImplementatIon and maIntenance

for a particular type of test. Presenting a complete master test plan is far beyond the
scope of this book. To give you an idea of what a master test plan involves, we present
an abbreviated table of contents of one in Table 13-3.

A master test plan is a project within the overall systems development project.
Because at least some of the system testing will be done by people who have not
been involved in the system development so far, the Introduction provides general
information about the system and the need for testing. The Overall Plan and Testing
Requirements sections are like a Baseline Project Plan for testing, with a schedule
of events, resource requirements, and standards of practice outlined. Procedure
Control explains how the testing is conducted, including how changes to fix errors
will be documented. The fifth and final section explains each specific test necessary
to validate that the system performs as expected.

Some organizations have specially trained personnel who supervise and sup-
port testing. Testing managers are responsible for developing test plans, establish-
ing testing standards, integrating testing and development activities in the life cycle,
and ensuring that test plans are completed. Testing specialists help develop test
plans, create test cases and scenarios, execute the actual tests, and analyze and re-
port test results.

Seven Different types of tests
Software application testing is an umbrella term that covers several types of tests.
Mosley (1993) organizes the types of tests according to whether they employ static
or dynamic techniques and whether the test is automated or manual. Static testing
means that the code being tested is not executed. The results of running the code
are not an issue for that particular test. Dynamic testing, on the other hand, involves
execution of the code. Automated testing means the computer conducts the test,
whereas manual testing means that people complete the test. Using this framework,
we can categorize the different types of tests, as shown in Table 13-4.

Let’s examine each type of test in turn. Inspections are formal group activities
where participants manually examine code for occurrences of well-known errors.
Syntax, grammar, and some other routine errors can be checked by automated in-
spection software, so manual inspection checks are used for more subtle errors.

inspections
A testing technique in which participants
examine program code for predictable
language-specific errors.

Table 13-3 Table of Contents of a Master Test Plan
1. Introduction

a. Description of system to be tested
b. Objectives of the test plan
c. Method of testing
d. Supporting documents

2. Overall Plan
a. Milestones, schedules, and locations
b. Test materials

i. Test plans
ii. Test cases
iii. Test scenarios
iv. Test log

3. Testing Requirements
a. Hardware
b. Software
c. Personnel

4. Procedure Control
a. Test initiation
b. Test execution
c. Test failure
d. Access/change control
e. Document control

5. Test-Specific or Component-Specific Test Plans
a. Objectives
b. Software description
c. Method
d. Milestones, schedule, progression, and locations
e. Requirements
f. Criteria for passing tests
g. Resulting test materials
h. Execution control
i. Attachments

(Source: Adapted from Mosley, 1993.)

 ChaPter 13 SyStem ImplementatIon 459

Each programming language lends itself to certain types of errors that program-
mers make when coding, and these common errors are well-known and docu-
mented. Code inspection participants compare the code they are examining with
a checklist of well-known errors for that particular language. Exactly what the code
does is not investigated in an inspection. It has been estimated that code inspec-
tions detect from 60 to 90 percent of all software defects as well as provide program-
mers with feedback that enables them to avoid making the same types of errors in
future work (Fagan, 1986). The inspection process can also be used for tasks such
as design specifications.

Unlike inspections, what the code does is an important question in a walk-
through. The use of structured walk-throughs is a very effective method of detect-
ing errors in code. As you saw in Chapter 5, structured walk-throughs can be used
to review many systems development deliverables, including logical and physical
design specifications as well as code. Whereas specification walk-throughs tend
to be formal reviews, code walk-throughs tend to be informal. Informality tends
to make programmers less apprehensive about walk-throughs and helps increase
their frequency. According to Yourdon (1989), code walk-throughs should be done
frequently when the pieces of work reviewed are relatively small and before the
work is formally tested. If walk-throughs are not held until the entire program is
tested, the programmer will have already spent too much time looking for errors
that the programming team could have found much more quickly. The program-
mer’s time will have been wasted, and the other members of the team may become
frustrated because they will not find as many errors as they would have if the walk-
through had been conducted earlier. Further, the longer a program goes without
being subjected to a walk-through, the more defensive the programmer becomes
when the code is reviewed. Although each organization that uses walk-throughs
conducts them differently, there is a basic structure that you can follow that works
well (see Figure 13-2).

It should be stressed that the purpose of a walk-through is to detect errors,
not to correct them. It is the programmer’s job to correct the errors uncovered in a

Table 13-4 a Categorization of Test Types
Manual Automated

Static Inspections Syntax checking
Dynamic Walk-throughs Unit test

Desk checking Integration test
System test

(Source: Adapted from Mosley, 1993.)

GUIDELINES FOR CONDUCTING A CODE WALK-THROUGH
1. Have the review meeting chaired by the project manager or chief programmer, who is

also responsible for scheduling the meeting, reserving a room, setting the agenda,
inviting participants, and so on.

2. The programmer presents his or her work to the reviewers. Discussion should be
general during the presentation.

3. Following the general discussion, the programmer walks through the code in detail,
focusing on the logic of the code rather than on specific test cases.
Reviewers ask to walk through specific test cases.4.

5. The chair resolves disagreements if the review team members cannot reach agreement
among themselves and assigns duties, usually to the programmer, for making specific
changes.
A second walk-through is then scheduled if needed.6.

Figure 13-2
Steps in a typical walk-through
(Source: Based on Yourdon, 1989.)

460 Part v ImplementatIon and maIntenance

walk-through. Sometimes it can be difficult for the reviewers to refrain from suggest-
ing ways to fix the problems they find in the code, but increased experience with the
process can help change a reviewer’s behavior.

What the code does is important in desk checking, an informal process in which
the programmer or someone else who understands the logic of the program works
through the code with a paper and pencil. The programmer executes each instruc-
tion, using test cases that may or may not be written down. In one sense, the reviewer
acts as the computer, mentally checking each step and its results for the entire set of
computer instructions.

Among the list of automated testing techniques in Table 13-4, only one tech-
nique is static—syntax checking. Syntax checking is typically done by a compiler.
Errors in syntax are uncovered but the code is not executed. For the other three
automated techniques, the code is executed.

Unit testing, sometimes called module testing, is an automated technique
whereby each module is tested alone in an attempt to discover any errors that may
exist in the module’s code. But because modules coexist and work with other mod-
ules in programs and the system, they must also be tested together in larger groups.
Combining modules and testing them is called integration testing. Integration test-
ing is gradual. First you test the coordinating module and only one of its subordi-
nate modules. After the first test, you add one or two other subordinate modules
from the same level. Once the program has been tested with the coordinating mod-
ule and all of its immediately subordinate modules, you add modules from the
next level and then test the program. You continue this procedure until the entire
program has been tested as a unit. System testing is a similar process, but instead
of integrating modules into programs for testing, you integrate programs into sys-
tems. System testing follows the same incremental logic that integration testing
does. Under both integration and system testing, not only do individual modules
and programs get tested many times, so do the interfaces between modules and
programs.

Current practice calls for a top-down approach to writing and testing mod-
ules. Under a top-down approach, the coordinating module is written first. Then
the modules at the next level in the structure chart are written, followed by the
modules at the next level, and so on, until all of the modules in the system are
done. Each module is tested as it is written. Because top-level modules contain
many calls to subordinate modules, you may wonder how they can be tested if the
lower-level modules haven’t been written yet. The answer is stub testing. Stubs are
two or three lines of code written by a programmer to stand in for the missing
modules. During testing, the coordinating module calls the stub instead of the
subordinate module. The stub accepts control and then returns it to the coordi-
nating module.

System testing is more than simply expanded integration testing where
you are testing the interfaces between programs in a system rather than testing
the interfaces between modules in a program. System testing is also intended to
 demonstrate whether a system meets its objectives. This is not the same as test-
ing a system to determine whether it meets requirements—that is the focus of
acceptance testing, which will be discussed later. To verify that a system meets
its objectives, system testing involves using nonlive test data in a nonlive testing
environment. Nonlive means that the data and situation are artificial, developed
specifically for testing purposes, although both the data and the environment
are similar to what users would encounter in everyday system use. The system test
is typically conducted by information systems personnel and led by the project
team leader, although it can also be conducted by users under MIS guidance. The
scenarios that form the basis for system tests are prepared as part of the master
test plan.

Desk checking
A testing technique in which the program
code is sequentially executed manually by
the reviewer.

unit testing
Each module is tested alone in an attempt
to discover any errors in its code.

integration testing
The process of bringing together all of
the modules that a program comprises for
testing purposes. Modules are typically
integrated in a top-down, incremental
fashion.

System testing
The bringing together of all of the programs
that a system comprises for testing
purposes. Programs are typically integrated
in a top-down, incremental fashion.

Stub testing
A technique used in testing modules,
especially where modules are written and
tested in a top-down fashion, where a
few lines of code are used to substitute for
subordinate modules.

 ChaPter 13 SyStem ImplementatIon 461

the testing process
Up to this point, we have talked about the master test plan and seven different types of
tests for software applications. We haven’t said very much about the process of testing
itself. There are two important things to remember about testing information systems:

1. The purpose of testing is to confirm that the system satisfies requirements.
2. Testing must be planned.

These two points have several implications for the testing process, regardless of
the type of test being conducted. First, testing is not haphazard. You must pay atten-
tion to many different aspects of a system, such as response time, response to boundary
data, response to no input, response to heavy volumes of input, and so on. You must
test anything (within resource constraints) that could go wrong or be wrong with a sys-
tem. At a minimum, you should test the most frequently used parts of the system and
as many other paths throughout the system as time permits. Planning gives analysts
and programmers an opportunity to think through all the potential problem areas, list
these areas, and develop ways to test for problems. As indicated previously, one part
of the master test plan is creating a set of test cases, each of which must be carefully
documented (see Figure 13-3 for an outline of a test case description).

A test case is a specific scenario of transactions, queries, or navigation paths
that represent a typical, critical, or abnormal use of the system. A test case should

Pine Valley Furniture Company
Test Case Description

Test Case Number:
Date:
Test Case Description:

Program Name:
Testing State:
Test Case Prepared By:

Test Administrator:

Description of Test Data:

Expected Results:

Actual Results:

Figure 13-3
Test case description form
(Source: Adapted from Mosley, 1993.)

462 Part v ImplementatIon and maIntenance

be repeatable so that it can be rerun as new versions of the software are tested. This
is important for all code, whether written in-house, developed by a contractor, or
purchased. Test cases need to determine that new software works with other exist-
ing software with which it must share data. Even though analysts often do not do
the testing, systems analysts, because of their intimate knowledge of applications,
often make up or find test data. The people who create the test cases should not
be the same people as those who coded and tested the system. In addition to a
description of each test case, there must also be a description of the test results,
with an emphasis on how the actual results differed from the expected results (see
Figure 13-4). This description will indicate why the results were different and what,
if anything, should be done to change the software. This description will then sug-
gest the need for retesting, possibly introducing new tests to discover the source of
the differences.

One important reason to keep such a thorough description of test cases
and results is so that testing can be repeated for each revision of an application.
Although new versions of a system may necessitate new test data to validate new
features of the application, previous test data usually can and should be reused.
Results from the use of the test data with prior versions are compared to new ver-
sions to show that changes have not introduced new errors and that the behavior
of the system, including response time, is no worse. A second implication for the
testing process is that test cases must include illegal and out-of-range data. The
system should be able to handle any possibility, no matter how unlikely; the only
way to find out is to test.

Pine Valley Furniture Company
Test Case Results

Test Case Number:
Date:

Program Name:
Module Under Test:

Suggestions for next steps:

Figure 13-4
Test case results form
(Source: Adapted from Mosley, 1993.)

 ChaPter 13 SyStem ImplementatIon 463

Testing often requires a great deal of labor. Manual code reviews can be very
time consuming and tedious work; and, most importantly, are not always the best solu-
tion. As such, special purpose testing software, called a testing harness, is being devel-
oped for a variety of environments to help designers automatically review the quality
of their code. In many situations, a testing harness will greatly enhance the testing
process because it can automatically expand the scope of the tests beyond the cur-
rent development platform as well as be run every time there is a new version of the
software. For instance, with the testing harness called Costello, a developer can answer
questions such as how stable is the code? Does the code follow standard rules? Will
the code work across multiple platforms? When deploying large-scale, multi-platform
projects, automatic code review systems have become a necessity.

Combining Coding and testing
Although coding and testing are in many ways part of the same process, it is not un-
common in large and complicated systems development environments to find the
two practices separated from each other. Big companies and big projects often have
dedicated testing staffs that develop test plans and then use the plans to test software
after it has been written. You have already seen how many different types of testing
there are, and you can deduce from that how elaborate and extensive testing can be.
As you recall, with eXtreme Programming (XP) (Beck and Andres, 2004) and other
Agile Methodologies, coding and testing are intimately related parts of the same pro-
cess, and the programmers who write the code also write the tests. The general idea
is that code is tested soon after it is written.

After testing, all of the code that works may be integrated at the end of each
working day, and working versions of the system will be released frequently, as often
as once per week in some cases. XP developers design and build working systems in
very little time (relative to traditionally organized methods).

One particular technique used in XP to continually improve system quality is
refactoring. Refactoring is nothing more than simplifying a system, typically after a new
feature or set of features has been added. As more features are added to a system,
it becomes more complex, and this complexity will be reflected in the code. After a
time of increasing complexity, XP developers stop and redesign the system. The system
must still pass the test cases written for it after it has been simplified, so rework con-
tinues until the tests can be passed. Different forms of refactoring include simplifying
complex statements, abstracting solutions from reusable code, and removing duplicate
code. Refactoring and the continuing simplification it implies reflect the iterative na-
ture of XP and the other Agile Methodologies. As development progresses and the
system gets closer to being ready for production, the iterations and the evolution of the
system slow, a process Beck (2000) calls “productionizing.” A system ready to go into
production is ready to be released to users, either customers ready to buy the software
or internal users.

acceptance testing by Users
Once the system tests have been satisfactorily completed, the system is ready for
 acceptance testing, which is testing the system in the environment where it will
eventually be used. Acceptance refers to the fact that users typically sign off on the
system and “accept” it once they are satisfied with it. The purpose of acceptance
testing is for users to determine whether the system meets their requirements. The
extent of acceptance testing will vary with the organization and with the system
in question. The most complete acceptance testing will include alpha testing, in
which simulated but typical data are used for system testing; beta testing, in which
live data are used in the users’ real working environment; and a system audit con-
ducted by the organization’s internal auditors or by members of the quality assur-
ance group.

Testing harness
An automated testing environment used to
review code for errors, standards violations,
and other design flaws.

refactoring
Making a program simpler after adding a
new feature.

Acceptance testing
The process whereby actual users test a
completed information system, the end
result of which is the users’ acceptance
of it.

Alpha testing
User testing of a completed information
system using simulated data.

Beta testing
User testing of a completed information
system using real data in the real user
environment.

464 Part v ImplementatIon and maIntenance

During alpha testing, the entire system is implemented in a test environ-
ment to discover whether the system is overtly destructive to itself or to the rest of
the environment. The types of tests performed during alpha testing include the
following:

•	 Recovery testing—forces the software (or environment) to fail in order to verify
that recovery is properly performed.

•	 Security testing—verifies that protection mechanisms built into the system will
protect it from improper penetration.

•	 Stress testing—tries to break the system (e.g., what happens when a record is writ-
ten to the database with incomplete information or what happens under extreme
online transaction loads or with a large number of concurrent users).

•	 Performance testing—determines how the system performs in the range of pos-
sible environments in which it may be used (e.g., different hardware configu-
rations, networks, operating systems, and so on); often the goal is to have the
system perform with similar response time and other performance measures in
each environment.

In beta testing, a subset of the intended users runs the system in the users’
own environments using their own data. The intent of the beta test is to determine
whether the software, documentation, technical support, and training activities work
as intended. In essence, beta testing can be viewed as a rehearsal of the installation
phase. Problems uncovered in alpha and beta testing in any of these areas must be
corrected before users can accept the system. Systems analysts can tell many stories
about long delays in final user acceptance due to system bugs.

InStallatIon
The process of moving from the current information system to the new one is
called installation. All employees who use a system, whether they were consulted
during the development process or not, must give up their reliance on the current
system and begin to rely on the new system. Four different approaches to instal-
lation have emerged over the years: direct, parallel, single-location, and phased
(Figure 13-5). The approach an organization decides to use will depend on the
scope and complexity of the change associated with the new system and the orga-
nization’s risk aversion.

Direct Installation
The direct, or abrupt, approach to installation (also called “cold turkey”) is as
sudden as the name indicates: The old system is turned off and the new system is
turned on (Figure 13-5a). Under direct installation, users are at the mercy of the
new system. Any errors resulting from the new system will have a direct impact
on the users and how they do their jobs and, in some cases—depending on the
centrality of the system to the organization—on how the organization performs
its business. If the new system fails, considerable delay may occur until the old
system can again be made operational and business transactions are reentered to
make the database up to date. For these reasons, direct installation can be very
risky. Further, direct installation requires a complete installation of the whole sys-
tem. For a large system, this may mean a long time until the new system can be
installed, thus delaying system benefits or even missing the opportunities that mo-
tivated the system request. On the other hand, it is the least expensive installation
method, and it creates considerable interest in making the installation a success.
Sometimes, a direct installation is the only possible strategy if there is no way for
the current and new systems to coexist, which they must do in some way in each of
the other installation approaches.

installation
The organizational process of changing
over from the current information system to
a new one.

Direct installation
Changing over from the old information
system to a new one by turning off the old
system when the new one is turned on.

 ChaPter 13 SyStem ImplementatIon 465

parallel Installation
Parallel installation is as riskless as direct installation is risky. Under parallel installa-
tion, the old system continues to run alongside the new system until users and man-
agement are satisfied that the new system is effectively performing its duties and the
old system can be turned off (Figure 13-5b). All of the work done by the old system
is concurrently performed by the new system. Outputs are compared (to the greatest
extent possible) to help determine whether the new system is performing as well as
the old. Errors discovered in the new system do not cost the organization much, if
anything, because errors can be isolated and the business can be supported with the

Parallel installation
Running the old information system
and the new one at the same time until
management decides the old system can
be turned off.

Current System

Time

Install New
System

New System

Figure 13-5
Comparison of installation strategies
(a) Direct installation

Current System

Time

Install New
System

New System

(b) Parallel installation

Current System

Install New
System

Location 1

Current System

Install New
System

Location 2

New System

New System

(c) Single-location installation (with direct
installation at each location)

Current
System

New Module 1

. . .

. . .

Install
Module 1

Install
Module 2

Current System
Without Module 1 Current System Without Modules 1 & 2

New Module 2 . . .

(d) Phased installation

466 Part v ImplementatIon and maIntenance

old system. Because all work is essentially done twice, a parallel installation can be
very expensive; running two systems implies employing (and paying) two staffs to not
only operate both systems, but also to maintain them. A parallel approach can also
be confusing to users because they must deal with both systems. As with direct instal-
lation, there can be a considerable delay until the new system is completely ready for
installation. A parallel approach may not be feasible, especially if the users of the sys-
tem (such as customers) cannot tolerate redundant effort or if the size of the system
(number of users or extent of features) is large.

Single-location Installation
Single-location installation, also known as location or pilot installation, is a middle-
of-the-road approach compared with direct and parallel installation. Rather than
convert all of the organization at once, single-location installation involves chang-
ing from the current to the new system in only one place or in a series of separate
sites over time. (Figure 13-5c depicts this approach for a simple situation of two
locations.) The single location may be a branch office, a single factory, or one de-
partment, and the actual approach used for installation in that location may be
any of the other approaches. The key advantage to single-location installation is
that it limits potential damage and potential cost by limiting the effects to a single
site. Once management has determined that installation has been successful at one
location, the new system may be deployed in the rest of the organization, possibly
continuing with installation at one location at a time. Success at the pilot site can
be used to convince reluctant personnel at other sites that the system can be worth-
while for them as well. Problems with the system (the actual software as well as
documentation, training, and support) can be resolved before deployment to other
sites. Even though the single-location approach may be simpler for users, it still
places a large burden on information systems (IS) staff to support two versions of
the system. On the other hand, because problems are isolated at one site at a time,
IS staff members can devote all of their efforts to success at the pilot site. Also, if dif-
ferent locations require sharing of data, extra programs will need to be written to
synchronize the current and new systems; although this will happen transparently
to users, it is extra work for IS staff. As with each of the other approaches (except
phased installation), the whole system is installed; however, some parts of the orga-
nization will not get the benefits of the new system until the pilot installation has
been completely tested.

phased Installation
Phased installation, also called staged installation, is an incremental approach.
With phased installation, the new system is brought online in functional compo-
nents; different parts of the old and new systems are used in cooperation until
the whole new system is installed. (Figure 13-5d shows the phase-in of the first
two modules of a new system.) Phased installation, like single-location installa-
tion, is an attempt to limit the organization’s exposure to risk, whether in terms
of cost or disruption of the business. By converting gradually, the organization’s
risk is spread out over time and place. Also, a phased installation allows for some
benefits from the new system before the whole system is ready. For example, new
data-capture methods can be used before all reporting modules are ready. For
a phased installation, the new and replaced systems must be able to coexist and
probably share data. Thus, bridge programs connecting old and new databases
and programs often must be built. Sometimes, the new and old systems are so
incompatible (built using totally different structures) that pieces of the old sys-
tem cannot be incrementally replaced, so this strategy is not feasible. A phased
installation is akin to bringing out a sequence of releases of the system. Thus, a
phased approach requires careful version control, repeated conversions at each

Single-location installation
Trying out a new information system at one
site and using the experience to decide
if and how the new system should be
deployed throughout the organization.

Phased installation
Changing from the old information system
to the new one incrementally, starting with
one or a few functional components and
then gradually extending the installation to
cover the whole new system.

 ChaPter 13 SyStem ImplementatIon 467

phase, and a long period of change, which may be frustrating and confusing to
users. On the other hand, each phase of change is smaller and more manageable
for all involved.

planning Installation
Each installation strategy involves converting not only software, but also data and
(potentially) hardware, documentation, work methods, job descriptions, offices and
other facilities, training materials, business forms, and other aspects of the system.
For example, it is necessary to recall or replace all the current system documenta-
tion and business forms, which suggests that the IS department must keep track of
who has these items so that they can be notified and receive replacement items. In
practice, you will rarely choose a single strategy to the exclusion of all others; most in-
stallations will rely on a combination of two or more approaches. For example, if you
choose a single-location strategy, you have to decide how installation will proceed
there and at subsequent sites. Will it be direct, parallel, or phased?

Of special interest in the installation process is the conversion of data. Because
existing systems usually contain data required by the new system, current data must
be made error free, unloaded from current files, combined with new data, and
loaded into new files. Data may need to be reformatted to be consistent with more
advanced data types supported by newer technology used to build the new system.
New data fields may have to be entered in large quantities so that every record copied
from the current system has all the new fields populated. Manual tasks, such as tak-
ing a physical inventory, may need to be done in order to validate data before they
are transferred to the new files. The total data conversion process can be tedious.
Furthermore, this process may require that current systems be shut off while the
data are extracted so that updates to old data, which would contaminate the extract
process, cannot occur.

Any decision that requires the current system to be shut down, in whole or in
part, before the replacement system is in place must be done with care. Typically,
off-hours are used for installations that require a lapse in system support. Whether a
lapse in service is required or not, the installation schedule should be announced to
users well in advance to let them plan their work schedules around outages in service
and periods when their system support might be erratic. Successful installation steps
should also be announced, and special procedures put in place so that users can eas-
ily inform you of problems they encounter during installation periods. You should
also plan for emergency staff to be available in case of system failure so that business
operations can be recovered and made operational as quickly as possible. Another
consideration is the business cycle of the organization. Most organizations face heavy
workloads at particular times of year and relatively light loads at other times. A well-
known example is the retail industry, where the busiest time of year is the fall, right
before the year’s major gift-giving holidays. You wouldn’t want to schedule installa-
tion of a new point-of-sale system to begin December 1 for a department store. Make
sure you understand the cyclical nature of the business you are working with before
you schedule installation.

Planning for installation may begin as early as the analysis of the organization
supported by the system. Some installation activities, such as buying new hardware,
remodeling facilities, validating data to be transferred to the new system, and col-
lecting new data to be loaded into the new system, must be done before the software
installation can occur. Often the project team leader is responsible for anticipating
all installation tasks and assigns responsibility for each to different analysts.

Each installation process involves getting workers to change the way they work.
As such, installation should be looked at not as simply installing a new computer
system, but as an organizational change process. More than just a computer system is
involved—you are also changing how people do their jobs and how the organization
operates.

468 Part v ImplementatIon and maIntenance

DoCUMentIng the SySteM
In one sense, every systems development project is unique and will generate its own
unique documentation. The approach taken by the development team, whether
more traditional and plan oriented or more Agile, will also determine the amount
and type of documentation that is generated. System development projects do have
many similarities, however, which dictate that certain activities be undertaken and
which of those activities must be documented. Bell and Evans (1989) illustrate how a
generic SDLC maps onto a generic list of when specific systems development docu-
mentation elements are finalized (Table 13-5). As you compare the generic life cycle
in Table 13-5 with the life cycle presented in this book, you will see that there are
differences, but the general structure of both life cycles is the same because both
include the basic phases of analysis, design, implementation, and project planning.
Specific documentation will vary depending on the life cycle you are following, and
the format and content of the documentation may be mandated by the organiza-
tion for which you work. However, a basic outline of documentation can be adapted
for specific needs, as shown in Table 13-5. Note that this table indicates when docu-
mentation is typically finalized; you should start developing documentation elements
early, as the information needed is captured.

We can simplify the situation even more by dividing documentation into two
basic types, system documentation and user documentation. System documentation
records detailed information about a system’s design specifications, its internal work-
ings, and its functionality. In Table 13-5, all of the documentation listed (except for
System Delivery) would qualify as system documentation. Whereas system documen-
tation is intended primarily for maintenance programmers (see Chapter 14), user
documentation is intended primarily for users. An organization may have definitive
standards on system documentation. These standards may include the outline for the
project dictionary and specific pieces of documentation within it. Standards for user
documentation are not as explicit.

User Documentation
User documentation consists of written or other visual information about an applica-
tion system, how it works, and how to use it. An excerpt of online user documenta-
tion for Microsoft Word appears in Figure 13-6. The documentation is the result of

System documentation
Detailed information about a system’s
design specifications, its internal workings,
and its functionality.

user documentation
Written or other visual information about an
application system, how it works, and how
to use it.

Table 13-5 SDlC and Generic Documentation Corresponding to each Phase
Generic Life-Cycle Phase Generic Document
Requirements Specification System Requirements Specification

Resource Requirements Specification
Project Control Structuring Management Plan

Engineering Change Proposal
System Development

Architectural design Architecture Design Document
Prototype design Prototype Design Document
Detailed design and implementation Detailed Design Document
Test specification Test Specifications
Test implementation Test Reports

System Delivery User’s Guide
Release Description
System Administrator’s Guide
Reference Guide
Acceptance Sign-Off

(Source: Adapted from Bell and Evans, 1989.)

 ChaPter 13 SyStem ImplementatIon 469

a search for “saving as PDF.” The information provided shows how a user can save a
Word file as PDF, including where to save the new file. Such presentation methods
have become standard for help files in online PC documentation.

Figure 13-6 shows a help file, which is just one type of user documentation. Other
types of user documentation include reference guides, quick reference guides, release
descriptions, system administrator’s guides, and acceptance sign-offs (Table 13-5). A
reference guide consists of an exhaustive list of a system’s functions and commands,
usually in alphabetic order. Reference guides are very good for locating specific infor-
mation; they are not as good for learning the broader picture of how to perform all of
the steps required for a given task. A quick-reference guide provides essential informa-
tion about operating a system in a short, concise format. When computer resources
are shared and many users perform similar tasks on the same machines (as with airline
reservation or mail-order catalog clerks), quick-reference guides are often printed on
index cards or as small books and mounted on or near the computer terminal. An out-
line for a generic user’s guide (from Bell and Evans, 1989) is shown in Table 13-6. The
purpose of such a guide is to provide information on how users can use a computer
system to perform specific tasks. The information in a user’s guide is typically ordered
by how often tasks are performed and by their complexity.

In Table 13-6, sections with an “n” and a title in square brackets mean that there
are many such sections, each for a different topic. For example, for an accounting ap-
plication, sections 4 and beyond might address topics such as entering a transaction
in the ledger, closing the month, and printing reports. The items in parentheses are
optional, included as necessary. An index becomes more important for larger user’s
guides. Figure 13-7 shows a quick start guide for Microsoft Excel. This particular refer-
ence guide is intended for people who have never used Excel before. The organization
of user’s guides differs from one software product to the next. User guides also differ
depending on the intended audience, whether novice or expert. You may want to com-
pare the guide in Figure 13-7 with ones for other packages to identify differences.

A release description contains information about a new system release, including a
list of documentation for the new release, features and enhancements, known problems

Figure 13-6
An example document from Microsoft
Word Help.
(Source: Microsoft Corporation)

Table 13-6 Outline of a Generic
User’s Guide

Preface
1. Introduction

1.1. Configurations
1.2 Function flow

2. User interface
2.1 Display screens
2.2 Command types

3. Getting started
3.1 Login
3.2 Logout
3.3 Save
3.4 Error recovery
3.n [Basic procedure name]

n. [Task name]
Appendix A—Error Messages

([Appendix])
Glossary

Terms
Acronyms

Index

(Source: Adapted from Bell
and Evans, 1989.)

470 Part v ImplementatIon and maIntenance

and how they have been dealt with in the new release, and information about installa-
tion. A system administrator’s guide is intended primarily for those who will install and
administer a new system. It contains information about the network on which the system
will run, software interfaces for peripherals such as printers, troubleshooting, and setting
up user accounts. Finally, an acceptance sign-off allows users to test for proper system
installation and then signify their acceptance of the new system with their signatures.

traInIng anD SUpportIng USerS
Training and support are critical for the success of an information system. As the
person whom the user holds responsible for the new system, you and other analysts
on the project team must ensure that high-quality training and support are available.
Although training and support can be talked about as if they are two separate things,
in organizational practice the distinction between the two is not all that clear because
the two sometimes overlap. After all, both deal with learning about computing.

training Information Systems Users
Computer use requires skills, and training people to use computer applications can
be expensive for organizations. Training of all types is a major activity in American
corporations, but information systems training is often neglected. Many organiza-
tions tend to underinvest in computing skills training. It is true that some organi-
zations institutionalize high levels of information system training, but many others
offer no systematic training at all.

The type of training needed will vary by system type and user expertise. The list
of potential topics from which you will determine if training will be useful includes
the following:

•	 Use of the system (e.g., how to enter a class registration request)
•	 General computer concepts (e.g., computer files and how to copy them)
•	 Information system concepts (e.g., batch processing)
•	 Organizational concepts (e.g., FIFO inventory accounting)
•	 System management (e.g., how to request changes to a system)
•	 System installation (e.g., how to reconcile current and new systems during phased

installation)

Support
Providing ongoing educational and
problem-solving assistance to information
system users. For in-house developed
systems, support materials and jobs will
have to be prepared or designed as part
of the implementation process.

Figure 13-7
A quick start guide for Excel.
(Source: Microsoft Corporation)

 ChaPter 13 SyStem ImplementatIon 471

As you can see from this partial list, many potential topics go beyond simply
how to use the new system. It may be necessary for you to develop training for users
in other areas so that users will be ready, conceptually and psychologically, to use the
new system. Some training, such as concept training, should begin early in the proj-
ect because this training can assist in the “unfreezing” (helping users let go of long-
established work procedures) element of the organizational change process.

Each element of training can be delivered in a variety of ways. Table 13-7 lists
the most common training methods used by information system departments. The
most common delivery method for corporate training remains traditional instruc-
tor-led classroom training (U.S. GAO, 2003). Many times, users turn to the resident
 expert and to fellow users for training. Users are more likely to turn to local experts
for help than to the organization’s technical support staff because the local expert
understands the users’ primary work and the computer systems they use. Given their
dependence on fellow users for training, it should not be surprising that end users
describe their most common mode of computer training as self-training.

One conclusion from the experience with user training methods is that an
 effective strategy for training on a new system is to first train a few key users and then
organize training programs and support mechanisms that involve these users to pro-
vide further training, both formal and on demand. Often, training is most effective
if you customize it to particular user groups, and the lead trainers from these groups
are in the best position to provide this training to their colleagues.

Increasingly, corporations are turning to e-learning as a key delivery mode for
training. Although the term e-learning is not precisely defined, it generally means
the same thing as distance learning; that is, a formalized learning system designed to
be carried out remotely, using computer-based electronic communication. You may
have taken a distance-learning course at your school, or you may have experience in
on-campus classes with some of the dominant software packages used in e-learning,
such as WebCT, Blackboard, or Desire2Learn. E-learning courses can be delivered
over the Internet or over company intranets. Such courses can be purchased from
vendors or prepared by the corporation’s in-house training staff. E-learning is rela-
tively inexpensive compared to traditional classroom training, and it has the addi-
tional advantage of being available anytime from just about anywhere. Students can
also learn at their own pace. E-learning systems can make available several different
elements that enhance the learning experience, including simulations, online ac-
cess to mentors and experts, e-books, net meetings, and video on demand. Another
trend in corporate training is blended learning, the combining of e-learning with in-
structor-led classroom training. A recent survey reported that over 80 percent of re-
spondents were using e-learning or blended learning to train their employees (Kim
et al., 2008). Half of the respondents in the study believed that e-learning would
become the dominant training delivery method in their organizations.

Another training method listed in Table 13-7 is software help components.
Figure 13-8 shows the beginning of a tutorial for new users of Microsoft’s Excel 2013.
The tutorial is designed for users of past versions of Excel who are switching to Excel
2013. Users can go through the tutorial at their own pace, whenever they want, stop-
ping and starting it as necessary.

As both training and support for computing are increasingly able to be delivered
online in modules, with some embedded in software packages and applications, the
already blurred distinction between training and support blurs even more. Some of
the issues most particular to computer user support are examined in the next section.

Supporting Information Systems Users
Historically, computing support for users has been provided in one of a few forms:
on paper, through online versions of paper-based support, by third-party vendors, or
by other people who work for the same organization. As we stated earlier, support,
whatever its form, has often been inadequate for users’ needs. Yet users consider sup-
port to be extremely important.

Table 13-7 Types of Training
Methods

Resident expert
Traditional instructor-led classroom

training
E-learning/distance learning
Blended learning (combination of

instructor-led and e-learning)
Software help components
External sources, such as vendors

472 Part v ImplementatIon and maIntenance

As computing spread throughout organizations, especially with the advent of
personal computers, the need for support increased as more and more employees
came to rely on computing to do their jobs. As organizations moved to client/server
architectures, their need for support increased even more, and organizations began
to rely more and more on vendor support (Crowley, 1993). This increased need for
support came in part from the lack of standards governing client/server products
and the resulting need to make equipment and software from different vendors com-
patible. Vendors are able to provide the necessary support, but as they have shifted
their offerings from primarily expensive mainframe packages to inexpensive off-the-
shelf software, they find they can no longer bear the cost of providing the support for
free. Most vendors now charge for support, and many have instituted 900 numbers
or sell customers unlimited support for a given monthly or annual charge.

Automating Support In an attempt to cut the costs of providing support and to
catch up with the demand for additional support services, vendors have automated
many of their support offerings. Online support forums provide users access to infor-
mation on new releases, bugs, and tips for more effective usage. Forums are offered
over the Internet or over company intranets. Voice-response systems allow users to
navigate option menus that lead to prerecorded messages about usage, problems,
and workarounds. Organizations have established similar support mechanisms for
systems developed or purchased by the organization. Internal e-mail and office auto-
mation can be used to support such capabilities within an organization.

Vendors may offer support that enables users to access a vendor’s knowledge
bases, including electronic support services, a single point of contact, and priority
access to vendor support personnel (Schneider, 1993). Product knowledge bases in-
clude all of the technical and support information about vendor products and pro-
vide additional information for on-site personnel to use in solving problems. Vendors
routinely supply complete user and technical documentation via the Internet, includ-
ing periodic updates, so that a user organization can provide this library of documen-
tation, bug reports, workaround notices, and notes on undocumented features online
to all internal users. Electronic support services include all of the vendor support

Figure 13-8
A video tutorial for learning Excel 2013.
(Source: Microsoft Corporation)

 ChaPter 13 SyStem ImplementatIon 473

services discussed earlier, but they are tailored specifically for the corporation. The
single point of contact is a system engineer who is often based on-site and serves as
a liaison between the corporation and the vendor. Finally, priority access means that
corporate workers can always get help via telephone or e-mail from a person at the
vendor company, usually within a prespecified response time of four hours or less.

Such vendor-enhanced support is especially appropriate in organizations where
a wide variety of a particular vendor’s products is in use, or where most in-house
 application development either uses the vendor’s products as components of the
larger system or where the vendor’s products are themselves used as the basis for
applications. An example of the former would be the case where an organization
has set up a client/server architecture based on a particular vendor’s SQL server
and APIs. Which applications are developed in-house to run under the client/server
architecture depends heavily on the server and APIs, and direct vendor support deal-
ing with problems in these components would be very helpful to the enterprise in-
formation systems staff. An example of the second would include order entry and
inventory control application systems developed using Microsoft’s Access or Excel.
In this case, the system developers and users, who are sometimes the same people for
such package-based applications, can benefit considerably from directly questioning
vendor representatives about their products.

Providing Support through a Help Desk Whether assisted by vendors or going it
alone, the center of support activities for a specific information system in many orga-
nizations is the help desk. A help desk is an information systems department function
and is staffed by IS personnel. The help desk is the first place users should call when
they need assistance with an information system. The help desk staff members either
deal with the users’ questions or refer the users to the most appropriate person.

Help desk personnel need to be good at communicating with users, listening to
their problems, and intelligently communicating potential solutions. These person-
nel also need to understand the technology they are helping users with. It is crucial,
however, that help desk personnel know when new systems and releases are being
implemented and when users are being trained for new systems. Help desk person-
nel should be well trained on new systems. One sure recipe for disaster is to train
users on new systems but not train the help desk personnel these same users will turn
to for their support needs.

Support Issues for the analyst to Consider
Support is more than just answering user questions about how to use a system to
perform a particular task or about the system’s functionality. Support also consists of
tasks such as providing for recovery and backup, disaster recovery, and PC mainte-
nance; writing newsletters and offering other types of proactive information sharing;
and setting up user groups. It is the responsibility of analysts for a new system to be
sure that all forms of support are in place before the system is installed.

For medium to large organizations with active information system functions,
many of these issues are dealt with centrally. For example, users may be provided with
backup software by the central information systems unit and a schedule for routine
backup. Policies may also be in place for initiating recovery procedures in case of sys-
tem failure. Similarly, disaster recovery plans are almost always established by the cen-
tral IS unit. Information systems personnel in medium-to-large organizations are also
routinely responsible for PC maintenance because the PCs belong to the enterprise.
IS unit specialists might also be in charge of composing and transmitting newsletters
or overseeing automated bulletin boards and organizing user groups.

When all of these (and more) services are provided by central IS, you must
follow the proper procedures to include any new system and its users in the lists of
those to whom support is provided. You must design training for the support staff on
the new system and make sure that system documentation will be available to it. You

Help desk
A single point of contact for all user
inquiries and problems about a particular
information system or for all users in a
particular department.

474 Part v ImplementatIon and maIntenance

must make the support staff aware of the installation schedule and keep these people
informed as the system evolves. Similarly, any new hardware and off-the-shelf software
has to be registered with the central IS authorities.

When there is no official IS support function to provide support services, you
must devise a creative plan to provide as many services as possible. You may have to
write backup and recovery procedures and schedules, and the users’ departments may
have to purchase and be responsible for the maintenance of their hardware. In some
cases, software and hardware maintenance may have to be outsourced to vendors or
other capable professionals. In such situations, user interaction and information dis-
semination may have to be more informal than formal: Informal user groups may meet
over lunch or over a coffeepot rather than in officially formed and sanctioned forums.

organIzatIonal ISSUeS In SySteMS
IMpleMentatIon
Despite the best efforts of the systems development team to design and build a qual-
ity system and to manage the change process in the organization, the implementa-
tion effort sometimes fails. Sometimes employees will not use the new system that has
been developed for them or, if they do use it, their level of satisfaction with it is very
low. Why do systems implementation efforts fail? This question has been the subject
of information systems research for over 60 years. In the first part of this section, we
will try to provide some answers, looking at the factors that research has identified as
important to implementation success. In the second part of this section, you will read
about another important organizational issue for information systems, security. You
will read about the various threats to the security of organizational systems and some
of the remedies that can be applied to help deal with the problem.

Hershey, famous all over the world for its chocolate, faced a
crisis in October 1999. October is one of the key months of
the year for candy makers because of the Halloween holiday.
In 1999, Hershey was having problems trying to get its candy
delivered to warehouses and from there to retailers in time for
Halloween. Hershey was having trouble getting orders into its
new system and getting the order details to the warehouses for
fulfillment. Its new $112 million order-fulfillment system, contain-
ing components from SAP, Seibel, and Manugistics, was not
working correctly. The system was supposed to have been in-
stalled in April of that year, but conversion was delayed until July
due to incomplete development and testing. The remaining prob-
lems with the system were not found until the next high-volume
ordering event of the candy maker’s year occurred, Halloween.

Another case of implementation failure involves SAP and the
city of Richmond, California. Richmond began installing SAP
in 2000. By mid-2004, the city had spent $4.5 million, and
the implementation was still not complete. Instead of present-
ing the city with the functionality it wanted in SAP’s R/3, some
of the city’s department heads said that the system had actu-
ally created more work for them. The finance director reported
that using the system to prepare the budget had actually re-
quired hundreds of hours of extra work on the part of his staff.
The planning director reported that the system fell far short
of his needs for billing and revenue-tracking. While the city
attorney contemplated a lawsuit against SAP and the Denver-
based consulting company hired to help with implementation,

the city’s information technology director maintained that the
system implementation was not a failure at all. At the time,
she said that the problems cited by staff were just the usual
complaints from people not yet used to new technology. By
the end of 2008, the city had decided to switch from SAP R/3
to a system called MUNIS, a system designed specifically for
municipalities. The date for going live with MUNIS was set for
January 1, 2009.

Avis Europe provides another example. In 2004, Avis
Europe incurred a £45m charge as a result of shutting down
its credit hire business and due to problems with information
technology. In 2003, the company had announced it planned
to implement PeopleSoft. A year later, it terminated the project
due to delays and additional costs blamed on problems with
the system’s design and implementation. The cancellation took
place before the system had been rolled out to any aspect of
Avis’s business, minimizing disruption to operations.

Sources: “Supply chain: Hershey’s bittersweet lesson.” http://
www.cio.com/article/2440386/supply-chain-management/
supply-chain—hershey-s-bittersweet-lesson.html. Accessed April 4,
2015; “City Manager’s Weekly Report for the week ending
 October 17th, 2008.” Available at www.ci.richmond.ca.us/
Archive.asp?ADID=1931. Accessed April 4, 2015; Best, J. 2004.
“Avis bins PeopleSoft after £45m IT failure.” ZDNet Australia.
Available at http://www.zdnet.com/article/avis-bins-peoplesoft-
system-after-eur45m-it-failure/. Accessed April 4, 2015.

System Implementation Failures

http://www.cio.com/article/2440386/supply-chain-management/supply-chain%E2%80%94hershey-s-bittersweet-lesson.html
http://www.cio.com/article/2440386/supply-chain-management/supply-chain%E2%80%94hershey-s-bittersweet-lesson.html
http://www.ci.richmond.ca.us/Archive.asp?ADID=1931
http://www.zdnet.com/article/avis-bins-peoplesoft-system-after-eur45m-it-failure/
http://www.zdnet.com/article/avis-bins-peoplesoft-system-after-eur45m-it-failure/
http://www.cio.com/article/2440386/supply-chain-management/supply-chain%E2%80%94hershey-s-bittersweet-lesson.html
http://www.ci.richmond.ca.us/Archive.asp?ADID=1931

 ChaPter 13 SyStem ImplementatIon 475

why Implementation Sometimes fails
The conventional wisdom that has emerged over the years is that there are at least two
conditions necessary for a successful implementation effort: management support of
the system under development and the involvement of users in the development pro-
cess (Ginzberg, 1981b). Conventional wisdom holds that if both of these conditions
are met, you should have a successful implementation. But despite the support and
active participation of management and users, information systems implementation
sometimes fails (see the box “System Implementation Failures” for examples).

Management support and user involvement are important to implementation
success, but they may be overrated compared to other factors that are also important.
Research has shown that the link between user involvement and implementation
success is sometimes weak (Ives and Olson, 1984). User involvement can help reduce
the risk of failure when the system is complex, but user participation in the devel-
opment process only makes failure more likely when there are financial and time
constraints in the development process (Tait and Vessey, 1988). Information systems
implementation failures are too common, and the implementation process is too
complicated, for the conventional wisdom to be completely correct.

Over the years, other studies have found evidence of additional factors that are
important to a successful implementation process. Three such factors are: commit-
ment to the project, commitment to change, and the extent of project definition and
planning (Ginzberg, 1981b). Commitment to the project involves managing the sys-
tems development project so that the problem being solved is well understood and
the system being developed to deal with the problem actually solves it. Commitment
to change involves being willing to change behaviors, procedures, and other aspects
of the organization. The extent of project definition and planning is a measure of
how well the project was planned. The more extensive the planning effort is, the
less likely implementation failure is. Still another important factor related to imple-
mentation success is user expectations (Ginzberg, 1981a). The more realistic a user’s
early expectations about a new system and its capabilities are, the more likely it is that
the user will be satisfied with the new system and actually use it.

Although there are many ways to determine if an implementation has been suc-
cessful, the two most common and trusted are the extent to which the system is used,
and the users’ satisfaction with the system (Lucas, 1997). Lucas, who has studied in-
formation systems implementation in depth, identified six factors that influence the
extent to which a system is used (1997):

1. User’s personal stake. How important the domain of the system is for the user; in
other words, how relevant the system is to the work the user performs. The user’s
personal stake in the system is itself influenced by the level of support manage-
ment provides for implementation and by the urgency to the user of the prob-
lem addressed by the system. The higher the level of management support and
the more urgent the problem, the higher the user’s personal stake in the system.

2. System characteristics. Includes aspects of the system’s design such as ease of use,
reliability, and relevance to the task the system supports.

3. User demographics. Characteristics of the user, such as age and degree of com-
puter experience.

4. Organizational support. These are the same issues of support you read about ear-
lier in this chapter. The better the system support, the more likely an individual
will be to use the system.

5. Performance. What individuals can do with a system to support their work will have
an impact on extent of system use. The more users can do with a system and the
more creative ways they can develop to benefit from the system, the more they will
use it. The relationship between performance and use goes both ways. The higher
the levels of performance, the more use. The more use, the greater the performance.

6. Satisfaction. Use and satisfaction also represent a two-way relationship. The
more satisfied the users are with the system, the more they will use it. The more
they use it, the more satisfied they will be.

476 Part v ImplementatIon and maIntenance

The factors identified by Lucas and the relationships they have to each other
are shown in the model in Figure 13-9. In the model, it is easier to see the rela-
tionships among the various factors, such as how management support and problem
urgency affect the user’s personal stake in the system. Notice also that the arrows
that show the relationships between use and performance and satisfaction have two
heads, illustrating the two-way relationships between these factors.

It should be clear that, as an analyst and as someone responsible for the success-
ful implementation of an information system, you have more control over some fac-
tors than others. For example, you will have considerable influence over the system’s
characteristics, and you may have some influence over the levels of support that will
be provided for users of the system. You have no direct control over a user’s demo-
graphics, personal stake in the system, management support, or the urgency of the
problem to the user. This doesn’t mean you can ignore factors that you can’t change.
On the contrary, you need to understand these factors very well because you will have
to balance them with the factors you can change in your system design and in your
implementation strategy. You may not be able to change a user’s demographics or
personal stake in a system, but you can help design the system and your implementa-
tion strategy with these factors in mind.

The factors mentioned so far are straightforward. For example, a lack of com-
puter experience can make a user hesitant, inefficient, and ineffective with a system,
leading to a system that is not providing its full potential benefit. If top management
does not seem to care about the system, why should subordinates care? However, ad-
ditional factors can be categorized as political and might be more hidden, difficult to
affect, and even unrelated to the system that is being implemented, yet instrumental
to the system’s success.

The basis for political factors is that individuals who work in an organization
have their own self-interested goals, which they pursue in addition to the goals of their
departments and of their organizations. For example, people might act to increase
their own power relative to that of their co-workers; at other times, people will act to
prevent co-workers with more power (such as bosses) from using that power or from
gaining more. Because information is power, information systems often are seen as
instruments of one’s ability to influence and exert power. It is helpful to understand
the history and politics around an information system, and to deal with negative
 political factors as well as the more objective and operational ones. Sometimes politi-
cal interpretations provide better explanations for the implementation process and
why events took the course they did.

Once an information system has been successfully implemented, the impor-
tance of documentation grows. A successfully implemented system becomes part of
the daily work lives of an organization’s employees. Many of those employees will use
the system, but others will maintain it and keep it running.

Management
Support

System
Characteristics

Performance

Problem
Urgency

User’s
Personal

Stake
Use Satisfaction

User
Demographics

Organizational
Support

Figure 13-9
Implementation success
(Source: From Henry C. Lucas (1997)
Information Technology for Manage-
ment. Copyright © 1997 by McGraw-Hill.
Reprinted by permission.)

 ChaPter 13 SyStem ImplementatIon 477

Security Issues
The security of information systems has become an increasingly important issue
for organizations and their management. According to CERT/CC (Computer
Emergency Readiness Team/Coordination Center) at Carnegie Mellon University,
the number of unique system vulnerabilities cataloged in 2007 was 7236. That
 number is seven times greater than the 1090 vulnerabilities reported in 2000. A
vulnerability is a weakness in a system that can be readily exploited by someone
who knows about it and knows how to take advantage of it. CERT/CC stopped re-
porting the number of actual security-related incidents in 2003, when the number
hit 137,539, because such incidents had become so commonplace. Hard numbers
about losses due to security breaches are difficult to obtain because most com-
panies that have suffered breaches are too embarrassed to admit it, and they are
certainly too embarrassed to communicate the actual dollar value of any losses.
One estimate for how much security breaches cost companies comes from a
 survey on security conducted by PriceWaterhouseCoopers. For 2014, the reported
 estimated annual average financial loss due to cybersecurity incidents was $2.7
million USD. However, we can be sure the actual amount of loss across the entire
global economy is much, much more. Most firms do not like to admit financial
losses due to security breaches, and those that do are hesitant to report the actual
true amounts.

If organizations are victims of security breaches, what are the sources of these
threats? Table 13-8 provides some of the answers. As you might expect, a major-
ity of firms report that they have been victims of external threats, including mal-
ware (malicious software). Other external security threats include phishing attacks,
exploitation of applications, denial of service, and theft of computing or storage
devices. Denial of service is a popular tactic used to prevent access to a website,
orchestrated through sending the website server more messages than it can handle
in a short period of time. Note that although external threats are common, inter-
nal threats are common as well. The top three internal threats come from current
employees, former employees, or contractors. Employee abuse includes such seem-
ingly innocent activities as sending personal e-mail on company systems or surfing
the Internet for personal use during work hours. Although these activities may not
damage company systems, they do use company resources that may be needed for
work. Downloading large music or video files during work hours on company equip-
ment could actually impede work because downloading large files can consume
bandwidth and slow work processes. Unauthorized access to information or privi-
lege escalation by insiders is more devious, as these activities are committed with the
intent to harm the firm.

Companies can act, and most do, to deal with information security issues. On
average, most companies spend more on systems security than the average loss due to
cybersecurity for their company type. When companies and individuals start to think
about systems security, they first think about technological solutions to the problem
(Schneier, 2000). As Table 13-8 shows, common solutions include firewalls, email
security and spam filtering software, antivirus software, virtual private networks, and
data encryption.

Firewalls, used by 93 percent of firms, are built to keep intruders out. A fire-
wall is a set of related programs that protects the resources of a network from users
from other networks. Basically, a firewall works closely with a router program to
examine each network packet to determine whether to forward it toward its destina-
tion. A firewall is often installed in a specially designated computer separate from
the rest of the network so that no incoming request can get directly at private net-
work resources.

Yet the weakest link in any computer defense is the people who use the com-
puter system. For example, many system users fail to use good passwords: they may
tell other people (including strangers) their passwords, or write their passwords on

478 Part v ImplementatIon and maIntenance

sticky notes they post on their computer monitors. The best defensive technology
in the world cannot overcome human laziness and negligence. Experts argue that
the human aspect of computer security can be dealt with through the implementa-
tion of procedures and policies regarding user behaviors (Denning, 1999; Mitnick
and Simon, 2002). Such policies involve system users not giving out passwords,
changing passwords regularly, keeping operating system and virus detection soft-
ware updated, and so on. Sound systems security practice demands the effective
use of appropriate information technologies as well as the diligent involvement of
employees and decision makers in the defense of organization information tech-
nology assets.

eleCtronIC CoMMerCe applICatIon: SySteM
IMpleMentatIon anD operatIon for pIne
Valley fUrnItUre’S webStore
Like many other analysis and design activities, system implementation and operation
of an Internet-based electronic commerce application is no different than the pro-
cesses followed for other types of applications. Previously, you read how Jim Woo and
the Pine Valley Furniture (PVF) development team transformed the conceptual data
model for the WebStore into a set of normalized relations. Here we will examine how
the WebStore system was tested before it was installed and brought online.

The programming of all WebStore software modules has been completed. The
programmers have extensively tested each unique module, and it is now time to per-
form a systemwide test of the WebStore. In this section, we will examine how test
cases were developed, how bugs were recorded and fixed, and how alpha and beta
testing were conducted.

Developing test Cases for the webStore
To begin the systemwide testing process, Jim and the PVF development team de-
veloped test cases to examine every aspect of the system. Jim knew that system test-
ing, like all other aspects of the SDLC, needed to be a very structured and planned

Table 13-8 Selected Statistics on IT Security (Data compiled from various sources.)
Top Three Identified External Sources of Security Incidents, 2014

Hackers 24%
Competitors 24%
Activists/Activist Organization/Hacktivists 16%
Information Brokers 16%

Top Five Security Products in Use, 2014

Firewalls 93%
Email Security and Spam Filtering 90%
Endpoint Protection (e.g., antivirus) 89%
Virtual Private Network (VPN) 83%
Data Encryption 73%

Top Five Security Breaches, 2014

Malware (e.g., viruses) 76%
Phishing 59%
Web or Software Applications Exploited 35%
Denial of Service 26%
Theft of Computers or Storage Devices 25%

Information Security Budget by Company Size, 2014
Small (revenues less than

$100 million)
$0.73 million

Medium (revenues $100 million –
$1 billion)

$3.0 million

Large (Revenues greater than $1 billion) $10.8 million

Average Financial Losses due to Security
Incidents, 2014

Small (revenues less than $100 million) $0.41 million
Medium (revenues $100 million –

$1 billion)
$1.3 million

Large (Revenues greater than $1 billion) $5.9 million

Top Three Insider Sources of Security
Incidents, 2014

Current Employees 35%
Former Employees 30%
Current Service Providers/Consultants/

Contractors
18%

 ChaPter 13 SyStem ImplementatIon 479

process. Before opening the WebStore to the general public, every module and com-
ponent of the system needed to be tested within a controlled environment. Based
on his experience in implementing other systems, Jim felt that they would need to
develop approximately 150 to 200 separate test cases to fully examine the WebStore.
To help focus the development of test cases and to assign primary responsibility to
members of his team to specific areas of the system, Jim developed the following list
of testing categories:

•	 Simple functionality: Add to cart, list section, calculate tax, change personal
data

•	 Multiple functionality: Add item to cart and change quantity, create user account,
change address

•	 Function chains: Add item to cart, check out, create user account, purchase
•	 Elective functions: Returned items, lost shipments, item out of stock
•	 Emergency/crisis: Missing orders, hardware failure, security attacks

The development group broke into five separate teams, each working to develop
an extensive set of cases for each of the testing categories. Each team had one day to
develop their test cases. Once developed, each team would lead a walk-through so
that everyone would know the totality of the testing process and to facilitate exten-
sive feedback to each team so that the testing process would be as comprehensive as
possible. To make this point, Jim stated, “What happens when a customer repeatedly
enters the same product into the shopping cart? Can we handle that? What happens
when the customer repeatedly enters and then removes a single product? Can we
handle that? Although some of these things are unlikely to ever occur, we need to
be confident that the system is robust to any type of customer interaction. We must
develop every test case necessary to give us confidence that the system will operate as
intended, 24-7-365!”

A big part of successful system testing is to make sure that no information is lost
and that all tests are described in a consistent way. To achieve this, Jim provided all
teams with standard forms for documenting each case and for recording the results
of each test. This form had the following sections:

•	 Test Case ID
•	 Category/Objective of Test
•	 Description
•	 System Version
•	 Completion Date
•	 Participant(s)
•	 Machine Characteristics (processor, operating system, memory, browser, etc.)
•	 Test Result
•	 Comments

The teams also developed standard codes for each general type of test, and
these were used to create the Test Case ID. For example, all tests related to “Simple
Functionality” were given an ID with SF as a prefix and a number as the suffix (e.g.,
SF001). The teams also developed standards for categorizing tests, listing objectives,
and writing other test form contents. Establishing these standards ensured that the
testing process would be consistently documented.

Bug Tracking and System Evolution An outcome of the testing process is the iden-
tification of system bugs. Consequently, in addition to setting a standard method for
writing and documenting test cases, Jim and the teams established several other rules
to ensure a smooth testing process. Experienced developers have long known that an
accurate bug-tracking process is essential for rapid troubleshooting and repair dur-
ing the testing process. You can think of bug tracking as creating a “paper trail” that

480 Part v ImplementatIon and maIntenance

makes it much easier for programmers to find and repair the bug. To make sure that
all bugs were documented in a similar way, the team developed a bug-tracking form
that had the following categories:

•	 Bug Number (simple incremental number)
•	 Test Case ID That Generated the Bug
•	 Is the Bug Replicable?
•	 Effects
•	 Description
•	 Resolution
•	 Resolution Date
•	 Comments

The PVF development team agreed that bug fixes would be made in batches
because all test cases would have to be redone every time the software was changed.
The redoing of all the test cases each time the software is changed is done to ensure
that in the process of fixing the bug, no other bugs are introduced into the system.
As the system moves along in the testing process—as batches of bugs are fixed—the
version number of the software is incremented. During the development and test-
ing phases, the version is typically below the “1.0” first release version.

alpha and beta testing the webStore
After completing all system test cases and resolving all known bugs, Jim moved the
WebStore into the alpha-testing phase, in which the entire PVF development team
as well as personnel around the company would put the WebStore through its paces.
To motivate employees throughout the company to actively participate in testing the
WebStore, several creative promotions and giveaways were held. All employees were
given a T-shirt that said, “I shop at the WebStore, do you?” Additionally, all employees
were given $100 to shop at the WebStore and were offered a free lunch for their en-
tire department if they found a system bug while shopping on the system. Also during
alpha testing, the development team conducted extensive recovery, security, stress,
and performance testing. Table 13-9 provides a sample of the types of tests performed.

After completing alpha testing, PVF recruited several of their established cus-
tomers to help in beta testing the WebStore. As real-world customers used the system,
Jim was able to monitor the system and fine-tune the servers for optimal system per-
formance. As the system moved through the testing process, fewer and fewer bugs
were found. After several days of “clean” usage, Jim felt confident that it was time to
open the WebStore for business.

webStore Installation
Throughout the testing process, Jim kept PVF management aware of each success and
failure. Fortunately, because Jim and the development team followed a structured

Table 13-9 Sample of Tests Conducted on the WebStore during alpha Testing
Test Type Tests Performed
Recovery •	Unplug main server to test power backup system

•	Switch off main server to test the automatic switching to backup server
Security •	 Try to purchase without being a customer

•	 Try to examine server directory files both within the PVF domain and
when connecting from an outside Internet service provider

Stress •	Have multiple users simultaneously establish accounts, process pur-
chases, add to shopping cart, remove from shopping cart, and so on

Performance •	Examine response time using different connection speeds, processors,
memory, browsers, and other system configurations

•	Examine response time when backing up server data

 ChaPter 13 SyStem ImplementatIon 481

and disciplined development process, there were far more successes than failures. In
fact, he was confident that the WebStore was ready to go online and would recom-
mend to PVF’s top management that it was time to “flip the switch” and let the world
enter the WebStore.

projeCt CloSeDown
In Chapter 3, you learned about the various phases of project management, from
project initiation to closing down the project. If you are the project manager and
you have successfully guided your project through all of the phases of the SDLC pre-
sented so far in this book, you are now ready to close down your project. Although the
maintenance phase is just about to begin, the development project itself is over. As
you will see in the next chapter, maintenance can be thought of as a series of smaller
development projects, each with its own series of project management phases.

As you recall from Chapter 3, your first task in closing down the project involves
many different activities, from dealing with project personnel to planning a celebra-
tion of the project’s ending. You will likely have to evaluate your team members,
reassign most to other projects, and perhaps terminate others. As project manager,
you will also have to notify all of the affected parties that the development project is
ending and that you are now switching to maintenance mode.

Your second task is to conduct post-project reviews with both your management
and your customers. In some organizations, these post-project reviews will follow for-
mal procedures and may involve internal or EDP (electronic data processing) audi-
tors. The point of a project review is to critique the project, its methods, its deliver-
ables, and its management. You can learn many lessons to improve future projects
from a thorough post-project review.

The third major task in project closedown is closing out the customer contract.
Any contract that has been in effect between you and your customers during the proj-
ect (or as the basis for the project) must be completed, typically through the consent
of all contractually involved parties. This may involve a formal “signing off” by the cli-
ents stating that your work is complete and acceptable. The maintenance phase will
typically be covered under new contractual agreements. If your customer is outside
your organization, you will also likely negotiate a separate support agreement.

As an analyst member of the development team, your job on this particular
project ends during project closedown. You will likely be reassigned to another proj-
ect dealing with an organizational problem. Maintenance on your new system will
begin and continue without you. To complete our consideration of the SDLC, how-
ever, we will cover the maintenance phase and its component tasks in Chapter 14.

Summary
This chapter presented an overview of the various aspects
of the systems implementation process. You studied seven
different types of testing: (1) code inspections, in which
the code is examined for well-known errors; (2) walk-
throughs, when a group manually examines what the code
is supposed to do; (3) desk checking, when an individual
mentally executes the computer instructions; (4) syntax
checking, typically done by a compiler; (5) unit or module
testing; (6) integration testing, in which modules are com-
bined and tested together until the entire program has
been tested as a whole; and (7) system testing, in which
programs are combined to be tested as a system and where
the system’s meeting of its objectives is examined. You also
learned about acceptance testing, in which users test the

system for its ability to meet their requirements, using live
data in a live environment.

You read about four types of installation: (1) di-
rect, when the old system is shut off just as the new one
is turned on; (2) parallel, when both old and new systems
are run together until it is clear the new system is ready to
be used exclusively; (3) single-location, when one site is
selected to test the new system; and (4) phased, when the
system is installed bit by bit.

You learned about two types of documentation:
(1) system documentation, which describes in detail the
design of a system and its specifications; and (2) user doc-
umentation, which describes a system and how to use it for
the system’s users.

482 Part v ImplementatIon and maIntenance

Computer training has typically been provided in
classes and tutorials. Although there is some evidence that
lectures have their place in teaching people about com-
puting and information systems, the current emphasis in
training is on automated delivery methods, such as online
reference facilities, and multimedia training. The latter
embed training in the applications themselves in an at-
tempt to make training a seamless part of using an applica-
tion for daily operations. The emphasis in support is also
on providing online delivery, including online support
forums. As organizations move toward client/server archi-
tectures, they rely more on vendors for support. Vendors
provide many online support services, and they work with
customers to bring many aspects of online support in-
house. A help desk provides aid to users in a particular
department or for a particular system.

You saw how information systems researchers have
been trying to explain what constitutes a successful imple-
mentation. If there is a single main point in this chap-
ter, it is that implementation is a complicated process,

from managing programmer teams, to the politics that
 influence what happens to a system after it has been suc-
cessfully implemented, to planning and implementing
useful training and support mechanisms. Analysts have
many factors to identify and manage for a successful system
implementation. Successful implementation rarely hap-
pens by accident or occurs in a totally predictable manner.
The first step in a successful implementation effort may be
 realizing just that fact. Once systems are implemented, or-
ganizations have to deal with threats from both inside and
outside the organization to the systems’ security. Although
technology such as virus-detection software and firewalls
can be employed to help secure systems, good security also
requires policies and procedures that guide employees in
proper system usage.

In many ways, the implementation of an Internet-based
system is no different. Just as much careful attention, if not
more, has to be paid to the details of an Internet implemen-
tation as to a traditional system. Successful implementation
for an Internet-based system is not an accident either.

Key TermS

13.1 Acceptance testing
13.2 Alpha testing
13.3 Beta testing
13.4 Desk checking
13.5 Direct installation
13.6 Help desk
13.7 Inspections

13.8 Installation
13.9 Integration testing
13.10 Parallel installation
13.11 Phased installation
13.12 Refactoring
13.13 Single-location installation
13.14 Stub testing

13.15 Support
13.16 System documentation
13.17 System testing
13.18 Testing harness
13.19 Unit testing
13.20 User documentation

Match each of the key terms above with the definition that best
fits it.

____ A testing technique in which participants examine pro-
gram code for predictable language-specific errors.

____ A testing technique in which the program code is sequen-
tially executed manually by the reviewer.

____ Written or other visual information about an application
system, how it works, and how to use it.

____ Changing over from the old information system to a new
one by turning off the old system when the new one is
turned on.

____ Each module is tested alone in an attempt to discover any
errors in its code; also called module testing.

____ The organizational process of changing over from the cur-
rent information system to a new one.

____ The process whereby actual users test a completed infor-
mation system, the end result of which is the users’ accep-
tance of it.

____ Detailed information about a system’s design specifica-
tions, its internal workings, and its functionality.

____ Running the old information system and the new one at
the same time until management decides the old system
can be turned off.

____ The process of bringing together all of the modules that a
program comprises for testing purposes. Modules are typi-
cally integrated in a top-down, incremental fashion.

____ A technique used in testing modules, especially modules
that are written and tested in a top-down fashion, where
a few lines of code are used to substitute for subordinate
modules.

____ Changing from the old information system to the new one
incrementally, starting with one or a few functional com-
ponents and then gradually extending the installation to
cover the whole new system.

____ Bringing together all of the programs that a system com-
prises for testing purposes. Programs are typically inte-
grated in a top-down, incremental fashion.

____ Providing ongoing educational and problem-solving assis-
tance to information system users. Support material and
jobs must be designed along with the associated informa-
tion system.

 ChaPter 13 SyStem ImplementatIon 483

revIew QueSTIonS
 13.21 What are the deliverables from coding, testing, and

installation?

 13.22 Explain the code-testing process.

 13.23 What are structured walk-throughs for code? What is their
purpose? How are they conducted? How are they differ-
ent from code inspections?

 13.24 What are the four approaches to installation? Which is the
most expensive? Which is the most risky? How does an or-
ganization decide which approach to use?

 13.25 What is the conventional wisdom about implementation
success?

 13.26 List and define the factors that are important to successful
implementation efforts.

 13.27 Explain Lucas’s model of implementation success.

 13.28 What is the difference between system documentation
and user documentation?

 13.29 What are the common methods of computer training?

 13.30 What is self-training?

 13.31 What is e-learning?

 13.32 What proof do you have that individual differences matter
in computer training?

 13.33 Why do corporations rely so heavily on vendor support?

 13.34 Describe the delivery methods many vendors employ for
providing support.

 13.35 Describe the various roles typically found in a help desk
function.

 13.36 What are the common security threats to systems? How
can they be addressed?

ProblemS and exercISeS
 13.37 Prepare a testing strategy or plan for PVF’s Purchasing

Fulfillment System.

 13.38 Which installation strategy would you recommend for
PVF’s Purchasing Fulfillment System? Which would you
recommend for Hoosier Burger’s inventory control sys-
tem? If you recommended different approaches, please
explain why. How is PVF’s case different from Hoosier
Burger’s?

 13.39 Develop a table that compares the four installation strate-
gies, showing the pros and cons of each. Try to make a
direct comparison when a pro of one is a con of another.

 13.40 One of the most difficult aspects of using the single loca-
tion approach to installation is choosing an appropriate
location. What factors should be considered in picking a
pilot site?

 13.41 You have been a user of many information systems includ-
ing, possibly, a class registration system at your school, a
bank account system, a word-processing system, and an
airline reservation system. Pick a system you have used
and assume you were involved in the beta testing of
that system. What criteria would you have used to judge
whether this system was ready for general distribution?

 13.42 Why is it important to keep a history of test cases and the
results of those test cases even after a system has been re-
vised several times?

 13.43 How much documentation is enough?

 13.44 Discuss the role of a centralized training and support
facility in a modern organization. Given advances in

technology and the prevalence of self-training and con-
sulting among computing end users, how can such a cen-
tralized facility continue to justify its existence?

 13.45 Is it good or bad for corporations to rely on vendors for
computing support? List arguments both for and against
reliance on vendors as part of your answer.

 13.46 Suppose you were responsible for establishing a training
program for users of Hoosier Burger’s inventory control
system (described in previous chapters). Which forms of
training would you use? Why?

 13.47 Suppose you were responsible for establishing a help desk
for users of Hoosier Burger’s inventory control system
(described in previous chapters). Which support system
elements would you create to help users be effective?
Why?

 13.48 Your university or school probably has some form of mi-
crocomputer center or help desk for students. What func-
tions does this center perform? How do these functions
compare to those outlined in this chapter?

 13.49 Suppose you were responsible for organizing the user
documentation for Hoosier Burger’s inventory control
system (described in previous chapters). Write an outline
that shows the documentation you would suggest be cre-
ated, and generate the table of contents or outline for
each element of this documentation.

 13.50 What types of security policies and procedures does
your university have in place for campus information
systems?

____ User testing of a completed information system using real
data in the real user environment.

____ Trying out a new information system at one site and using
the experience to decide if and how the new system should
be deployed throughout the organization.

____ User testing of a completed information system using sim-
ulated data.

____ A single point of contact for all user inquiries and prob-
lems about a particular information system or for all users
in a particular department.

____ Making a program simple after adding a new feature.

____ An automated testing environment used to review code for
errors, standards violations, and other design flaws.

484 Part v ImplementatIon and maIntenance

FIeld exercISeS
 13.51 Interview someone you know or have access to who

works for a medium to large organization. Ask for details
on a specific instance of organizational change: What
changed? How did it happen? Was it well planned or ad
hoc? How were people in the organization affected? How
easy was it for employees to move from the old situation
to the new one?

 13.52 Reexamine the data you collected in the interview in Field
Exercise 1. This time, analyze the data from a political
perspective. How well does the political model explain
how the organization dealt with change? Explain why the
political model does or does not fit.

 13.53 Ask a systems analyst you know or have access to about
implementation. Ask what the analyst believes is necessary
for a successful implementation.

 13.54 Prepare a research report on successful and unsuccess-
ful information system implementations. After you have
found information on two or three examples of both suc-
cessful and unsuccessful system implementations, try to
find similarities and differences among the examples of
each type of implementation. Do you detect any patterns?

Can you add any factors important to success that were
not mentioned in this chapter?

 13.55 Talk with people you know who use computers in their
work. Ask them to get copies of the user documentation
they rely on for the systems they use at work. Analyze the
documentation. Would you consider it good or bad? Sup-
port your answer. Whether good or bad, how might you
improve it?

 13.56 Volunteer to work for a shift at a help desk at your school’s
computer center. Keep a journal of your experiences.
What kind of users did you have to deal with? What kinds
of questions did you get? Do you think help desk work is
easy or hard? What skills are needed by someone in this
position?

 13.57 Let’s say your professor has asked you to help him or her
train a new secretary on how to prepare class notes for
electronic distribution to class members. Your professor
uses word-processing software and an e-mail package to
prepare and distribute the notes. Assume the secretary
knows nothing about either package. Prepare a user task
guide that shows the secretary how to complete this task.

reFerenceS
Beck, K. and C. Andres. 2004. eXtreme Programming eXplained.

Upper Saddle River, NJ: Addison-Wesley.
Bell, P., and C. Evans. 1989. Mastering Documentation. New York:

John Wiley & Sons.
CERT/CC. www.cert.org/. Accessed April 5, 2015.
Denning, D. E. 1999. Information Warfare and Security. Boston:

Addison-Wesley.
Downes, S. 2005. “E-learning 2.0.” E-learn Magazine. Available

at http://elearnmag.acm.org/featured.cfm?aid=1104968.
 Accessed April 5, 2015.

Fagan, M. E. 1986. “Advances in Software Inspections.” IEEE
Transactions on Software Engineering 12(7): 744–51.

Ginzberg, M. J. 1981a. “Early Diagnosis of MIS Implementation
Failure: Promising Results and Unanswered Questions.”
Management Science 27(4): 459–78.

Ginzberg, M. J. 1981b. “Key Recurrent Issues in the MIS Imple-
mentation Process.” MIS Quarterly 5(2): 47–59.

InformationWeek, May 2014, “2014 Strategic Security Survey,”
http://reports.informationweek.com/abstract/21/12509/
Security/Research:-2014-Strategic-Security-Survey.html,
 accessed 5.12.14.

InformationWeek, Dec 2014, “Endpoint Security’s Quan-
tum Shi f t ,” h t tp ://www. in format ionweek .com/
strategic-cio/ digital-business/endpoint-security-makes-
quantum-shift/d/d-id/1317859, accessed 12.4.14.

Ives, B., and M. H. Olson. 1984. “User Involvement and MIS
Success: A Review of Research.” Management Science 30(5):
586–603.

Kim, K-J., C. J. Bonk, and Oh, E. 2008. “The Present and Future
State of Blended Learning in Workplace Learning Setting in
the United States.” Performance Improvement 47(8): 5-16.

Lucas, H. C. 1997. Information Technology for Management. New
York: McGraw-Hill.

Mitnick, K. D., and W. L. Simon. 2002. The Art of Deception. New
York: John Wiley & Sons.

Mosley, D. J. 1993. The Handbook of MIS Application Software
Testing. Upper Saddle River, NJ: Prentice Hall/Yourdon
Press.

PriceWaterhouseCoopers, “Key Findings from the 2013 US State
of Cyberscribe Survey,” http://www.pwc.com/en_US/us/
increasing-it-effectiveness/publications/assets/us-state-of-
cybercrime.pdf, accessed 2.1.15.

PriceWaterhouseCoopers, Sept 2014, “Managing Cyber Risks
in an Interconnected World,” www.pwc.com/gsiss2015,
 accessed 2.21.15.

Schneider, J. 1993. “Shouldering the Burden of Support.” PC
Week 10 (November 15): 123, 129.

Tait, P., and I. Vessey. 1988. “The Effect of User Involvement on
System Success: A Contingency Approach.” MIS Quarterly
12(1): 91–108.

United States General Accounting Office (U.S. GAO). 2003.
 “Information Technology Training: Practices of Leading
Private-Sector Companies.” Available at http://www.gao.
gov/products/GAO-03-390. Accessed April 5, 2015.

Yourdon, E. 1989. Managing the Structured Techniques, 4th ed. Up-
per Saddle River, NJ: Prentice Hall.

http://www.cert.org/
http://elearnmag.acm.org/featured.cfm?aid=1104968
http://reports.informationweek.com/abstract/21/12509/Security/Research:-2014-Strategic-Security-Survey.html
http://www.informationweek.com/strategic-cio/digital-business/endpoint-security-makesquantum-shift/d/d-id/1317859
http://www.pwc.com/en_US/us/increasing-it-effectiveness/publications/assets/us-state-ofcybercrime.pdf
http://www.pwc.com/gsiss2015
http://www.gao.gov/products/GAO-03-390
http://www.informationweek.com/strategic-cio/digital-business/endpoint-security-makesquantum-shift/d/d-id/1317859
http://www.informationweek.com/strategic-cio/digital-business/endpoint-security-makesquantum-shift/d/d-id/1317859
http://www.pwc.com/en_US/us/increasing-it-effectiveness/publications/assets/us-state-ofcybercrime.pdf
http://www.pwc.com/en_US/us/increasing-it-effectiveness/publications/assets/us-state-ofcybercrime.pdf
http://www.gao.gov/products/GAO-03-390

 ChaPter 13 SyStem ImplementatIon 485

the system in her Irvine store. Juanita was saying her
store would not be ready by the end of July. Maybe that
wouldn’t matter, since they were going to miss the go-live
date for the pilot. But Juanita was hinting she would not
be ready for months after that. It seemed as if she didn’t
want her store to be used for the pilot at all. Jim didn’t un-
derstand it. But maybe he should try to find another store
to use as the pilot site.

Jim was almost at his exit. Soon he would be at the
 office, and he would have to call Ella Whinston and tell
her the status of the project. He would have to tell her
that they would miss the go-live date, but in a way it
didn’t matter since he didn’t have a pilot location to go
live at. In addition to going over schedule, he was going
to have to go over budget, too. He didn’t see any way they
would be ready for the pilot anywhere close to when
they had scheduled, unless he hired the consultants San-
jay wanted. And he would have to stop the latest change
 request filed by marketing. Even more important, he
would have to keep the rumored change request, about
using coupons for online purchases, from being submit-
ted in the first place.

Maybe, just maybe, if he could hire the consultants,
fight off the change requests, and get Juanita to cooper-
ate, they might be ready to go live with a pilot in Irvine on
October 15. That gave him four months to complete the
project. He and the team were going to have to work hard
to make that happen.

Jim realized he had missed his exit. Great, he thought, I
hope it gets better from here.

Case Questions

 13.58 Why don’t information systems projects work out
as planned? What causes the differences between
the plan and reality?

 13.59 Why is it important to document change requests?
What happens if a development team doesn’t?

 13.60 When a project is late, do you think that adding
more people to do the work helps or not? Justify
your answer.

 13.61 What is the role of a pilot project in information
systems analysis? Why do you think Petrie’s team
decided to do a pilot project before rolling out the
customer loyalty system for everyone?

 13.62 Information systems development projects are said
to fail if they are late, go over budget, or do not
contain all of the functionality they were designed
to have. Is the customer loyalty program a failure?
Justify your answer. If not, how can failure be pre-
vented? Is it important to avert failure? Why or
why not?

Chapter 13: System implementation

Jim Watanabe was in his new car, driving down I-5, on his
way to work. He dreaded the phone call he knew he was
going to have to make.

The original go-live date for a pilot implementation of
Petrie Electronics’ new customer relationship manage-
ment (CRM) system was July 31. That was only six weeks
away, and Jim knew there was no way they were going to
be ready. The XRA CRM they were licensing turned out to
be a lot more complex than they had thought. They were
behind schedule in implementing it. Sanjay Agarwal, who
was a member of Jim’s team and who was in charge of
systems integration for Petrie, wanted Jim to hire some
consultants with XRA experience to help with implemen-
tation. So far, Jim had been able to stay under budget, but
missing his deadlines and hiring some consultants would
push him over his budget limit.

It didn’t help that John Smith, head of marketing, kept
submitting requests for changes to the original specifica-
tions for the customer loyalty program. As specified in the
project charter, the new system was supposed to track
customer purchases, assign points for cumulative pur-
chases, and allow points to be redeemed for “rewards” at
local stores. The team had determined that those rewards
would take the form of dollars-off coupons. Customers
who enrolled in the program would be given accounts
which they could access from Petrie’s website. When
they signed on, they could check their account activity to
see how many points they had accumulated. If they had
earned enough points, they were rewarded with a cou-
pon. If they wanted to use the coupon, they would have to
print it out on their home printers and bring it in to a store
to use on a purchase. The team had decided long ago that
keeping everything electronic saved Petrie the consider-
able costs of printing and mailing coupons to customers.

But now marketing had put in a change request that
would give customers a choice of having coupons
mailed to them automatically or printing them from the
website at home. This option, although nice for custom-
ers, added complexity to the XRA system implementa-
tion, and it added to the costs of operation. Jim had also
learned yesterday from the marketing representative
on his team, Sally Fukuyama, that now Smith wanted
another change. Now he wanted customers to be able
to use the coupons for online purchases from Petrie’s
website. This change added a whole new layer of com-
plexity, affecting Petrie’s existing systems for ordering
online, in addition to altering yet again the implementa-
tion of the XRA CRM.

As if that wasn’t enough, Juanita Lopez was now tell-
ing Jim that she would not be ready to let the team pilot

PeTrIe elecTronIcS

486

maintenance process and describe the types of issues
that must be considered when maintaining systems.

In this chapter, we also briefly describe the systems
maintenance process and the deliverables and outcomes
from this process. This is followed by a detailed discussion
contrasting the types of maintenance and an overview of
critical management issues. Finally, we describe the pro-
cess of maintaining Web-based applications, including an
example for the Pine Valley Furniture’s (PVF’s) WebStore
application.

Maintaining inforMation
SySteMS
Once an information system is installed, the system is essen-
tially in the maintenance phase of the systems development
life cycle (SDLC). When a system is in the maintenance
phase, some person within the systems development group
is responsible for collecting maintenance requests from sys-
tem users and other interested parties, such as system audi-
tors, data center and network management staff, and data
analysts. Once collected, each request is analyzed to better
understand how it will alter the system and what business
benefits and necessities will result from such a change. If
the change request is approved, a system change is designed
and then implemented. As with the initial development of
the system, implemented changes are formally reviewed
and tested before installation into operational systems.

In this chapter, we discuss systems maintenance, the
largest systems development expenditure for many or-
ganizations. In fact, more programmers today work on
maintenance activities than work on new development.
Your first job after graduation may very well be as a main-
tenance programmer/analyst. This disproportionate
distribution of maintenance programmers is interesting
because software does not wear out in a physical manner
as do buildings and machines.

There is no single reason why software is main-
tained; however, most reasons relate to a desire to
evolve system functionality in order to overcome in-
ternal processing errors or to better support changing
business needs. Thus, maintenance is a fact of life for
most systems. This means that maintenance can begin
soon after the system is installed. As with the initial de-
sign of a system, maintenance activities are not limited
only to software changes, but include changes to hard-
ware and business procedures. A question many people
have about maintenance relates to how long organiza-
tions should maintain a system. Five years? Ten years?
Longer? There is no simple answer to this question, but
it is most often an issue of economics. In other words, at
what point does it make financial sense to discontinue
evolving an older system and build or purchase a new
one? The focus of a great deal of upper IS management
attention is devoted to assessing the trade-offs between
maintenance and new development. In this chapter,
we will provide you with a better understanding of the

14.3 Describe maintenance management issues,
including alternative organizational structures,
quality measurement, processes for handling
change requests, and configuration
management.

Learning Objectives

After studying this chapter, you should be able to:

14.1 Explain and contrast four types of maintenance.

14.2 Describe several factors that influence the cost of
maintaining an information system and apply these
factors to the design of maintainable systems.

Maintaining information
Systems14

Chapter

Introduction

 Chapter 14 Maintaining inforMation SySteMS 487

the Process of Maintaining information Systems
As we can see in Figure 14-1, the maintenance phase is the last phase of the SDLC. It
is here that the SDLC becomes a cycle, with the last activity leading back to the first.
This means that the process of maintaining an information system is the process of
returning to the beginning of the SDLC and repeating development steps until the
change is implemented.

Also shown in Figure 14-1, four major activities occur within maintenance:

1. Obtaining maintenance requests
2. Transforming requests into changes
3. Designing changes
4. Implementing changes

Obtaining maintenance requests requires that a formal process be established
whereby users can submit system change requests. Earlier in this book, we presented
a user request document called a System Service Request (SSR), which is shown in
Figure 14-2. Most companies have some sort of document like an SSR to request new
development, to report problems, or to request new features within an existing system.
When developing the procedures for obtaining maintenance requests, organizations
must also specify an individual within the organization to collect these requests and
manage their dispersal to maintenance personnel. The process of collecting and dis-
persing maintenance requests is described in much greater detail later in this chapter.

Once a request is received, analysis must be conducted to gain an understand-
ing of the scope of the request. It must be determined how the request will affect
the current system and how long such a project will take. As with the initial devel-
opment of a system, the size of a maintenance request can be analyzed for risk and
feasibility(see Chapter 5). Next, a change request can be transformed into a for-
mal design change, which can then be fed into the maintenance implementation
phase. Thus, many similarities exist between the SDLC and the activities within the
maintenance process. Figure 14-3 equates SDLC phases to the maintenance activi-
ties described previously. The first phase of the SDLC—planning—is analogous to
the maintenance process of obtaining a maintenance request (step 1). The SDLC
analysis phase is analogous to the maintenance process of transforming requests into
a specific system change (step 2). The SDLC design phase, of course, equates to the
designing changes process (step 3). Finally, the SDLC phase implementation equates
to step 4, implementing changes. This similarity between the maintenance process
and the SDLC is no accident. The concepts and techniques used to initially develop
a system are also used to maintain it.

DesignImplementation

Planning

Maintenance Analysis
Obtaining Maintenance Requests
Transforming Requests into Changes
Designing Changes
Implementing Changes

Figure 14-1
Systems development life cycle

488 part V iMpleMentation and Maintenance

Deliverables and outcomes
Because the maintenance phase of the SDLC is basically a subset of the activities of
the entire development process, the deliverables and outcomes from the process are
the development of a new version of the software and new versions of all design docu-
ments developed or modified during the maintenance process. This means that all
documents created or modified during the maintenance effort, including the system
itself, represent the deliverables and outcomes of the process. Those programs and
documents that did not change may also be part of the new system. Because most or-
ganizations archive prior versions of systems, all prior programs and documents must
be kept to ensure the proper versioning of the system. This enables prior versions of
the system to be re-created if needed. A more detailed discussion of configuration
management and change control is presented later in this chapter.

Because of the similarities among the steps, deliverables, and outcomes of new
development and maintenance, you may be wondering how to distinguish between
these two processes. One difference is that maintenance reuses most existing system
modules in producing the new system version. Other distinctions are that a new sys-
tem is developed when there is a change in the hardware or software platform or
when fundamental assumptions and properties of the data, logic, or process models
change.

Pine Valley Furniture
System Service Request

REQUESTED BY

DEPARTMENT

LOCATION

CONTACT

TYPE OF REQUEST

PROBLEM STATEMENT

Juanita Lopez

Purchasing, Manufacturing Support

Headquarters, 1-322

Tel: 4-3267 FAX: 4-3270 e-mail: jlopez

URGENCY

DATE November 5, 2017

[

[
[

]

]
]

[

[
[

]

]
]

New System

System Enhancement
System Error Correction

Immediate—Operations are impaired or
opportunity lost
Problems exist, but can be worked around
Business losses can be tolerated until new
system is installed

X

X

Sales growth at PVF has caused greater volume of work for the manufacturing support unit within Purchasing.
Further, more concentration on customer service has reduced manufacturing lead times, which puts more pressure
on purchasing activities. In addition, cost-cutting measures force Purchasing to be more aggressive in negotiating
terms with vendors, improving delivery times, and lowering our investments in inventory. The current modest
systems support for manufacturing purchasing is not responsive to these new business conditions. Data are not
available, information cannot be summarized, supplier orders cannot be adequately tracked, and commodity buying
is not well supported. PVF is spending too much on raw materials and not being responsive to manufacturing
needs.

SERVICE REQUEST

I request a thorough analysis of our current operations with the intent to design and build a completely new
information system. This system should handle all purchasing transactions, support display and reporting of critical
purchasing data, and assist purchasing agents in commodity buying.

IS LIAISON

SPONSOR

TO BE COMPLETED BY SYSTEMS PRIORITY BOARD
[

[
[
[

]

]
]
]

Request approved

Recommend revision
Suggest user development
Reject for reason

Assigned to
Start date

Chris Martin (Tel: 4-6204 FAX: 4-6200 e-mail: cmartin)

Sal Divario, Director, Purchasing

Figure 14-2
System Service Request for purchasing
fulfillment system (Pine Valley Furniture)

 Chapter 14 Maintaining inforMation SySteMS 489

Design

Planning

Implementation Analysis

The Maintenance Process

1. Obtaining Maintenance Requests

2. Transforming Requests into Changes

3. Designing Changes

4. Implementing Changes

Figure 14-3
Maintenance activities parallel those
of the SDLC

ConDuCting SySteMS MaintenanCe
A significant portion of the expenditures for information systems within organiza-
tions does not go to the development of new systems but to the maintenance of exist-
ing systems. We will describe various types of maintenance, factors influencing the
complexity and cost of maintenance, and alternatives for managing maintenance.
Given that maintenance activities consume the majority of information-systems-re-
lated expenditures, gaining an understanding of these topics will yield numerous
benefits to your career as an information systems professional.

types of Maintenance
You can perform several types of maintenance on an information system (see
Table 14-1). By maintenance, we mean the fixing or enhancing of an informa-
tion system. Corrective maintenance refers to changes made to repair defects in
the design, coding, or implementation of the system. For example, if you had
recently purchased a new home, corrective maintenance would involve repairs
made to things that had never worked as designed, such as a faulty electrical out-
let or a misaligned door. Most corrective maintenance problems surface soon
after installation. When corrective maintenance problems surface, they are typi-
cally urgent and need to be resolved to curtail possible interruptions in normal
business activities. Of all types of maintenance, corrective accounts for as much as
75 percent of all maintenance activity (Andrews and Leventhal, 1993; Pressman,
2005). This is unfortunate because corrective maintenance adds little or no value
to the organization; it simply focuses on removing defects from an existing system
without adding new functionality (see Figure 14-4).

Adaptive maintenance involves making changes to an information system to
evolve its functionality to changing business needs or to migrate it to a different
operating environment. Within a home, adaptive maintenance might be adding
storm windows to improve the cooling performance of an air conditioner. Adaptive
maintenance is usually less urgent than corrective maintenance because business
and technical changes typically occur over some period of time. Contrary to correc-
tive maintenance, adaptive maintenance is generally a small part of an organization’s
maintenance effort, but it adds value to the organization.

Perfective maintenance involves making enhancements to improve processing
performance or interface usability or to add desired, but not necessarily required,
system features (“bells and whistles”). In our home example, perfective maintenance

Maintenance
Changes made to a system to fix or
enhance its functionality.

Corrective maintenance
Changes made to a system to repair flaws
in its design, coding, or implementation.

Adaptive maintenance
Changes made to a system to evolve its
functionality to changing business needs or
technologies.

Perfective maintenance
Changes made to a system to add new
features or to improve performance.

Table 14-1 Types of Maintenance
Type Description
Corrective Repair design and

programming errors
Adaptive Modify system to

environmental
changes

Perfective Evolve system to solve
new problems or
take advantage of
new opportunities

Preventive Safeguard system from
future problems

490 part V iMpleMentation and Maintenance

would be adding a new room. Many systems professionals feel that perfective mainte-
nance is not really maintenance but rather new development.

Preventive maintenance involves changes made to a system to reduce the
chance of future system failure. An example of preventive maintenance might be to
increase the number of records that a system can process far beyond what is currently
needed or to generalize how a system sends report information to a printer so that
the system can easily adapt to changes in printer technology. In our home example,
preventive maintenance could be painting the exterior to better protect the home
from severe weather conditions. As with adaptive maintenance, both perfective and
preventive maintenance are typically a much lower priority than corrective mainte-
nance. Over the life of a system, corrective maintenance is most likely to occur after
initial system installation or after major system changes. This means that adaptive,
perfective, and preventive maintenance activities can lead to corrective maintenance
activities if not carefully designed and implemented.

the Cost of Maintenance
Information systems maintenance costs are a significant expenditure. For some
 organizations, as much as 60 to 80 percent of their information systems budget
is allocated to maintenance activities (Kaplan, 2002). These huge maintenance
costs are due to the fact that many organizations have accumulated more and
more older so-called legacy systems that require more and more maintenance (see
Figure 14-5). More maintenance means more maintenance work for program-
mers. For systems developed in-house, on average, 52 percent of a company’s

Preventive maintenance
Changes made to a system to avoid
possible future problems.

Corrective—adds
no value

Preventive Perfective

Adaptive

Maintenance TypeFigure 14-4
Value and non-value adding of different
types of maintenance
(Sources: Based on Andrews and Leven-
thal, 1993; Pressman, 2005.)

10

20

30

40

50

60

70

80

0 1960s–1970s 1980s–1990s 2000–present

Maintenance
New Development

Figure 14-5
New development versus maintenance as
a percentage of the software budget over
the years
(Source: Based on Pressman, 2005.)

 Chapter 14 Maintaining inforMation SySteMS 491

programmers are assigned to maintain existing software (Lytton, 2001). In situ-
ations where a company has not developed its systems in-house but instead has
licensed software, as in the case of ERP systems, maintenance costs remain high.
The standard cost of maintenance for most ERP vendors is 22 percent annually
(Nash, 2010). In addition, about one-third of the costs of establishing and keep-
ing a presence on the Web go to programming maintenance (Legard, 2000).
These high costs associated with maintenance mean that you must understand the
factors influencing the maintainability of systems. Maintainability is the ease with
which software can be understood, corrected, adapted, and enhanced. Systems
with low maintainability result in uncontrollable maintenance expenses.

Numerous factors influence the maintainability of a system. These factors, or
cost elements, determine the extent to which a system has high or low maintain-
ability. Of these factors, three are most significant: the number of latent defects, the
number of customers, and documentation quality. The others—personnel, tools,
and software structure—have noticeable, but less, influence.

•	 Latent defects. This is the number of unknown errors existing in the system after
it is installed. Because corrective maintenance accounts for most maintenance
activity, the number of latent defects in a system influences most of the costs as-
sociated with maintaining a system.

•	 Number of customers for a given system. In general, the greater the number of cus-
tomers, the greater the maintenance costs. For example, if a system has only one
customer, problem and change requests will come from only one source. Also,
training, error reporting, and support will be simpler. Maintenance requests are
less likely to be contradictory or incompatible.

•	 Quality of system documentation. Without quality documentation, maintenance
efforts can increase exponentially. For example, Figure 14-6 shows that the sys-
tem maintenance effort takes 400 percent longer with poor-quality documenta-
tion. High-quality documentation leads to an 80 percent reduction in the sys-
tem maintenance effort when compared with average-quality documentation. In
other words, quality documentation makes it easier to find code that needs to be
changed and to understand how the code needs to be changed. Good documen-
tation also explains why a system does what it does and why alternatives were not
feasible, which saves wasted maintenance efforts.

•	 Maintenance personnel. In some organizations, the best programmers are
 assigned to maintenance. Highly skilled programmers are needed because the

Maintainability
The ease with which software can be
understood, corrected, adapted, and
enhanced.

400

300

200

100

0

–100

P
er

ce
nt

 C
ha

ng
e

in
 M

ai
nt

en
an

ce
 E

�o
rt

 fr
om

 N
or

m

Poor Average High

Documentation Technical Quality

400

200

125

75

30
0 –15

–35 –48 –50
–80

Norm

Normal maintenance e�ort required
for average documentation quality

Figure 14-6
Quality documentation eases
maintenance
(Source: Based on Hanna, M. 1992.
 “Using Documentation as a Life-Cycle
Tool.” Software Magazine [December]:
41–46.)

492 part V iMpleMentation and Maintenance

maintenance programmer is typically not the original programmer and must
quickly understand and carefully change the software.

•	 Tools. Tools that can automatically produce system documentation where none
exists can also lower maintenance costs. Also, tools that can automatically gen-
erate new code based on system specification changes can dramatically reduce
maintenance time and costs.

•	 Well-structured programs. Well-designed programs are easier to understand
and fix.

Since the mid-1990s, many organizations have taken a new approach to manag-
ing maintenance costs. Rather than develop custom systems internally or through con-
tractors, they have chosen to buy packaged application software. Although vendors
of packaged software charge an annual maintenance fee for updates, these charges
are more predictable and lower than for custom-developed systems (Worthen, 2003).
However, internal maintenance work may still be necessary when using packages.
One major maintenance task is to make the packaged software compatible with other
packages and internally developed systems with which it must cooperate. When new
releases of the purchased packages appear, maintenance may be needed to make all
the packages continue to share and exchange data. Some companies are minimizing
this effort by buying comprehensive packages, such as ERP packages, which provide
information services for a wide range of organizational functions (from human re-
sources to accounting, manufacturing, and sales and marketing). Although the ini-
tial costs to install such ERP packages can be significant, they promise great potential
for drastically reducing system maintenance costs.

Managing Maintenance
As maintenance activities consume more and more of the systems development bud-
get, maintenance management has become increasingly important. Today, far more
programmers worldwide are working on maintenance than on new development. In
other words, maintenance is the largest segment of programming personnel, and
this implies the need for careful management. We will address this concern by dis-
cussing several topics related to the effective management of systems maintenance.

Managing Maintenance Personnel One concern with managing maintenance
relates to personnel management. Historically, many organizations had a “mainte-
nance group” that was separate from the “development group.” With the increased
number of maintenance personnel, the development of formal methodologies and
tools, changing organizational forms, end-user computing, and the widespread use
of very high-level languages for the development of some systems, organizations have
rethought the organization of maintenance and development personnel. In other
words, should the maintenance group be separated from the development group?
Or should the same people who build the system also maintain it? A third option
is to let the primary end users of the system in the functional units of the business
have their own maintenance personnel. The advantages and disadvantages to each of
these organizational structures are summarized in Table 14-2.

In addition to the advantages and disadvantages listed in Table 14-2, there are
numerous other reasons why organizations should be concerned with how they man-
age and assign maintenance personnel. One key issue is that many systems profes-
sionals don’t want to perform maintenance because they feel that it is more excit-
ing to build something new than change an existing system (Martin et al., 2008). In
other words, maintenance work is often viewed as “cleaning up someone else’s mess.”
Also, organizations have historically provided greater rewards and job opportunities
to those performing new development, thus making people shy away from mainte-
nance-type careers. As a result, no matter how an organization chooses to manage
its maintenance group—separate, combined, or functional—it is now common to

 Chapter 14 Maintaining inforMation SySteMS 493

Table 14-2 advantages and Disadvantages of Different Maintenance Organizational Structures
Type Advantages Disadvantages
Separate Formal transfer of systems between

groups improves the system and
documentation quality

All things cannot be documented, so
the maintenance group may not
know critical information about the
system

Combined Maintenance group knows or has
access to all assumptions and
decisions behind the system’s original
design

Documentation and testing
thoroughness may suffer due
to a lack of a formal transfer of
responsibility

Functional Personnel have a vested interest in
effectively maintaining the system
and have a better understanding of
functional requirements

Personnel may have limited job
mobility and lack access to
adequate human and technical
resources

rotate individuals in and out of maintenance activities. This rotation is believed to
lessen the negative feelings about maintenance work and to give personnel a greater
understanding of the difficulties of and relationships between new development and
maintenance.

Measuring Maintenance Effectiveness A second management issue is the mea-
surement of maintenance effectiveness. As with the effective management of person-
nel, the measurement of maintenance activities is fundamental to understanding the
quality of the development and maintenance efforts. To measure effectiveness, you
must measure the following factors:

•	 Number of failures
•	 Time between each failure
•	 Type of failure

Measuring the number of and time between failures will provide you with the
basis to calculate a widely used measure of system quality. This metric is referred to as
the mean time between failures (MTBF). As its name implies, the MTBF metric shows
the average length of time between the identification of one system failure and the
next. Over time, you should expect the MTBF value to rapidly increase after a few
months of use (and corrective maintenance) of the system (see Figure 14-7 for an

Mean time between failures
(MTBF)
A measurement of error occurrences that
can be tracked over time to indicate the
quality of a system.

25

20

15

10

5

A
ve

ra
ge

 D
ay

s
B

et
w

ee
n

a
Fa

ilu
re

0 1 2 3 4 5 6
Months Since System Was Installed

Figure 14-7
How the mean time between failures
should change over time

494 part V iMpleMentation and Maintenance

example of the relationship between MTBF and age of a system). If the MTBF does
not rapidly increase over time, it will be a signal to management that major problems
exist within the system that are not being adequately resolved through the mainte-
nance process.

A more revealing method of measurement is to examine the failures that are
occurring. Over time, logging the types of failures will provide a very clear picture of
where, when, and how failures occur. For example, knowing that a system repeatedly
fails to log new account information to the database when a particular customer is
using the system can provide invaluable information to the maintenance personnel.
Were the users adequately trained? Is there something unique about this user? Is
there something unique about an installation that is causing the failure? What activi-
ties were being performed when the system failed?

Tracking the types of failures also provides important management information
for future projects. For example, if a higher frequency of errors occurs when a partic-
ular development environment is used, such information can help guide personnel
assignments; training courses; or the avoidance of a particular package, language, or
environment during future development. The primary lesson here is that without
measuring and tracking maintenance activities, you cannot gain the knowledge to
improve or know how well you are doing relative to the past. To effectively manage
and to continuously improve, you must measure and assess performance over time.

Controlling Maintenance Requests Another maintenance activity is managing
maintenance requests. There are various types of maintenance requests—some cor-
rect minor or severe defects in the systems, whereas others improve or extend system
functionality. From a management perspective, a key issue is deciding which requests
to perform and which to ignore. Because some requests will be more critical than
others, some method of prioritizing requests must be determined.

Figure 14-8 shows a flowchart that suggests one possible method you could
apply for dealing with maintenance change requests. First, you must determine the
type of request. If, for example, the request is an error—that is, a corrective mainte-
nance request—then the flowchart shows that the request is placed in the queue of
tasks waiting to be performed on the system. For an error of high severity, repairs to
remove it must be made as soon as possible. If, however, the error is considered “non-
severe,” then the change request can be categorized and prioritized based upon its
type and relative importance.

Not Needed Needed

Adaptive/PerfectiveEnhancement

Other Corrective

Change Request

Type?

Type?

Evaluate

Terminate
Request and

Notify Requester

Select Next
Task from

Queue

Categorize/
Prioritize

Figure 14-8
How to prioritize maintenance requests

 Chapter 14 Maintaining inforMation SySteMS 495

If the change request is not an error, then you must determine whether the
request is to adapt the system to technology changes and/or business requirements,
perfect its operation in some way, or enhance the system so that it will provide new
business functionality. Enhancement-type requests must first be evaluated to see
whether they are aligned with future business and information systems’ plans. If not,
the request will be rejected and the requester will be informed. If the enhancement
appears to be aligned with business and information systems plans, it can then be
prioritized and placed into the queue of future tasks. Part of the prioritization pro-
cess includes estimating the scope and feasibility of the change. Techniques used for
assessing the scope and feasibility of entire projects should be used when assessing
maintenance requests (see Chapter 5).

Managing the queue of pending tasks is an important activity. The queue of
maintenance tasks for a given system is dynamic—growing and shrinking based upon
business changes and errors. In fact, some lower-priority change requests may never
be accomplished because only a limited number of changes can be accomplished at
a given time. In other words, changes in business needs between the time the request
was made and when the task finally rises to the top of the queue may result in the
request being deemed unnecessary or no longer important given current business
directions. Thus, managing the queue of pending tasks is an important activity.

To better understand the flow of a change request, see Figure 14-9. Initially, an
organizational group that uses the system will make a request to change the system.
This request flows to the project manager of the system (labeled 1). The project man-
ager evaluates the request in relation to the existing system and pending changes
and forwards the results of this evaluation to the system priority board (labeled 2).
This evaluation will also include a feasibility analysis that includes estimates of proj-
ect scope, resource requirements, risks, and other relevant factors. The board evalu-
ates, categorizes, and prioritizes the request in relation to both the strategic and in-
formation systems plans of the organization (labeled 3). If the board decides to kill
the request, the project manager informs the requester and explains the rationale
for the decision (labeled 4). If the request is accepted, it is placed in the queue of
pending tasks. The project manager then assigns tasks to maintenance personnel
based upon their availability and task priority (labeled 5). On a periodic basis, the
project manager prepares a report of all pending tasks in the change request queue.
This report is forwarded to the priority board where they reevaluate the requests in
light of the current business conditions. This process may result in removing some
requests or reprioritizing others.

System Priority Board

1. Change Request

Project Manager

Maintenance Sta�

System Users

2. Change Request

3. Decision 4. Noti�cation

5. Maintenance Task

Figure 14-9
How a maintenance request moves
through an organization

496 part V iMpleMentation and Maintenance

Although each change request goes through the approval process depicted
in Figure 14-9, changes are usually implemented in batches, forming a new release
of the software. It is too difficult to manage a lot of small changes. Further, batch-
ing changes can reduce maintenance work when several change requests affect
the same or highly related modules. Frequent releases of new system versions may
also confuse users if the appearance of displays, reports, or data entry screens
changes.

Configuration Management A final aspect of managing maintenance is configu-
ration management, which is the process of ensuring that only authorized changes
are made to a system. Once a system has been implemented and installed, the pro-
gramming code used to construct the system represents the baseline modules of the
system. The baseline modules are the software modules for the most recent version
of a system whereby each module has passed the organization’s quality assurance
process and documentation standards. A system librarian controls the checking out
and checking in of the baseline source code modules. If maintenance personnel are
assigned to make changes to a system, they must first check out a copy of the baseline
system modules—no one is allowed to directly modify the baseline modules. Only
those modules that have been tested and have gone through a formal check-in pro-
cess can reside in the library. Before any code can be checked back in to the librar-
ian, the code must pass the quality control procedures, testing, and documentation
standards established by the organization.

When various maintenance personnel working on different maintenance
tasks complete each task, the librarian notifies those still working that updates have
been made to the baseline modules. This means that all tasks being worked on must
now incorporate the latest baseline modules before being approved for check-in.
Following a formal process of checking modules out and in, a system librarian helps
to ensure that only tested and approved modules become part of the baseline system.
It is also the responsibility of the librarian to keep copies of all prior versions of all
system modules, including the build routines needed to construct any version of the
system that has ever existed. It may be important to reconstruct old versions of the
system if new ones fail or to support users that cannot run newer versions on their
computer system.

Special software systems have been created to manage system configuration
and version control activities (see the box “Configuration Management Tools”). This
software is becoming increasingly necessary as the change control process becomes
ever more complicated in organizations deploying several different networks, oper-
ating systems, languages, and database management systems in which there may be
many concurrent versions of an application, each for a different platform. One func-
tion of this software is to control access to modules in the system library. Each time
a module is checked out or in, this activity is recorded, after being authorized by the

Configuration management
The process of ensuring that only
authorized changes are made to a system.

Baseline modules
Software modules that have been tested,
documented, and approved to be included
in the most recently created version of a
system.

System librarian
A person responsible for controlling the
checking out and checking in of baseline
modules for a system when a system is
being developed or maintained.

Build routines
Guidelines that list the instructions to
construct an executable system from the
baseline source code.

There are two general kinds of configuration management tools:
revision control and source code control. With revision control
tools, each system module file is “frozen” (unchangeable) to
a specific version level or is designated as “floating” (change-
able), meaning a programmer may check out, lock, and modify
a specific system module. Only the most recent version of a
module—and the specific changes made to it—are stored in the
library; all previous versions of a module can be reconstructed,
if needed, by applying any changes to the module in reverse

order. Source code control tools extend revision control to not
only a single module, but to any interrelated files to the module
being changed. Configuration management tools have become
invaluable to the system maintenance process by facilitating
the rebuilding of any historic version of a system by recompiling
the proper source code modules. Configuration management
tools allow you to trace an executable code module back to its
original source code version, greatly speeding the identification
of programming errors.

Configuration Management Tools

 Chapter 14 Maintaining inforMation SySteMS 497

librarian. This software helps the librarian to track that all necessary steps have been
followed before a new module is released to production, including all integration
tests, documentation updates, and approvals.

role of automated Development tools in Maintenance
In traditional systems development, much of the time is spent on coding and testing.
When software changes are approved, code is first changed and then tested. Once
the functionality of the code is assured, the documentation and specification docu-
ments are updated to reflect system changes. Over time, the process of keeping all
system documentation “current” can be a very boring and time-consuming activity
that is often neglected. This neglect makes future maintenance by the same or differ-
ent programmers difficult at best.

A primary objective of using automated tools for systems development and
maintenance is to radically change the way in which code and documentation are
modified and updated. When using an integrated development environment, ana-
lysts maintain design documents such as data flow diagrams and screen designs,
not source code. In other words, design documents are modified and then code
generators automatically create a new version of the system from these updated
designs. Also, because the changes are made at the design specification level, most
documentation changes, such as an updated data flow diagram, will have already
been completed during the maintenance process itself. Thus, one of the big-
gest advantages to using automated tools, for example, is its usefulness in system
maintenance.

In addition to using general automated tools for maintenance, two special-pur-
pose tools, reverse engineering and reengineering tools, are used to maintain older
systems that have incomplete documentation. These tools are often referred to as
design recovery tools because their primary benefit is to create high-level design docu-
ments of a program by reading and analyzing its source code.

Reverse engineering tools are those that can create a representation of a system
or program module at a design level of abstraction. For example, reverse engineer-
ing tools read program source code as input; perform an analysis; and extract infor-
mation such as program control structures, data structures, and data flow. Once a
program is represented at a design level using both graphical and textual representa-
tions, the design can be more effectively restructured to current business needs or
programming practices by an analyst. For example, Microsoft’s Visual Studio.NET
can be used to reverse engineer applications into UML or other development dia-
grams (see Figure 14-10).

Similarly, reengineering tools extend reverse engineering tools by automatically
(or interactively with a systems analyst) altering an existing system in an effort to
improve its quality or performance. As reverse and reengineering capabilities are
included in more popular development environments, the ability to extend the life
and evolve the capabilities of existing systems will be enhanced (Orr, 2005).

WebSite MaintenanCe
All of the discussion on maintenance in this chapter applies to any type of informa-
tion system, no matter what platform it runs on. However, some special issues and
procedures apply to websites, based on their special nature and operational status.
These issues and procedures include the following:

•	 24/7/365. Most websites are never purposely unavailable. In fact, an e-com-
merce website has the advantage of continuous operation. Thus, maintenance
of pages and the overall site usually must be done without taking the site of-
fline. However, it may be necessary to lock out use of pages in a portion of a

reverse engineering
Automated tools that read program source
code as input and create graphical and
textual representations of design-level
information such as program control
structures, data structures, logical flow, and
data flow.

reengineering
Automated tools that read program source
code as input; perform an analysis of
the program’s data and logic; and then
automatically, or interactively with a
systems analyst, alter an existing system
in an effort to improve its quality or
performance.

498 part V iMpleMentation and Maintenance

website while changes are made to those pages. This can be done by inserting a
“Temporarily Out of Service” notice on the main page of the section being main-
tained and disabling all links within that segment. Alternatively, references to the
main page of the section can be temporarily rerouted to an alternative location
where the current pages are kept while maintenance is performed to create new
versions of those pages. The really tricky part is keeping the site consistent for
a user during a session; that is, it can be confusing to a user to see two different
versions of a page during the same online session. Browser caching functions
may bring up an old version of a page even when that page changes during the
session. One precaution against this confusion is locking, as explained previously.
Another approach is to not lock a page being changed, but to include a date and
time stamp of the most recent change. This gives the page visitor an indication of
the change, which may reduce confusion.

•	 Check for broken links. Arguably the most common maintenance issue for any
website (besides changing the content of the site) is validating that links from
site pages (especially for links that go outside the source site) are still accurate.
Periodic checks need to be performed to make sure active pages are found from
all links—this can be done via software such as LinkAlarm (www.linkalarm.com)
and Doctor HTML (www.fixingyourwebsite.com). Note the irony of any poten-
tially changing URL in a published paper or textbook! In addition, periodic
human checks need to be performed to make sure that the content found at a
still-existing referenced page is still the intended content.

•	 HTML validation. Before modified or new pages are published, these pages
should be processed by a code validation routine to ensure that all the code,
including applets, works. If you are using HTML, XML, script, or another editor,
such a feature is likely built into the software.

•	 Reregistration. It may be necessary to reregister a website with search engines
when the content of your site changes significantly. Reregistration may be
necessary in order for visitors to find your site based on the new or changed
content.

Figure 14-10
Visual Studio.NET can reverse engineer
applications into Visio UML diagrams
(Source: Microsoft Corporation.)

http://www.linkalarm.com
http://www.fixingyourwebsite.com

 Chapter 14 Maintaining inforMation SySteMS 499

•	 Future editions. One of the most important issues to address to ensure effective
website use is to avoid confusing visitors. In particular, frequent visitors can be-
come confused if the site is constantly changing. To avoid confusion, you can
post indications of future enhancements to the site and, as with all information
systems, you can batch changes to reduce the frequency of site changes.

In addition, various website design decisions can greatly influence a site’s main-
tainability; refer to Chapter 12 to review guidelines for effective website design.

eleCtroniC CoMMerCe aPPliCation:
Maintaining an inforMation SySteM for
Pine Valley furniture’S WebStore
In this chapter, we examined various aspects of conducting system maintenance.
Maintenance is a natural part of the life of any system. In this section, we conclude
our discussion of PVF’s WebStore by examining a maintenance activity for this system.

Maintaining Pine Valley furniture’s WebStore
Early on a Saturday evening, Jackie Judson, vice president of marketing at PVF, was
reviewing new-product content that was recently posted on the company’s electronic
commerce website, the WebStore. She was working on Saturday evening because she
was leaving the next day for a long-overdue, two-week vacation to the Black Hills of
South Dakota. Before she could leave, however, she wanted to review the appearance
and layout of the pages.

Midway through the review process, pages from the WebStore began to load
very slowly. Finally, after requesting detailed information on a particular product, the
WebStore simply stopped working. The title bar on her Web browser reported the
error:

Cannot find Server
Given that her plane for Rapid City left in less than 12 hours, Jackie wanted to review
the content and needed to figure out some way to overcome this catastrophic system
error. Her first thought was to walk over to the offices of the information systems de-
velopment group within the same building. When she did, she found no one there.
Her next idea was to contact Jim Woo, senior systems analyst and the project man-
ager for the WebStore system. She placed a call to Jim’s home and found that he was
at the grocery store but would be home soon. Jackie left a message for Jim to call her
ASAP at the office.

Within 30 minutes, Jim returned the call and was on his way into the office to
help Jackie. Although not a common occurrence, this was not the first time that Jim
had gone into the office to assist users when systems failed during off hours. Before
leaving for the office, he connected to the Internet and also found the WebStore to
be unavailable. Because PVF outsourced the hosting of the WebStore to an outside
vendor, Jim immediately notified the vendor that the WebStore was down. The ven-
dor was a local Internet service provider (ISP) that had a long-term relationship with
PVF to provide Internet access, but it had limited experience with hosting commer-
cial websites. Jim was informed that a system “glitch” was responsible for the outage
and that the WebStore would be online within the next hour or so. Unfortunately,
this was not the first time the WebStore had failed, and Jim felt powerless. More than
ever before, he believed that PVF needed to find a better way to learn about system
failures and, more important, it needed an improved confidence that the system
would operate reliably.

500 part V iMpleMentation and Maintenance

On Monday morning, Jim requested a meeting with several senior PVF managers.
At this meeting, he posed the following questions:

•	 How much is our website worth?
•	 How much does it cost our company when our website goes down?
•	 How reliable does our website need to be?

These questions encouraged a spirited discussion. Everyone agreed that the
WebStore was “critical” to PVF’s future and unanimously agreed that it was “unac-
ceptable” for the site to be down. One manager summarized the feeling of the group
by stating, “I cannot think of a single valid excuse for the system to crash … our
customers have incredibly high expectations of us … one major mishap could prove
disastrous for PVF.”

Jim outlined to the group what he felt the next steps needed to be. “I believe
that the root of our problem is with our contract with our Web hosting company.
Specifically, we need to renegotiate our contract, or find a different vendor, so that
it includes wording to reflect our expectations of service. Our current agreement
does not address how emergencies are responded to or what remedies we have for
continued system failures. The question we must also address is the cost differences
between having a site that operates 99 percent of the time versus one that operates
99.999 percent of the time. I believe,” he continued, “that it could increase our costs
tens of thousands of dollars per month to guarantee extremely high levels of system
reliability.”

At the conclusion of the meeting, the senior managers unanimously agreed
that Jim should immediately develop a plan for addressing the WebStore’s service
level problems. To begin this process, Jim prepared a detailed list of specific vendor
services they desired. He felt a very specific list was needed so that the relative costs
for different services and varying levels of service (e.g., response times for system
failures and penalties for noncompliance) could be discussed.

When asked by a colleague what type of maintenance was being performed on
the WebStore to improve system reliability, Jim had to pause and think. “Well, it is
clearly adaptive in that we plan to migrate the system to a more reliable environment.
It is also perfective and preventive. … It is perfective in that we want to make some oper-
ational changes that will improve system performance, and it is also preventive given
that one of our objectives is to reduce the likelihood of system failures.” Through
this discussion it became clear to Jim that the system was much larger than simply
the HTML used to construct the WebStore; it also included the hardware, system
software, procedures, and response team in place to deal with unforeseen events.
Although he had heard it said many times before, Jim now understood that a success-
ful system reflected all of its various aspects.

Summary
Maintenance is the final phase in the SDLC. During main-
tenance, systems are changed to rectify internal process-
ing errors or to extend the functionality of the system.
Maintenance is where a majority of the financial invest-
ment in a system occurs and can span more than 20 years.
More and more information systems professionals have
devoted their careers to systems maintenance and, as
more systems move from initial development into opera-
tional use, it is likely that even more professionals will in
the future.

It is during maintenance that the SDLC becomes a
life cycle because requests to change a system must first
be approved, planned, analyzed, designed, and then

implemented. In some special cases, when business opera-
tions are impaired due to an internal system error, quick
fixes can be made. This, of course, circumvents the nor-
mal maintenance process. After quick fixes are made,
maintenance personnel must back up and perform a thor-
ough analysis of the problem to make sure that the correc-
tion conforms to normal systems development standards
for design, programming, testing, and documentation.
Maintenance requests can be one of four types: corrective,
adaptive, perfective, and preventive.

How a system is designed and implemented can
greatly impact the cost of performing maintenance. The
number of unknown errors in a system when it is installed

 Chapter 14 Maintaining inforMation SySteMS 501

is a primary factor in determining the cost of maintenance.
Other factors, such as the number of separate customers
and the quality of documentation, significantly influence
maintenance costs.

Another maintenance management issue relates to
understanding how to measure the quality of the mainte-
nance effort. Most organizations track the frequency, time,
and type of each failure and compare performance over
time. Because limited resources preclude organizations
from performing all maintenance requests, some formal
process for reviewing requests must be established to make
sure that only those requests deemed consistent with orga-
nizational and information systems plans are performed. A
central source, usually a project manager, is used to collect
maintenance requests. When requests are submitted, this
person forwards each request to a committee charged with
assessing its merit. Once assessed, the project manager as-
signs higher-priority activities to maintenance personnel.

Maintenance personnel must be prevented from
making unapproved changes to a system. To do this, most

organizations assign one member of the maintenance
staff, typically a senior programmer or analyst, to serve as
the system librarian. The librarian controls the checking
out and checking in of system modules to ensure that ap-
propriate procedures for performing maintenance, such
as adequate testing and documentation, are adhered to.

Automated tools are actively employed during main-
tenance to enable maintenance to be performed on design
documents rather than on low-level source code. Reverse
engineering and reengineering tools are used to recover
design specifications of older systems. Once recovered,
these older systems can then be changed at the design
level rather than the source code level, yielding a signifi-
cant improvement in maintenance personnel productivity.

Website maintenance involves some special atten-
tion, including: 24/7/365 operation, checking for broken
external links, validating code changes before publish-
ing new or revised pages, reregistration of the website for
search engines, and avoiding visitor confusion by preview-
ing future changes.

Key TermS

14.1 Adaptive maintenance
14.2 Baseline modules
14.3 Build routines
14.4 Configuration management
14.5 Corrective maintenance

14.6 Maintainability
14.7 Maintenance
14.8 Mean time between failures

(MTBF)
14.9 Perfective maintenance

14.10 Preventive maintenance
14.11 Reengineering
14.12 Reverse engineering
14.13 System librarian

Match each of the key terms above with the definition that best
fits it.

____ Changes made to a system to fix or enhance its
functionality.

____ Changes made to a system to repair flaws in its design, cod-
ing, or implementation.

____ Changes made to a system to evolve its functionality to
changing business needs or technologies.

____ Changes made to a system to add new features or to im-
prove performance.

____ Changes made to a system to avoid possible future problems.

____ The ease with which software can be understood, cor-
rected, adapted, and enhanced.

____ A measurement of error occurrences that can be tracked
over time to indicate the quality of a system.

____ The process of ensuring that only authorized changes are
made to a system.

____ Software modules that have been tested, documented, and
approved to be included in the most recently created ver-
sion of a system.

____ A person responsible for controlling the checking out and
checking in of baseline modules for a system when a sys-
tem is being developed or maintained.

____ Guidelines that list the instructions to construct an execut-
able system from the baseline source code.

____ Automated tools that read program source code as input
and create graphical and textual representations of design-
level information such as program control structures, data
structures, logical flow, and data flow.

____ Automated tools that read program source code as input;
perform an analysis of the program’s data and logic; and
then automatically, or interactively with a systems analyst,
alter an existing system in an effort to improve its quality
or performance.

502 part V iMpleMentation and Maintenance

revIew QueSTIonS
 14.14 Contrast the following terms:

a. Adaptive maintenance, corrective maintenance, per-
fective maintenance, preventive maintenance

b. Baseline modules, build routines, system librarian
c. Maintenance, maintainability

 14.15 List the steps in the maintenance process and contrast
them with the phases of the SDLC.

 14.16 What are the different types of maintenance and how do
they differ?

 14.17 Describe the factors that influence the cost of mainte-
nance. Are any factors more important than others?
Why?

 14.18 Describe three ways for organizing maintenance person-
nel and contrast the advantages and disadvantages of
each approach.

 14.19 What types of measurements must be taken to gain an
understanding of the effectiveness of maintenance? Why

is tracking mean time between failures an important
measurement?

 14.20 What managerial issues can be better understood by mea-
suring maintenance effectiveness?

 14.21 Describe the process for controlling maintenance re-
quests. Should all requests be handled in the same way or
are there situations when you should be able to circum-
vent the process? If so, when and why?

 14.22 What is meant by configuration management? Why do
you think organizations have adopted the approach of us-
ing a systems librarian?

 14.23 How are automated tools used in the maintenance of in-
formation systems?

 14.24 What is the difference between reverse engineering and
reengineering tools?

 14.25 What are some special maintenance issues and proce-
dures that are especially relevant for websites?

ProblemS and exercISeS
 14.26 Maintenance has been presented as both the final stage of

the SDLC (see Figure 14-1) and as a process similar to the
SDLC (see Figure 14-3). Why does it make sense to talk
about maintenance in both of these ways? Do you see a
conflict in looking at maintenance in both ways?

 14.27 In what ways is a request to change an information system
handled differently from a request for a new information
system?

 14.28 According to Figure 14-4, corrective maintenance is by far
the most frequent form of maintenance. What can you do
as a systems analyst to reduce this form of maintenance?

 14.29 What other or additional information should be col-
lected on a System Service Request (see Figure 14-2) for
maintenance?

 14.30 Briefly discuss how a systems analyst can manage each of
the six cost elements of maintenance described in this
chapter.

 14.31 Suppose you were a system librarian. Using entity rela-
tionship diagramming notation, describe the database
you would need to keep track of the information neces-
sary in your job. Consider operational, managerial, and
planning aspects of the job.

 14.32 Software configuration management is similar to configu-
ration management in any engineering environment. For
example, the product design engineers for a refrigera-
tor need to coordinate dynamic changes in compressors,
power supplies, electronic controls, interior features, and
exterior designs as innovations to each occur. How do
such product design engineers manage the configuration
of their products? What similar practices do systems ana-
lysts and librarians have to follow?

 14.33 In the section on PVF’s WebStore, it is mentioned that Jim
Woo will prepare a list of ISP Web-hosting services. Pre-
pare such a list for website maintenance. Contrast the re-
sponsibilities of the ISP with those of PVF.

FIeld exercISeS
 14.34 Study an information systems department with which you

are familiar or to which you have access. How does this de-
partment organize for maintenance? Has this department
adopted one of the three approaches outlined in Table
14-2 or does it use some other approach? Talk with a se-
nior manager in this department to discover how well this
maintenance organization structure works.

 14.35 Study an information systems department with which you
are familiar or to which you have access. How does this
department measure the effectiveness of systems mainte-
nance? What specific metrics are used and how are these
metrics used to effect changes in maintenance practices?
If there is a history of measurements over several years,
how can changes in the measurements be explained?

 Chapter 14 Maintaining inforMation SySteMS 503

 14.36 With the help of other students or your instructor, contact
a system librarian in an organization. What is this person’s
job description? What tools does this person use to help
him or her in the job? To whom does this person report?
What previous jobs did this person hold, and to what
job does this person expect to be promoted in the near
future?

 14.37 Interview the Webmaster at a company where you work
or where you have a contact. Investigate the procedures
followed to maintain this website. Document these proce-
dures. What differences or enhancements did you find,
compared with the special website maintenance issues
and procedures listed in this chapter?

reFerenceS
Andrews, D. C., and N. S. Leventhal. 1993. Fusion: Integrating IE,

CASE, JAD: A Handbook for Reengineering the Systems Organiza-
tion. Upper Saddle River, NJ: Prentice Hall.

Hanna, M. 1992. “Using Documentation as a Life-Cycle Tool.”
Software Magazine 6(December): 41–46.

Kaplan, S. 2002. “Now Is the Time to Pull the Plug on Your
Legacy Apps.” CIO Magazine, March 15. Available at (http://
www.cio.com.au/article/180065/now_time_pull_plug_your_leg-
acy_apps/). Accessed April 4, 2015.

Legard, D. 2000. “Study: Online Maintenance Costs Just Keep
Growing.” PCWorld, November 9. Available at (http://www.
pcworld.com/article/34502/article.html) Accessed April 4,
2015.

Lytton, N. 2001. “Maintenance Dollars at Work.” Computer-
World, July 16. Available at (http://www.computerworld.com/
article/2582502/it-management/maintenance-dollars-at-work.
html). Accessed April 4, 2015.

Martin, E. W., C. V. Brown, D. W. DeHayes, J. A. Hoffer, and W. C.
Perkins. 2008. Managing Information Technology: What Managers
Need to Know, 6th ed. Upper Saddle River, NJ: Prentice Hall.

Nash, K. 2010. “ERP: How and Why You Need to Manage It Dif-
ferently.” Available at (http://www.cio.com/article/526213/
ERP_How_and_Why_You_Need_to_Manage_It_Differently?page=
1&taxonomyId=3000). Accessed April 5, 2015.

Orr, S. 2005. “Design and Generate Code with Visio.”
 Dotnetjunkies, March 7. Available at (http://www.drdobbs.
com/windows/design-and-generate-code-with-visio/219200253).
 Accessed April 4, 2015.

Pressman, R. S. 2005. Software Engineering, 6th ed. New York:
McGraw-Hill.

Worthen, B. 2003. “No Tolerance for High Maintenance.”
CIO Magazine, July 1. Available at (http://www.cio.com.au/
article/184546/no_tolerance_high_maintenance/). Accessed
April 4, 2015.

http://www.cio.com.au/article/180065/now_time_pull_plug_your_leg-acy_apps/
http://www.cio.com.au/article/180065/now_time_pull_plug_your_leg-acy_apps/
http://www.cio.com.au/article/180065/now_time_pull_plug_your_leg-acy_apps/
http://www.pcworld.com/article/34502/article.html
http://www.pcworld.com/article/34502/article.html
http://www.computerworld.com/article/2582502/it-management/maintenance-dollars-at-work.html
http://www.computerworld.com/article/2582502/it-management/maintenance-dollars-at-work.html
http://www.computerworld.com/article/2582502/it-management/maintenance-dollars-at-work.html
http://www.cio.com/article/526213/ERP_How_and_Why_You_Need_to_Manage_It_Differently?page=1&taxonomyId=3000
http://www.cio.com/article/526213/ERP_How_and_Why_You_Need_to_Manage_It_Differently?page=1&taxonomyId=3000
http://www.cio.com/article/526213/ERP_How_and_Why_You_Need_to_Manage_It_Differently?page=1&taxonomyId=3000
http://www.drdobbs.com/windows/design-and-generate-code-with-visio/219200253
http://www.drdobbs.com/windows/design-and-generate-code-with-visio/219200253
http://www.cio.com.au/article/184546/no_tolerance_high_maintenance/
http://www.cio.com.au/article/184546/no_tolerance_high_maintenance/

Abstract class A class that has no direct instance, but whose descend-
ents may have direct instances. (8)

Abstract operation Defines the form or protocol of the operation, but
not its implementation. (8)

Acceptance testing The process whereby actual users test a completed
information system, the end result of which is the users’ acceptance of
it. (13)

Action stubs That part of a decision table that lists the actions that re-
sult for a given set of conditions. (7)

Activation The time period during which an object performs an
 operation. (7)

Activity In business process modeling, an action that must take place
for a process to be completed. (7)

Activity diagram Shows the conditional logic for the sequence of sys-
tem activities needed to accomplish a business process. (7)

Actor An external entity that interacts with a system. (7)

Adaptive maintenance Changes made to a system to evolve its function-
ality to changing business needs or technologies. (14)

Affinity clustering The process of arranging planning matrix informa-
tion so that clusters of information with a predetermined level or type of
affinity are placed next to each other on a matrix report. (4)

Aggregation A part-of relationship between a component object and
an aggregate object. (8)

Alpha testing User testing of a completed information system using
simulated data. (13)

Analysis The second phase of the SDLC in which system requirements
are studied and structured. (1)

Application program interface (API) Software building blocks that
are used to ensure that common system capabilities, such as user inter-
faces and printing, as well as modules are standardized to facilitate data
 exchange between clients and servers. (12)

Application server A computing server where data analysis functions
primarily reside. (12)

Application software Computer software designed to support organi-
zational functions or processes. (1)

Association A named relationship between or among object classes.
(8)

Association role The end of an association where it connects to a
class. (8)

Associative class An association that has attributes or operations of its
own or that participates in relationships with other classes. (8)

Associative entity An entity type that associates the instances of one or
more entity types and contains attributes that are peculiar to the rela-
tionship between those entity instances; also called a gerund. (8)

Asynchronous message A message in which the sender does not have
to wait for the recipient to handle the message. (7)

Attribute A named property or characteristic of an entity that is of in-
terest to the organization. (8)

Balancing The conservation of inputs and outputs to a DFD process
when that process is decomposed to a lower level. (7)

Baseline modules Software modules that have been tested, document-
ed, and approved to be included in the most recently created version of
a system. (14)

Baseline Project Plan (BPP) A major outcome and deliverable from
the project initiation and planning phase that contains the best estimate
of a project’s scope, benefits, costs, risks, and resource requirements. (5)

Behavior Represents how an object acts and reacts. (8)

Beta testing User testing of a completed information system using real
data in the real user environment. (13)

Binary relationship A relationship between instances of two entity
types. This is the most common type of relationship encountered in data
modeling. (8)

Bottom-up planning A generic information systems planning method-
ology that identifies and defines IS development projects based upon
solving operational business problems or taking advantage of some busi-
ness opportunities. (4)

Break-even analysis A type of cost-benefit analysis to identify at what
point (if ever) benefits equal costs. (5)

Build routines Guidelines that list the instructions to construct an ex-
ecutable system from the baseline source code. (14)

Business case The justification for an information system, presented
in terms of the tangible and intangible economic benefits and costs and
the technical and organizational feasibility of the proposed system. (5)

Business process reengineering (BPR) The search for, and implemen-
tation of, radical change in business processes to achieve breakthrough
improvements in products and services. (6)

Business-to-business (B2B) Electronic commerce between business
partners, such as suppliers and intermediaries (4)

Business-to-consumer (B2C) Electronic commerce between businesses
and consumers. (4)

Business-to-employee (B2E) Electronic commerce between businesses
and their employees. (4)

Calculated field A field that can be derived from other database fields.
Also known as a computed field or a derived field. (9)

Candidate key An attribute (or combination of attributes) that unique-
ly identifies each instance of an entity type. (8)

Cardinality The number of instances of entity B that can (or must) be
associated with each instance of entity A.(8)

Cascading Style Sheets (CSSs) A set of style rules that tells a Web brows-
er how to present a document. (12)

Class diagram Shows the static structure of an object-oriented model;
the object classes, their internal structure, and the relationships in which
they participate. (8)

Class-scope attribute An attribute of a class that specifies a value com-
mon to an entire class, rather than a specific value for an instance. (8)

Class-scope operation An operation that applies to a class rather than
an object instance. (8)

Client The (front-end) portion of the client/server database system
that provides the user interface and data manipulation functions. (12)

Client/server architecture A LAN-based computing environment
in which a central database server or engine performs all database

Glossary of Terms

504

 Glossary of Terms 505
 commands sent to it from client workstations, and application programs
on each client concentrate on user interface functions. (12)

Closed-ended questions Questions in interviews that ask those
 responding to choose from among a set of specified responses. (6)

Cloud computing The provision of computing resources, including ap-
plications, over the Internet, so customers do not have to invest in the
computing infrastructure needed to run and maintain the resources. (2)

COCOMO The Constructive Cost Model (COCOMO) is an automat-
ed software estimation model that uses historical project data and cur-
rent as well as future project characteristics to estimate project costs.(3)

Command language interaction A human–computer interaction meth-
od whereby users enter explicit statements into a system to invoke opera-
tions. (11)

Competitive strategy The method by which an organization attempts
to achieve its mission and objectives. (4)

Composite attribute An attribute that has meaningful component
parts. (8)

Composition A part-of relationship in which parts belong to only one
whole object, and the parts live and die with the whole object. (8)

Computer-aided software engineering (CASE) tools Software tools
that provide automated support for some portion of the systems devel-
opment process. (1)

Conceptual data model A detailed model that captures the overall
structure of organizational data that is independent of any database
management system or other implementation considerations. (8)

Concrete class A class that can have direct instances. (8)

Condition stubs That part of a decision table that lists the conditions
relevant to the decision. (7)

Configuration management The process of ensuring that only author-
ized changes are made to a system. (14)

Constructor operation An operation that creates a new instance of a
class. (8)

Content management system (CMS) A special type of software appli-
cation for collecting, organizing, and publishing website content. (12)

Context diagram An overview of an organizational system that shows
the system boundaries, external entities that interact with the system,
and the major information flows between the entities and the system. (7)

Cookie crumbs The technique of placing “tabs” or sequenced links on
a Web page that show a user where he or she is within a site and where
he or she has been. (11)

Corporate strategic planning An ongoing process that defines the mis-
sion, objectives, and strategies of an organization. (4)

Corrective maintenance Changes made to a system to repair flaws in its
design, coding, or implementation. (14)

Critical path The shortest time in which a project can be completed.
(3)

Critical path scheduling A scheduling technique whose order and du-
ration of a sequence of task activities directly affect the completion date
of a project. (3)

Customization Internet sites that allow users to customize the content
and look of the site based on their personal preferences. (12)

Data flow diagram (DFD) A picture of the movement of data between
external entities and the processes and data stores within a system. (7)

Data store Data at rest, which may take the form of many different
physical representations. (7)

Data type A coding scheme recognized by system software for repre-
senting organizational data. (9)

Database engine The (back-end) portion of the client/server database
system running on the server that provides database processing and
shared access functions. (12)

Decision table A matrix representation of the logic of a decision,
which specifies the possible conditions for the decision and the result-
ing actions. (7)

Default value A value a field will assume unless an explicit value is en-
tered for that field. (9)

Degree The number of entity types that participate in a relationship. (8)

Deliverable An end product of an SDLC phase. (3)

Denormalization The process of splitting or combining normalized re-
lations into physical tables based on affinity of use of rows and fields. (9)

Derived attribute An attribute whose value can be computed from re-
lated attribute values. (8)

Design The third phase of the SDLC in which the description of the
recommended solution is converted into logical and then physical sys-
tem specifications. (1)

Desk checking A testing technique in which the program code is se-
quentially executed manually by the reviewer. (13)

DFD completeness The extent to which all necessary components of a
DFD have been included and fully described. (7)

DFD consistency The extent to which information contained on one
level of a set of nested DFDs is also included on other levels. (7)

Dialogue The sequence of interaction between a user and a system. (11)

Dialogue diagramming A formal method for designing and represent-
ing human–computer dialogues using box and line diagrams. (11)

Direct installation Changing over from the old information system to a
new one by turning off the old system when the new one is turned on. (13)

Discount rate The rate of return used to compute the present value of
future cash flows. (5)

Disjoint rule Specifies that if an entity instance of the supertype is a
member of one subtype, it cannot simultaneously be a member of any
other subtype. (8)

Disruptive technologies Technologies that enable the breaking of
long-held business rules that inhibit organizations from making radical
business changes. (6)

Domain The set of all data types and values that an attribute can as-
sume. (8)

Domain naming system (BIND) A method for translating Internet
domain names into Internet Protocol (IP) addresses. BIND stands for
Berkeley Internet Name Domain. (12)

Drop-down menu A menu-positioning method that places the access
point of the menu near the top line of the display; when accessed, men-
us open by dropping down onto the display. (11)

Economic feasibility A process of identifying the financial benefits and
costs associated with a development project. (5)

Efficiency A usability dimension concerned with how quickly users can
perform tasks once they know how to perform them. (10)

Electronic commerce (EC) Internet-based communication to support
day-to-day business activities. (4)

Electronic data interchange (EDI) The use of telecommunications
technologies to directly transfer business documents between organiza-
tions. (4)

Electronic performance support system (EPSS) Component of a
 software package or an application in which training and educational
information is embedded. An EPSS can take several forms, including
a tutorial, an expert system shell, and hypertext jumps to reference
 materials. (13)

Encapsulation The technique of hiding the internal implementation
details of an object from its external view. (8)

Enterprise resource planning (ERP) system A system that integrates
individual traditional business functions into a series of modules so that

506 Glossary of Terms

a single transaction occurs seamlessly within a single information system
rather than several separate systems. (2)

Entity instance A single occurrence of an entity type. Also known as an
instance. (8)

Entity type A collection of entities that share common properties or
characteristics. (8)

Entity-relationship data model (E-R model) A detailed, logical repre-
sentation of the entities, associations, and data elements for an organiza-
tion or business area. (8)

Entity-relationship diagram (E-R diagram) A graphical representation
of an E-R model. (8)

Error rate A usability dimension concerned with how many errors a user
might encounter, and how easy it is to recover from those errors. (10)

Event In business process modeling, a trigger that initiates the start of
a process. (7)

Extend relationship An association between two use cases where one
adds new behaviors or actions to the other. (7)

eXtensible Markup Language (XML) An Internet authoring language
that allows designers to create customized tags, enabling the definition,
transmission, validation, and interpretation of data between applica-
tions. (12)

eXtensible Stylesheet Language (XSL) A specification for separating
style from content when generating XML pages. (12)

Extension The set of behaviors or functions in a use case that follow
exceptions to the main success scenario. (7)

External documentation System documentation that includes the
outcome of structured diagramming techniques such as data flow and
entity-relationship diagrams. (13)

Feasibility study A study that determines if the proposed information
system makes sense for the organization from an economic and opera-
tional standpoint. (3)

Field The smallest unit of named application data recognized by sys-
tem software. (9)

File organization A technique for physically arranging the records of
a file. (9)

File server A device that manages file operations and is shared by each
client PC attached to a LAN. (12)

Flow In business process modeling, it shows the sequence of action in
a process. (7)

Foreign key An attribute that appears as a nonprimary key attribute in
one relation and as a primary key attribute (or part of a primary key) in
another relation. (9)

Form A business document that contains some predefined data and
may include some areas where additional data are to be filled in. An
instance of a form is typically based on one database record. (10)

Form interaction A highly intuitive human–computer interaction
method whereby data fields are formatted in a manner similar to paper-
based forms. (11)

Formal system The official way a system works as described in organi-
zational documentation. (6)

Functional decomposition An iterative process of breaking the descrip-
tion of a system down into finer and finer detail, which creates a set of
charts in which one process on a given chart is explained in greater
detail on another chart. (7)

Functional dependency A constraint between two attributes in which
the value of one attribute is determined by the value of another attrib-
ute. (9)

Gantt chart A graphical representation of a project that shows each
task as a horizontal bar whose length is proportional to its time for com-
pletion. (3)

Gap analysis The process of discovering discrepancies between two or
more sets of DFDs or discrepancies within a single DFD. (7)

Gateway In business process modeling, a decision point. (7)

Hashed file organization A file organization in which the address of
each row is determined using an algorithm. (9)

Help desk A single point of contact for all user inquiries and problems
about a particular information system or for all users in a particular de-
partment. (13)

Homonym A single attribute name that is used for two or more differ-
ent attributes. (9)

Hypertext Markup Language (HTML) The standard language for rep-
resenting content on the Web through the use of hundreds of command
tags. (12)

Hypertext Transfer Protocol (HTTP) A communication protocol for
exchanging information on the Internet. (12)

Icon Graphical picture that represents specific functions within a sys-
tem. (11)

Identifier A candidate key that has been selected as the unique, identi-
fying characteristic for an entity type. (8)

Implementation The fourth phase of the SDLC in which the informa-
tion system is coded, tested, installed, and supported in the organiza-
tion. (1)

Include relationship An association between two use cases where one
use case uses the functionality contained in the other. (7)

Incremental commitment A strategy in systems analysis and design in
which the project is reviewed after each phase and continuation of the
project is rejustified. (4)

Index A table used to determine the location of rows in a file that sat-
isfy some condition. (9)

Indexed file organization A file organization in which rows are stored
either sequentially or nonsequentially, and an index is created that al-
lows software to locate individual rows. (9)

Indifferent condition In a decision table, a condition whose value does
not affect which actions are taken for two or more rules. (7)

Informal system The way a system actually works. (6)

Information systems analysis and design The complex organizational
process whereby computer-based information systems are developed
and maintained. (1)

Information systems infrastructure The hardware, software, networks,
data, facilities, human resources, and services used by organizations to
support their decision making, business processes, and competitive strat-
egy. (12)

Information systems planning (ISP) An orderly means of assessing the
information needs of an organization and defining the systems, data-
bases, and technologies that will best satisfy those needs. (4)

Infrastructure as a service (IaaS) A cloud computing model in which
only the basic capabilities of processing, storage, and networking are
provided. (12)

Inheritance The property that occurs when entity types or object class-
es are arranged in a hierarchy and each entity type or object class as-
sumes the attributes and methods of its ancestors, that is, those higher
up in the hierarchy. Inheritance allows new but related classes to be de-
rived from existing classes. (1)

Inspections A testing technique in which participants examine pro-
gram code for predictable language-specific errors. (13)

Installation The organizational process of changing over from the cur-
rent information system to a new one. (13)

Intangible benefit A benefit derived from the creation of an infor-
mation system that cannot be easily measured in dollars or with cer-
tainty. (5)

 Glossary of Terms 507
Intangible cost A cost associated with an information system that can-
not be easily measured in terms of dollars or with certainty. (5)

Integration testing The process of bringing together all of the modules
that a program comprises for testing purposes. Modules are typically in-
tegrated in a top-down, incremental fashion. (13)

Interface A method by which users interact with an information sys-
tem. (11)

Internal documentation System documentation that is part of the pro-
gram source code or is generated at compile time. (13)

Internet A large, worldwide network of networks that use a common
protocol to communicate with each other. (4)

JAD session leader The trained individual who plans and leads Joint
Application Design sessions. (6)

JavaScript Object Notation (JSON) A lightweight data interchange ap-
proach that is relatively easy for humans to understand and for comput-
ers to generate or interpret. (12)

Joint Application Design (JAD) A structured process in which users,
managers, and analysts work together for several days in a series of inten-
sive meetings to specify or review system requirements. (6)

Key business processes The structured, measured set of activities de-
signed to produce a specific output for a particular customer or market. (6)

Learnability A usability dimension concerned with how difficult it is
for the user to perform a task for the first time. (10)

Legal and contractual feasibility The process of assessing potential le-
gal and contractual ramifications due to the construction of a system.
(5)

Level Perspective from which a use case description is written, typically
ranging from high level to extremely detailed. (7)

Level-0 diagram A DFD that represents a system’s major processes,
data flows, and data stores at a high level of detail. (7)

Level-n diagram A DFD that is the result of n nested decompositions
from a process on a level-0 diagram. (7)

Lightweight graphics The use of small, simple images to allow a Web
page to be displayed more quickly. (10)

Local area network (LAN) The cabling, hardware, and software used
to connect workstations, computers, and file servers located in a con-
fined geographical area (typically within one building or campus). (12)

Logical design The part of the design phase of the SDLC in which all
functional features of the system chosen for development in analysis are
described independently of any computer platform. (1)

Maintainability The ease with which software can be understood, cor-
rected, adapted, and enhanced. (14)

Maintenance The final phase of the SDLC in which an information
system is systematically repaired and improved. (1) (14)

Mean time between failures (MTBF) A measurement of error occur-
rences that can be tracked over time to indicate the quality of a system.
(14)

Memorability A usability dimension concerned with how easy it is to
remember how to accomplish a task when revising the system after a
period of time. (10)

Menu interaction A human–computer interaction method in which a
list of system options is provided and a specific command is invoked by
user selection of a menu option. (11)

Method The implementation of an operation. (8)

Middleware A combination of hardware, software, and communi-
cation technologies that brings data management, presentation, and
analysis together into a three-tiered (or n-tiered) client/server environ-
ment. (12)

Minimal guarantee The least amount promised to the stakeholder by
a use case. (7)

Mission statement A statement that makes it clear what business a com-
pany is in. (4)

Multiplicity A specification that indicates how many objects participate
in a given relationship. (8)

Multivalued attribute An attribute that may take on more than one
value for each entity instance. (8)

Natural language interaction A human–computer interaction method
whereby inputs to and outputs from a computer-based application are in
a conventional spoken language such as English. (11)

Network diagram A diagram that depicts project tasks and their inter-
relationships. (3)

Nominal Group Technique (NGT) A facilitated process that supports
idea generation by groups. At the beginning of the process, group mem-
bers work alone to generate ideas, which are then pooled under the
guidance of a trained facilitator. (6)

Normalization The process of converting complex data structures into
simple, stable data structures. (9)

Null value A special field value, distinct from zero, blank, or any other
value, that indicates that the value for the field is missing or otherwise
unknown. (9)

Object A structure that encapsulates (or packages) attributes and
methods that operate on those attributes. An object is an abstraction
of a real-world thing in which data and processes are placed together to
model the structure and behavior of the real-world object. (1) (8)

Object class A logical grouping of objects that have the same (or simi-
lar) attributes, relationships, and behaviors; also called class. (1) (8)

Object-based interaction A human–computer interaction method in
which symbols are used to represent commands or functions. (11)

Objective statements A series of statements that express an organiza-
tion’s qualitative and quantitative goals for reaching a desired future
position. (4)

Object-oriented analysis and design (OOAD) Systems development
methodologies and techniques based on objects rather than data or pro-
cesses. (1)

One-time cost A cost associated with project start-up and development
or system start-up. (5)

Open-ended questions Questions in interviews that have no prespeci-
fied answers. (6)

Operation A function or a service that is provided by all the instances
of a class. (8)

Operational feasibility The process of assessing the degree to which a
proposed system solves business problems or takes advantage of business
opportunities. (5)

Optional attribute An attribute that may not have a value for every en-
tity instance. (8)

Outsourcing The practice of turning over responsibility for some to all
of an organization’s information systems applications and operations to
an outside firm. (2)

Overlap rule Specifies that an entity instance can simultaneously be a
member of two (or more) subtypes. (8)

Paper prototype A series of mock screens that can be used to test con-
tent, look and feel, as well as the task flow and other usability factors.
(10)

Parallel installation Running the old information system and the new
one at the same time until management decides the old system can be
turned off. (13)

Partial specialization rule Specifies that an entity instance of the super-
type does not have to belong to any subtype. (8)

Perfective maintenance Changes made to a system to add new features
or to improve performance. (14)

508 Glossary of Terms

Personalization Providing Internet content to a user based upon
knowledge of that customer. (12)

PERT (Program Evaluation Review Technique) A technique that uses
optimistic, pessimistic, and realistic time estimates to calculate the ex-
pected time for a particular task. (3)

Phased installation Changing from the old information system to the
new one incrementally, starting with one or a few functional compo-
nents and then gradually extending the installation to cover the whole
new system. (13)

Physical design The part of the design phase of the SDLC in which the
logical specifications of the system from logical design are transformed
into technology-specific details from which all programming and system
construction can be accomplished. (1)

Physical file A named set of table rows stored in a contiguous section
of secondary memory. (9)

Physical table A named set of rows and columns that specifies the fields
in each row of the table. (9)

Planning The first phase of the SDLC in which an organization’s total
information system needs are identified, analyzed, prioritized, and ar-
ranged. (1)

Platform as a service (PaaS) A cloud computing model in which the
customer can run his or her own applications that are typically designed
using tools provided by the service provider; the customer has limited or
no control over the underlying infrastructure. (12)

Pointer A field of data that can be used to locate a related field or row
of data. (9)

Political feasibility The process of evaluating how key stakeholders
within the organization view the proposed system. (5)

Polymorphism The same operation may apply to two or more classes
in different ways. (8)

Pool In business process modeling, a way to encapsulate a process that
has two or more participants. (7)

Pop-up menu A menu-positioning method that places a menu near the
current cursor position. (11)

Preconditions Things that must be true before a use case can start. (7)

Present value The current value of a future cash flow. (5)

Preventive maintenance Changes made to a system to avoid possible
future problems. (14)

Primary key An attribute (or combination of attributes) whose value is
unique across all occurrences of a relation. (9)

Primitive DFD The lowest level of decomposition for a DFD. (7)

Process The work or actions performed on data so that they are trans-
formed, stored, or distributed. (7)

Project A planned undertaking of related activities to reach an objec-
tive that has a beginning and an end. (3)

Project charter A short document prepared for the customer during
project initiation that describes what the project will deliver and outlines
generally at a high level all work required to complete the project. (3)

Project closedown The final phase of the project management process
that focuses on bringing a project to an end. (3)

Project execution The third phase of the project management process
in which the plans created in the prior phases (project initiation and
planning) are put into action. (3)

Project initiation The first phase of the project management process in
which activities are performed to assess the size, scope, and complexity of
the project and to establish procedures to support later project activities. (3)

Project management A controlled process of initiating, planning, ex-
ecuting, and closing down a project. (3)

Project manager A systems analyst, with a diverse set of skills—man-
agement, leadership, technical, conflict management, and customer re-
lationship—who is responsible for initiating, planning, executing, and
closing down a project. (3)

Project planning The second phase of the project management pro-
cess that focuses on defining clear, discrete activities and the work need-
ed to complete each activity within a single project. (3)

Project Scope Statement (PSS) A document prepared for the custom-
er that describes what the project will deliver and outlines generally at a
high level all work required to complete the project. (5)

Project workbook An online or hard-copy repository for all project
correspondence, inputs, outputs, deliverables, procedures, and stand-
ards that is used for performing project audits, orienting new team
members, communicating with management and customers, identifying
future projects, and performing post-project reviews. (3)

Prototyping An iterative process of systems development in which re-
quirements are converted to a working system that is continually revised
through close collaboration between an analyst and users. (6)

Query operation An operation that accesses the state of an object but
does not alter the state. (8)

Rapid Application Development (RAD) Systems development method-
ology created to radically decrease the time needed to design and imple-
ment information systems. RAD relies on extensive user involvement,
prototyping, integrated CASE tools, and code generators. (1)

Rational Unified Process (RUP) An object-oriented systems develop-
ment methodology. RUP establishes four phases of development: incep-
tion, elaboration, construction, and transition. Each phase is organized
into a number of separate iterations. (1)

Recurring cost A cost resulting from the ongoing evolution and use
of a system. (5)

Recursive foreign key A foreign key in a relation that references the
primary key values of that same relation. (9)

Reengineering Automated tools that read program source code as in-
put; perform an analysis of the program’s data and logic; and then auto-
matically, or interactively with a systems analyst, alter an existing system
in an effort to improve its quality or performance. (14)

Refactoring Making a program simpler after adding a new feature. (13)

Referential integrity A rule that states that either each foreign key
value must match a primary key value in another relation or the foreign
key value must be null (i.e., have no value). (9)

Relation A named, two-dimensional table of data. Each relation consists
of a set of named columns and an arbitrary number of unnamed rows. (9)

Relational database model Data represented as a set of related tables
or relations. (9)

Relationship An association between the instance of one or more en-
tity types that is of interest to the organization. (8)

Repeating group A set of two or more multivalued attributes that are
logically related. (8)

Report A business document that contains only predefined data; it is
a passive document used solely for reading or viewing. A report typically
contains data from many unrelated records or transactions. (10)

Representational State Transfer (REST) A relatively simple and fast
protocol for communicating JSON data between web service applica-
tions and the operating system. (12)

Request for proposal (RFP) A document provided to vendors that asks
them to propose hardware and system software that will meet the re-
quirements of a new system. (2)

Required attribute An attribute that must have a value for every entity
instance. (8)

 Glossary of Terms 509
Resources Any person, group of people, piece of equipment, or mate-
rial used in accomplishing an activity. (3)

Reuse The use of previously written software resources, especially ob-
jects and components, in new applications. (2)

Reverse engineering Automated tools that read program source code
as input and create graphical and textual representations of design-level
information such as program control structures, data structures, logical
flow, and data flow. (14)

Rules That part of a decision table that specifies which actions are to
be followed for a given set of conditions. (7)

Satisfaction and aesthetics A usability dimension concerned with how
enjoyable a system’s visual appeal is and how enjoyable the system is to
use. (10)

Schedule feasibility The process of assessing the degree to which the
potential time frame and completion dates for all major activities within
a project meet organizational deadlines and constraints for affecting
change. (5)

Scribe The person who makes detailed notes of the happenings at a
Joint Application Design session. (6)

Second normal form (2NF) A relation is in second normal form if
every nonprimary key attribute is functionally dependent on the whole
primary key. (9)

Secondary key One or a combination of fields for which more than
one row may have the same combination of values. (9)

Sequence diagram Depicts the interactions among objects during a
certain period of time. (7)

Sequential file organization A file organization in which rows in a file
are stored in sequence according to a primary key value. (9)

Service-oriented architecture (SOA) A software architecture in which
business processes are broken down into individual components (or ser-
vices) that are designed to achieve the desired results for the service
consumer (which can be either an application, another service, or a
person). (12)

Simple message A message that transfers control from the sender to
the recipient without describing the details of the communication. (7)

Simple Object Access Protocol (SOAP) A protocol for communicating
XML data between web service applications and the operating system. (12)

Single-location installation Trying out a new information system at
one site and using the experience to decide if and how the new system
should be deployed throughout the organization. (13)

Slack time The amount of time that an activity can be delayed without
delaying the project. (3)

Software as a service (SaaS) A cloud computing model in which a ser-
vice provider offers applications via a cloud infrastructure. (12)

Source/sink The origin and/or destination of data; sometimes re-
ferred to as external entities. (7)

Stakeholder People who have a vested interest in the system being de-
veloped. (7)

State Encompasses an object’s properties (attributes and relation-
ships) and the values of those properties. (8)

Stub testing A technique used in testing modules, especially where
modules are written and tested in a top-down fashion, where a few lines
of code are used to substitute for subordinate modules. (13)

Style Sheet-Based HTML A Web design approach that separates con-
tent from the way in which it is formatted and presented, making ongo-
ing maintenance easier and site-wide consistency much higher. (10)

Subtype A subgrouping of the entities in an entity type that is meaning-
ful to the organization and that shares common attributes or relation-
ships distinct from other subgroupings. (8)

Success guarantee What a use case must do effectively in order to sat-
isfy stakeholders. (7)

Supertype A generic entity type that has a relationship with one or
more subtypes. (8)

Support Providing ongoing educational and problem-solving assis-
tance to information system users. For in-house developed systems, sup-
port materials and jobs will have to be prepared or designed as part of
the implementation process. (13)

Swimlane In business process modeling, a way to visually encapsulate
a process. (7)

Synchronous message A type of message in which the caller has to wait
for the receiving object to finish executing the called operation before it
can resume execution itself. (7)

Synonym Two different names that are used for the same attribute. (9)

System documentation Detailed information about a system’s design
specifications, its internal workings, and its functionality. (13)

System librarian A person responsible for controlling the checking out
and checking in of baseline modules for a system when a system is being
developed or maintained. (14)

System testing Bringing together of all of the programs that a system
comprises for testing purposes. Programs are typically integrated in a
top-down, incremental fashion. (13)

Systems analyst The organizational role most responsible for the analy-
sis and design of information systems. (1)

Systems development life cycle (SDLC) The traditional methodology
used to develop, maintain, and replace information systems. (1)

Systems development methodology A standard process followed in an
organization to conduct all the steps necessary to analyze, design, imple-
ment, and maintain information systems. (1)

Tangible benefit A benefit derived from the creation of an information
system that can be measured in dollars and with certainty. (5)

Tangible cost A cost associated with an information system that can be
measured in dollars and with certainty. (5)

Technical feasibility A process of assessing the development organiza-
tion’s ability to construct a proposed system. (5)

Template-based HTML Templates to display and process common at-
tributes of higher-level, more abstract items. (10)

Ternary relationship A simultaneous relationship among instances of
three entity types. (8)

Testing harness An automated testing environment used to review
code for errors, standards violations, and other design flaws. (13)

Thin client A client device designed so that most processing and data
storage occur on the server. (12)

Third normal form (3NF) A relation is in second normal form and has
no functional (transitive) dependencies between two (or more) nonpri-
mary key attributes. (9)

Three-tiered client/server architecture Advanced client/server archi-
tectures in which there are three logical and distinct applications—data
management, presentation, and analysis—that are combined to create a
single information system. (12)

Time value of money (TVM) The concept that money available today
is worth more than the same amount tomorrow. (5)

Top-down planning A generic information systems planning method-
ology that attempts to gain a broad understanding of the information
systems needs of the entire organization. (4)

Total cost of ownership (TCO) The cost of owning and operating a sys-
tem, including the total cost of acquisition, as well as all costs associated
with its ongoing use and maintenance. (5)

510 Glossary of Terms

Total specialization rule Specifies that each entity instance of the su-
pertype must be a member of some subtype of the relationship. (8)

Trigger Event that initiates a use case. (7)

Triggering operation (trigger) An assertion or rule that governs the va-
lidity of data manipulation operations such as insert, update, and delete;
also called a trigger. (8)

Unary relationship A relationship between instances of one entity type;
also called recursive relationship. (8)

Unit testing Each module is tested alone in an attempt to discover any
errors in its code. (13)

Update operation An operation that alters the state of an object. (8)

Usability An overall evaluation of how a system performs in supporting
a particular user for a particular task. (10)

Use case A depiction of a system’s behavior or functionality under vari-
ous conditions as the system responds to requests from users. (7)

Use case diagram A picture showing system behavior, along with the
key actors that interact with the system. (7)

User documentation Written or other visual information about an ap-
plication system, how it works, and how to use it. (13)

Utility computing A form of on-demand computing where resources
in terms of processing, data storage, or networking are rented on an
as-needed basis. The organization only pays for the services used. (12)

Value chain analysis Analyzing an organization’s activities to determine
where value is added to products and/or services and the costs incurred
for doing so; usually also includes a comparison with the activities, add-
ed value, and costs of other organizations for the purpose of making
improvements in the organization’s operations and performance. (4)

Virtual machine A software emulation of a physical computer system,
both hardware and operating system, that allows more efficient sharing
of physical hardware resources. (12)

Virtualization The act of creating virtual (rather than physical) ver-
sions of a variety of computing capabilities including hardware plat-
forms, operating systems, storage devices, and networks. (12)

Walk-through A peer group review of any product created during the
systems development process; also called a structured walk-through. (5)

Web service A method of communication between two electronic de-
vices over a network. (12)

Well-structured relation A relation that contains a minimum amount
of redundancy and that allows users to insert, modify, and delete the
rows without error or inconsistencies; also known as a table. (9)

Wireframe A simple design to show the placement of information ele-
ments on a screen and the space needed for each element. (10)

Work breakdown structure The process of dividing the project into
manageable tasks and logically ordering them to ensure a smooth evolu-
tion between tasks. (3)

Glossary of Acronyms
2NF Second Normal Form

3NF Third Normal Form

API Application Program Interface

ASP Application Service Provider

BEA Break-Even Analysis

BEC Broadway Entertainment Company, Inc.

BIND Domain Naming System

BPMN Business Process Modeling Notation

BPP Baseline Project Plan

BPR Business Process Reengineering

BSP Business Systems Planning

CASE Computer-Aided Software Engineering

CERT/CC Computer Emergency Readiness Team/Coordination
Center

CIO Chief Information Officer

CMS Content Management System

COCOMO Constructive Cost Model

CSS Cascading Style Sheet

CTS Customer Tracking System

DBMS Database Management System

DFD Data Flow Diagram

DOS Disk Operating System

EDW Enterprise Data Warehouse

EER Extended Entity Relationship

EF Early Finish

E-R Entity Relationship

ERP Enterprise Resource Planning

ET Estimated Time

GUI Graphical User Interface

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

IaaS Infrastructure as a Service

IDS Intrusion Detection Software

IE Information Engineering

I/O Input/Output

IP Internet Protocol

IS Information Systems

ISP Internet Service Provider

IT Information Technology

JAD Joint Application Design

JSON JavaScript Object Notation

LAN Local Area Network

LDM Logical Data Model

LF Late Finish

MIS Management Information Systems

MTBF Mean Time Between Failures

NGT Nominal Group Technique

NPV Net Present Value

ODBC Open Database Connectivity

OLAP Online Analytical Processing

OLTP Online Transaction Processing

OOAD Object-Oriented Analysis and Design

PaaS Platform as a Service

PDA Personal Digital Assistant

PE Petrie Electronics

PERT Program Evaluation Review Technique

PIP Project Initiation and Planning

POS Point-of-Sale

PSS Project Scope Statement

PVF Pine Valley Furniture

RAM Random Access Memory

REST Representational State Transfer

RFP Request for Proposal

RFQ Request for Quote

ROI Return on Investment

RUP Rational Unified Process

SaaS Software as a Service

SAP Systems, Applications, and Products

SDLC Systems Development Life Cycle

SNA System Network Architecture

SOA Service-Oriented Architecture

SOAP Simple Object Access Protocol

SPTS Sales Promotion Tracking System

SQL Structured Query Language

SSR System Service Request

SysML Systems Modeling Language

TE Earliest Expected Completion Time

TL Latest Expected Completion Time

TVM Time Value of Money

UML Unified Modeling Language

WBS Work Breakdown Structure

WML Wireless Markup Language

XML eXtensible Markup Language

XSL eXtensible Stylesheet Language

511

Index
A
Abstract class, 296
Abstract operation, 298
Acceptance testing, 463–464
Access, Microsoft, 314–315
Account, 327
Action stubs, 203
Activation, 238
Activity, business process modeling, 247
Activity diagrams, 232–234
Actor, 217
Adaptive maintenance, 489
Ad hoc reuse, 39
Advertising, 441–444
Affinity clustering, 102
Aggregation, 298
Agile methodologies

activities in, 14
analysis-design-code-test cycle, 169
continual user involvement, 169–170
development of, 17–20
requirements determination using,

169–173
traditional methods v., 19

Agile Usage-Centered Design, 170–171
Alpha testing, 463, 480
Amazon.com, 438, 439
Analysis. See also Object-oriented analysis

and design
break-even, 122
cost-benefit, 58, 115
DFDs in, 198–203
gap, 200
introduction to, 147–148
packaged conceptual data models

facilitating, 279–280
paralysis, 149
phase, 9, 11
of procedures and documents, for

requirements determination,
156–161

value chain, 91
weighted multicriteria, 92–93

Analysis-design-code-test loop, 14,
22, 169

Application program interface (API), 422
Application server, 423–424
Application service provider (ASP), 6
Application software, 4
Association, 292–294
Association role, 292
Associative classes, 294–295, 302
Associative entities, 272–274, 284
Asynchronous message, 239
Attributes, 263

class-scope, 297
in E-R modeling, 263–266
stereotypes represented for, 295

B
Back-end functions, 422
Balancing, 193–194
Baseline modules, 496
Baseline Project Plan (BPP)

building and reviewing, 127–136
definition, 113
feasibility assessment section of, 114–127,

128, 131
introduction section of, 128
management issues section of, 128,

131–132
outline of, 128
in planning, 58–59, 113, 128–136
reviewing, 132–136
System Description section of,

129–131
Beck, Kent, 171, 463
Behavior, 290
Benefits

in cost-benefit analysis, 58, 115
intangible, 115
project, 115–116, 138
tangible, 115

Berkeley Internet Name Domain. See Domain
naming system

Beta testing, 463, 480
Bill-of-materials structure, 269–270, 325
Binary relationship, 269, 293, 323–326
BIND. See Domain naming system
Boeing, 170
Bookmarks, 439
Bottom-up approach, 99, 260
Bottom-up source, 90, 93, 94
Boundary, system, 291
BPR. See Business Process Reengineering

(BPR)
Break-even analysis (BEA), 122–123
Broadway Entertainment Company, Inc.

(BEC), 43, 110
Budget, preliminary, 58–59
Bug tracking, 479
Build routines, 496
Business By Design, 32
Business case, 113
Business process modeling, 246–249

activity, 247
event, 246
example of, 250
flow, 246
gateway, 246
introduction, 249
notation, 248–249
pool, 249
swimlane, 249

Business process modeling notation (BPMN),
246–247

recruiting process with, 250

Business Process Reengineering (BPR)
definition of, 167
DFDs in, 201–203
in requirements determination,

167–169
Business rules, 275–278
Business Systems Planning (BSP), 97
Business-to-business (B2B), 104
Business-to-consumer (B2C), 104
Business-to-employee (B2E), 104

C
Calculated fields, 332
Candidate keys, 264
Cardinality, 270–271, 273
Careers, 3
Cascading Style Sheet (CSS), 436–437
CASE. See Computer-aided software

engineering
Charter, project, 51
Chief information officer (CIO), 87
China, 28
Class diagramming, 256

associative classes in, 294–295
definition of, 290
for Hoosier Burger, 300–301, 329–330
objects and classes in, 300–301
OOAD and, 300–301
operation types in, 291

Classifying, 90–91
Class-scope attribute, 297
Class-scope operation, 292
Class/subclass relationships, 328
Client, 421
Client/server architecture, 417

designing systems for, 421–425
file server v., 423
types of, 423–424

Closed-ended questions, 151
Cloud characteristics

broad network access, 427
on-demand self-service, 427
measured service, 428
rapid Elasticity, 427
resource pooling, 428
service models, 428
types, 429

Cloud computing, 32–33, 35
defined, 425–429
managing, 429–432
service-oriented architecture,

432–433
web services, 433–434

Cloud managing
availability/reliability, 430
costs, 432
offerings, 431
openness, 431–432

512

 Index 513
completeness, 198–199
consistency, 199
decomposition of, 190–193
definition of, 182, 184–186
drawing guidelines for, 198–200
electronic commerce application, 206–208,

280–284
flexibility of, 310
form and report design and, 353
for Hoosier Burger, 195–198, 299
iterative development of, 199–200
level-0, 188–189, 190–193, 196–198, 206
level-n, 192, 194
mechanics, 184–195
primitive, 190, 199
process modeling using, 206–283
process requirements structuring and,

184–195
rules of, 189–190, 195
structure and, 255
symbols in, 184–191
timing, 207
unbalanced, 193

Data requirements structuring. See also
Entityrelationship modeling

conceptual data modeling and, 256–259,
267–274, 279–280

E-R modeling and, 256, 261–277
introduction to, 255–256

DBMS. See Database management systems
Deadlines, 16
Decision tables

definition of, 203
Hoosier Burger, 205–206, 299–300
logic modeling with, 203–206
in requirements structuring, 203–206
rules, 203

Decomposition, functional, 190
Default value, 333
Degree, of relationships, 268–270
Deliverables, 46

conceptual data modeling and, 258–259
in database design, 314–317
design, 418
E-R diagram, 258–259
in form and report design, 356–360
in identification and selection of projects,

93–94
in implementation, 454–456
in interface and dialogue design, 381–382
maintenance, 487
in PIP, 112–113
for process modeling, 183
for requirements determination, 149–150

Denormalization, 335–336
Department of Justice, SDLC of, 8
Derived attribute, 266
Design, 356. See also Database design;

Distributed and Internet systems design;
Form and report design; Interface and
dialogue design

in analysis-design-code-test, 169
in analysis-design-code-test loop, 14, 22
logical, 10–11
phase, 10, 12, 310, 354, 418
physical, 10–11
specifications, 356–360, 382

Corporate strategic planning, 95–97
Corrective maintenance, 499
Cost-benefit analysis, 58, 115
Costs, 35

maintenance, 490–492
project, 115–117, 138
tangible, 115

Critical path, 67–68
Critical path scheduling, 64
Critical success factors, 96
Customer bookmarks, 439
Customer loyalty, 437–441
Customer relationship management

(CRM), 485
Customization, 438

D
Data. See also Conceptual data modeling;

Data flow diagram; Data requirements
structuring; Online data management

entry forms, 357, 395–397
errors, 397–398, 400
flow, 184
input, 357, 397–398
integrity, 333–331, 374
redundancy, 94
store, 184
type, 313, 331–333

Database
engine, 422
management of, 6, 398
patterns, 279–280
in relational database model, 317–318, 351

Database design
deliverables and outcomes in, 314–317
electronic commerce application,

343–346
E-R diagrams transformed into relations in,

321–326
fields designed in, 331–334
for Hoosier Burger, 328–331, 342–343
introduction to, 311–312
merging relations in, 326–338
normalization and, 310, 318–321
for Petrie Electronics, 351–352
physical, 342–343, 351–352
physical file and, 331, 337
physical tables designed in, 334–337
process of, 312–313
purposes of, 311–312
for PVF, 314–317, 353–355
relational database model in, 317,

362–363
steps of, 311

Database management systems (DBMS),
5, 398

Data Entity-to-Information System, 101
Data entry forms, 357

functional capabilities for, 395
in interface and dialogue design,

395–397
structuring of, 395–397, 409–410

Data flow diagram (DFD)
in analysis process, 198–203
application, 280
balancing, 193–194
in BPR, 201–203

scalability, 430
security, privacy, compliance, 431
viability, 430

CMS. See Content management system
Code walkthrough, 459
Coding, 19–20, 14, 20, 22

in analysis-design-code-test, 169
in analysis-design-code-test loop, 14, 22
in implementation, 454–456
sheets, 356, 371
techniques, 333
testing and, 20, 462–463

Color, 364–365
Command language interaction, 383
Communication, 57, 61, 131–132
Competitive strategy, 96
Complete keyword, 296
Completeness, DFD, 198
Component-based development, 38
Composite attribute, 266
Composite partitioning, 335
Composition, 298
Computer-aided software engineering

(CASE), 6–7, 14, 16–17
DFD completeness and, 198–199

in JAD, 164–165
in maintenance, 497
repository of, 200, 256, 278
in SDLC, 16–17

Conceptual data modeling
for BEC, 312
business rules and, 278–279
concrete class, 299
data requirements structuring and,

256–259, 267–274, 279–280
definition of, 256
deliverables, outcomes and, 258–259
electronic commerce application,

280–284
E-R modeling and, 267–274
for Hoosier Burger, 299–302
information gathered for, 259–261
packaged, 279–280
process of, 257–258
by PVF, 280–281
requirements determination questions

for, 260
SDLC and, 257

Concrete class, 296
Condition stubs, 203
Configuration management, 496–497
Connections, 219
Consistency, DFD, 199
Constantine, Larry, 170
Constraints, 101–102
COnstructive COst MOdel (COCOMO), 55
Constructor operation, 291
Content management system (CMS), 440
Context diagram, 186–189
Contract, closing of, 62
Contractual feasibility, 127
Cookie crumbs, 411
Coordinator, 133
Corporate planning

ISP and, 94–104
strategic, 9 97

Corporate restructuring, 417

514 Index

Fields
calculated, 332
design of, 331–334

File
controls, 341–342
organization, 313, 338–341
physical, 331, 335
server, 419–421, 423

Firefox, 384, 402
Flexibility, 36
Flow, business process modeling, 246
Foreign key, 321, 325
Form, 354
Formal system, 158
Form and report design

characteristics for consideration in, 372
deliverables and outcomes in, 356–360
DFDs and, 354
electronic commerce application,

373–375
formatting in, 360–371
introduction to, 353–355
paper v. electronic, 369–370, 392–393
prototype in, 356
for PVF, 358–359, 361–362, 369–372,

373–375
usability and, 371–373
users and, 355–356, 371–372

Formatting
color in, 364–365
in form and report design, 360–371
guidelines, 360–361, 365, 367
highlighting information in, 362–364
of lists, 365–369
of tables, 365–369
text displayed in, 365
usability and, 371

Forms. See also Data entry forms
data integrity rules and, 374
definition of, 353
electronic, 369–370, 392–393
interaction and, 389–390
paper, 369–370, 392–393
review, 132–134

Free slack, 68
Front-end applications, 422
Functional decomposition, 100, 190
Functional dependence, 319–320
Functionality, 35
Function-to-Objective matrix, 100
Function-to-Process matrix, 100

G
Gantt chart, 54, 56, 60, 63–67, 70
Gap analysis, 200
Gateway, business process modeling, 246
General Electric (GE), 26
Generalization, 295–298
Generic strategies, 96
Google Advanced Search Engine, 389
Graphical user interface (GUI) environments,

407–409
Graphics tablet, 390–391
Graphs, 368–370
Group interview, 154
GUI. See Graphical user interface

environments

project identification and selection
application, 104–105

requirements determination application,
173–175

Electronic data interchange (EDI), 104–105
Electronic reports and forms, 369–370,

392–395
Encapsulation, 291
Enterprise resource planning (ERP) systems,

31–32, 36, 87–88
Entities, 261–263, 272–274, 284, 322
Entity class. See Entity type
Entity instance, 262–263
Entity-relationship (E-R) diagramming,

256, 261
Entity-relationship (E-R) modeling

attributes in, 263–266
business rules and, 275–276
candidate keys and identifiers in, 264
conceptual data modeling and, 267–274
data requirements structuring and, 256,

261–267
definition of, 261
deliverables from, 259–260
entities in, 261–263, 272–274, 322
flexibility of, 310
generalization and, 295–298
introduction to, 261–267
normalization and, 321–326
for Petrie Electronics, 306
PVF, 284
relationships in, 266–267
supertypes and subtypes represented in,

274–275
transformed into relations, 321–326

Entity type, 261
E-R modeling. See Entity-relationship

modeling
ERP systems. See Enterprise resource planning

systems
Errors

data, 397–398, 400
Web site, 373, 410

Event, business process modeling, 246
Evolutionary prototyping, 165, 175
Execution, project, 58–61
Expected time durations, 65
Extend relationship, 219
eXtensible Markup Language (XML),

433, 437
eXtensible Style Language (XSL), 437
Extensions, 224
eXtreme Programming (XP), 14, 19–20,

171–173, 463

F
Facilitated reuse, 39
Feasibility

assessment, 114–127, 128, 131, 137
economic, 114–123
legal and contractual, 127
operational, 126
in PIP, 114–123
political, 127
schedule, 126
study, 51
technical, 123–124

Designed reuse, 40
Design recovery tools, 497
Desk checking, 459
Development group, 89–90, 123–124
DFD. See Data flow diagram
Dialogue box. See Pop-up menu
Dialogue diagramming, 404
Dialogues. See Interface and dialogue

design
Direct installation, 464
Direct observation, 155–156
Discount rate, 120
Disjoint keyword, 296
Disjoint rule, 275
Disruptive technologies, 168–169

organizational rules, eliminated
by, 169

Distributed advertisement server,
441–443

Distributed and Internet systems design
client/server architecture in,

421–425
consistency in, 436–437
deliverables and outcomes in, 418
distributed systems in, 419–425
electronic commerce application,

441–443
Internet systems in, 434–441
introduction to, 417
LAN and, 419–421
for Petrie Electronics, 449–450
process of, 417–418
for PVF, 421, 441–443
quality, 438
single-location systems v., 417
summary of, 444
Web site management and,

437–441
Documentation, 36

analysis of, 156–161
finalized, 452
process of, 456
quality, 491
system, 468–470
user, 468–470

Domain, 276–277
Domain naming system (BIND), 435
Drop-down menu, 387

E
EC. See Electronic commerce
Economic feasibility, 114–123
EDI. See Electronic data interchange
e-learning, 471
Electronic commerce (EC)

conceptual data modeling application,
267–274

database design application, 343–346
design application of, 441–443
DFD application, 206–208, 280
form and report design application,

373–375
implementation application, 478–484
maintenance application, 499–500
in PIP, 137–138
process modeling application, 206–208,

225–227, 280–281

 Index 515
layouts in, 392–395
for Petrie Electronics, 415–416
process of, 381
prototyping in, 405
for PVF, 392–393, 403–407, 409–412
summary of, 412
usability of, 403, 407

Internet. See also Distributed and Internet
systems design

basics, 104–105
cloud computing and, 32–33, 35
definition of, 104
incorporation of, 3–4, 6

Internet systems design
ongoing evolution of, 435–436
standards driving, 434–435

Interviewing
groups, 154–155
guidelines, 150, 153–154
outline, 151
questions chosen in, 151–153
for requirements determination,

150–155
Intranet, 104
Inventory Information, 174
Inventory information, for WebStore,

174–175
Invoice, 159
ISP. See Information systems planning
IS staff, 162
IS Steering Committee, 110
Iteration Planning Game, 172–173
Iterations, project, 80
Iterative development, 17, 21
Iterative development, of DFD, 199
IT services firms, 28–29, 35

J
J. Lyons & Sons, 26
JAD. See Joint Application Design
Joint Application Design (JAD),

162–164, 259
CASE tools during, 164
for PVF, 172–173
for requirements determination, 147
session leader, 162
taking part in, 163

JavaScript Object Notation (JSON), 434
Joystick, 390–391

K
Keyboards, 390–391
Key business processes, 168
Kia Motors, 97

L
Labeling, 367
LAN. See Local area network
LAN-based DBMS, 417, 420
Layout

characteristics, 173, 174
in interface and dialogue design,

392–403
Web page, 374

LDM. See Logical data model
Legal and contractual feasibility, 127

security and, 477–478
success of, 475–476
summary of, 481
system documentation in, 468–470
testing in, 453–464, 478–479
user training and supporting in, 456–457,

470–474
Inception phase, 82
Include relationship, 220–222
Incomplete keyword, 296
Incremental commitment, 93, 136, 184
Index, 338, 347
Indexed file organization, 338–341
India, 27–28
Indifferent condition, 203
Industry-specific data models, 279
Informal system, 158
Information Engineering (IE), 97
Information systems analysis and design, 4.

See also Systems development
Information systems infrastructure, 425
Information systems planning (ISP),

97–104
corporate planning and, 94–104
definition of, 97
process of, 97

Information System-to-Objective, 100
Information technology (IT)

careers in, 3
outsourcing and, 27–28
services firms, 28–29, 34

Infrastructure as a service (IaaS) model, 428
Inheritance, 20, 296
In-house development, 34
Inspections, 458
Installation, 10, 452
definition of, 464
in implementation, 454–456, 464–467, 480
strategies, 464–467
Intangible benefits, 115
Integration problems, 327–328
Integration testing, 460
Interaction methods and devices

command language interaction,
382–389

form interaction, 389
hardware options, 390–392
in interface and dialogue design,

382–392
menu interaction, 382–392
natural language interaction, 390
object-based interaction, 389

Interface and dialogue design
data entry and, 395–397
deliverables and outcomes in, 382
dialogues in, 381, 403–412, 415–416
electronic commerce application,

409–412
feedback in, 398–400
guidelines for, 403
in GUI environments, 407–409
help and, 400–403
interaction methods and devices in,

382–392
interfaces in, 382, 392–403, 407–412,

415–416
introduction to, 381

H
Hard problems, completion of, 78
Hardware devices, for interaction, 390–391
Hashed file organization, 338, 341
Hash partitioning, 335
Help, 400–403

desk, 473
template-based, 375
validation, 498

Highlighting, 362–364
Homonyms, 327–328
Hoosier Burger

class diagram for, 300–301, 328–330
conceptual data modeling for, 299–302
database design for, 328–330, 342–343
decision table of, 205–206, 299–300
DFD example of, 195–198, 299
use case for, 220, 264

HTML. See Hypertext Markup Language
HTTP. See Hypertext Transfer Protocol
Human Resources (HR), 250
Hypertext Markup Language (HTML),

400–403
CSS and, 436–437
definition of, 435
in interface and dialogue design,

400–403
types of, 402
usable, 400
validation, 498

Hypertext Transfer Protocol (HTTP), 435

I
IBM, 27, 30, 33, 162, 167
IBM Credit Corporation, 201–203
Icons, 389
Identification and selection, of projects

classifying and ranking in, 90–91
corporate planning and, 94–104
deliverables and outcomes in, 93–94
development projects, 88–94
electronic commerce application,

104–105
introduction to, 86–87
methods of, 89–90
need for, 94
potential development projects, 89–90
process of, 89–94
from SSR, 86

Identifiers, 264
Impartiality, 148
Impertinence, 148
Implementation

coding in, 455–456
deliverables and outcomes in, 455–456
electronic commerce application,

478–481
failure of, 474–478
installation in, 455–456, 464–467, 480
introduction to, 453–454
organizational issues in, 474–478
overview of, 452
for Petrie Electronics, 485
phase, 9–11, 452–455
project closedown and, 481
for PVF, 460–461, 478–479

516 Index

O
Object, 20–21, 290–291
Object-based interaction, 313
Object classes, 20, 291
Objective statements, 96
Object Management Group (OMG), 246
Object modeling

aggregation represented in, 298
associations in, 292–294
associative classes in, 294–295
generalization represented in, 295–298
objects and classes in, 290–291
OOAD and, 255–302
operation types in, 291
stereotypes represented for attributes

in, 295
Object-oriented analysis and design (OOAD),

20–22. See also Use case
activity diagrams and, 232–235
class diagrams and, 290–301
object modeling and, 290–301
project management and, 78–83
sequence diagrams and, 237–244
system components in, 78

Observation, 155–156, 161
Office, Microsoft, 384–385
Off-the-shelf software, 31, 34–37
One-time costs, 119–120
One-to-one relationship, 335
Online data management

CMS for, 440
OOAD. See Object-oriented analysis

and design
Open-ended questions, 151
Open source software, 34
Operation, 290
Operational feasibility, 126
Optional attribute, 266
Optional cardinality, 270
Oracle, 6, 30, 31
Outcomes

conceptual data modeling and,
257–258

in database design, 312–318
design, 417
in form and report design, 355–356
in implementation, 454–457
in interface and dialogue design,

381–382
maintenance, 489
in PIP, 112–113
for process modeling, 183
in project identification and selection,

90–91
for requirements determination,

149–150
Outsourcing, 27–28, 129
Overlapping keyword, 296
Overlap rule, 275

P
Packaged conceptual data models, 279–280
Packaged software producers, 30–31, 34
Paper reports and forms, 369–370, 393
Parallel installation, 465–466
Partial specialization rule, 275

Menus
drop-down, 387
guidelines for, 387, 449
interaction, 383–389
navigation driven by, 411–412
pop-up, 385–386
ribbon, 384
single-level, 385
Visual Basic .NET for building,

388–389
Method, 298
Methodologies, 4. See also Agile

methodologies
Microsoft

Access, 314–315
Excel, 469, 471
HTML Help, 400–403
Office, 384–385, 387
PowerPoint, 136, 384, 471
Project, 30–314, 64, 69–72
Security Development Lifecycle (SDL), 12
training in, SDL, 12
Visual Basic .NET, 388–389
Visual Studio .NET, 405, 497
Word, 384, 409

Middleware, 423
Minimal guarantee, 224
Minimum cardinality, 270
Mission statement, 95–96
Modality, 409
Module testing. See Unit testing
Mosley, D. J., 458
Mouse, 391–392
Mozilla Firefox, 386
MTBF. See Mean time between failures
Multiplicity, 292
Multivalued attribute, 265–266

N
Natural language interaction, 390
Navigation

characteristics, 173, 174
flow, 395
menu-driven, 411–412

Nearshoring, 28
Net present value (NPV), 121, 123
Network diagram, 56–57, 60, 63–69, 70
NGT. See Nominal Group Technique
Niche, 97
Nielsen, Jakob, 438, 449
Nominal Group Technique (NGT), 154
Nonintegrated systems, 87
Nonintelligent primary key, 352
Nonkeys, dependencies between, 328
Normalization, 311

database design and, 310, 318–321
definition of, 310, 318
denormalization and, 334–336
E-R diagrams and, 321–326
rules of, 318
second normal form and, 320
third normal form and, 320–321

Normalized relations, 314
Normalized tables, 311
Null value, 334
NUnit, 462

Level, in written use cases,
223–224, 228

Level-0 diagram, 188, 190–191,
196–198, 206

Level-n diagram, 192, 194
Light pen, 390–391
Lightweight graphics, 374
Link titles, 436
Linux, 34
Listening, 150–153
Lists, formatting of, 365–369
Local area network (LAN), 104, 419–421.

See also Client/server architecture
Location-to-Function matrix, 100
Location-to-Unit matrix, 100
Logical database design. See Database

design
Logical data model (LDM), 279
Logical design, 10–11
Logic modeling, with decision tables,

203–206
Long-term planning, 53–54, 102
Low-cost producer, 97
Loyalty, 437–439

M
Maintainability, 491
Maintenance, 489, 492

CASE in, 497
cost of, 490–492
deliverables and outcomes of, 488
effectiveness, 493–494
electronic commerce application of,

499–500
introduction to, 486
management of, 492–497
oracle, 133
overview of, 452
personnel, 491, 492
phase, 11, 452, 486–488
process of, 487–488
PVF, 488, 499–500
requests, 494–496
summary of, 500
types of, 489–490
Website, 497–498

Malware, 477
Managed reuse, 40
Management issues section, of BPP,

128, 131–132
Management procedures, 50
Management reporting component,

443–444
Managers, 162
Mandatory cardinality, 270
Many-to-many relationship, 335, 336
Master test plan, 457
Matrices

communication Matrix for, 132
planning, 101–102
Project Communication, 132
risk, 123–124
task responsibility, 132

Matsutoya Corporation, 43
Maximum cardinality, 270
Mean time between failures (MTBF), 493

 Index 517
Process requirements structuring

decision tables in, 203–206
DFDs and, 184–195
introduction to, 182
process modeling and, 182–183,

206–208
Process-to-Data Entity, 101
Process-to-Information System, 100
Procter & Gamble (P&G), 168
Product differentiation, 96, 97
Product focus, 96, 97
Program Evaluation Review Technique

(PERT), 65
Programming languages, 5, 20
Project, Microsoft, 30–31, 64, 69–72
Project dictionary, 16
Project initiation and planning (PIP),

50–53
building and reviewing BPP in,

127–136
challenge of, 111–112
deliverables and outcomes in, 113–114
electronic commerce and, 137–138
elements of, 113
end of, 111
feasibility assessed in, 114–127
installation, 466, 467–468
introduction to, 111
master test plan in, 457
process of, 112–114
scope, 129–132

Project management
closedown in, 61–62
definition of, 48
execution in, 58–61
initiation in, 50–53
OOAD and, 78–83
planning in, 53–58
project manager’s role in, 44–45
PVF, 50–53, 58, 60, 66–69, 95
software, 69–72

Project manager
activities and skills of, 50
definition of, 46
as juggler, 48
role of, 44

Projects. See also Identification and selection,
of projects

benefits of, 115–116, 137
charter, 51–52
closedown of, 481
costs of, 117–119, 138
definition of, 46
flow, 103
initiation, 50–53
iterations, 80
planning, 53–58
report, 71–72
scope, 53, 58
size of, 123
standards and procedures, 57
starting date, 70
status, 61
structure of, 124
tasks, 54–55, 70–71
workbook, 51, 61

process modeling using DFDs and, 206–208
project management for, 44–45, 46,

50–53, 57, 66–69
prototype for, 441–443
SSR, 114, 492
walkthrough of, 132–136
WebStore of, 105, 137–138, 173–175,

206–207, 227–229, 280–284, 373–375,
409–412, 441–443, 478–481, 499–500

PIP. See Project initiation and planning
Planning. See also Baseline Project Plan;

Project
initiation and planning bottom-up, 99
BSP, 97
corporate, 94–104
corporate strategic, 95–97
ERP, 31–32, 36, 87–88
information systems planning (ISP),

94–104
long-term, 53–54, 102
outline for, 102–103
overview of, 86
phase, 8–9, 12
presentation, 136
project, 53–58
in project management, 53–58
for resources, 31–32, 55–56, 87
short-term, 53, 103
top-down, 99

Planning Game, 171–173
Platform as a service (PaaS) model, 428
Pointer, 338
Political feasibility, 127
Polymorphism, 298
Pool, business process modeling, 249
Pop-up menu, 385–386
Porter, Michael, 96
Postproject reviews, 62
PowerBuilder, 6
PowerPoint, 136, 384
Preconditions, 224
Preliminary investigation, 9–10
Preliminary schedule, 56–57
Presentations, 136
Presenter, 133
Present value, 120
Preventive maintenance, 490–491
Primary key, 314, 319–320, 343
Primitive DFD, 190, 200
Procedures

analysis of, 156–161
communication, 61
example of, 158
management, 50
project, 57

Process, 184–186, 189–190
Process modeling

deliverables and outcomes for,
183–184

with DFDs, 206–208, 281
electronic commerce application,

206–208, 225–227, 282
process requirements structuring and,

206–208
for PVF, 206–208
with use cases, 225–227

Passwords, 439, 477
Patton, Jeff, 171
PeopleSoft, 31
Perfective maintenance, 489
Performance testing, 464
Personalization, 438
PERT. See Program Evaluation Review

Technique
Petrie Electronics

alternatives for, 180
constraints for, 180
customer loyalty project, 180
database design for, 351–352
data requirements for, 305
design for, 449–450
determining systems requirements, 180
E-R diagram for, 305–306
form and report design for, 379–380
identifying and selecting system

development projects, 110
implementation for, 485
initiating and planning systems

development projects, 143
interface and dialogue design for,

415–416
introduction, 43
managing the information systems

project, 84
matrix for consumers, 306
preliminary design, 415
requirements for, 180
scope statement for, 144
structuring system process requirements,

253–254
XRA system, 305, 415

Phased installation, 465, 466
Physical database design, 342–343, 351–352
Physical design, 10–11
Physical file, 331, 337
Physical tables

definition of, 334
designing of, 334–342
rows in, 337–341

Pilot installation. See Single-location
installation

Pine Valley Furniture (PVF)
background of, 44–45
coding and compression techniques and,

333
conceptual data modeling and, 280–284
current situation of, 99–100
database design for, 312–317, 343–346
design for, 419, 441–443
E-R diagram for, 284
feasibility assessment by, 114–122,

123, 137
file server and, 421
form and report design for, 358–359,

362–364, 367–371, 373–375
implementation for, 460–461, 478–481
interface and dialogue design for,

392–394, 403–406, 409–412
JAD session of, 173–175
maintenance for, 487, 499–500
mission statement of, 95–96
objective statement of, 96

518 Index

Schuster, Alex, 45
Scribe, 162
SDLC. See Systems development

life cycle
Search engine referrals, 439
Secondary key, 343, 388
Second normal form (2NF), 319
Secretary, 133
Security

implementation and, 475–476
system, 440
testing, 463

Security Development Lifecycle (SDL), 12.
See also Systems development life cycle
(SDLC)

Microsoft’s, lifecycle, 12
products of, 12

Self-adaptive software development,
17–18

Self-delegation, 240
Sequence, dialogue, 404–405
Sequence diagrams

definition of, 237
dynamic modeling with, 237–238
for Hoosier Burger, 242–244
introduction to, 237
OOAD and, 237–244
use case designed with, 237–244

Sequential file organization, 338,
339, 341

Service-oriented architecture (SOA), 432
Short-term planning, 53, 103
Simple message, 239
Simple Object Access Protocol (SOAP),

434
Single-level menu, 385
Single-location installation, 466
Slack time, 67–68
Software. See also Computer-aided software

engineering
application, 3
application testing, 456–462
engineering, 16
leading firms, specialization, 29
malware, 477
off-the-shelf, 31, 34–37
open source, 34
outsourcing and, 27–28
packaged, 30–31, 35
project management, 69–72
reuse, 37–40
self-adaptive development of, 17–18
sources, 2, 26, 28–34
validating information about, 37–38

Software as a service (SaaS), 32m 429
Source/sink, 184–186
Sponsor, 162
Staged installation. See Phased installation
Stakeholders, 223
Standards bearer, 133
State, 290
Status information, 399
Steering committees, 89–90
Stereotypes, 295
Story Cards, 171

Reports, 159–160. See also Form and report
design

definition of, 353, 354
electronic, 353
paper, 369–371
project, 71–72
types of, 355

Repository, 16, 200, 256, 278
Representational State Transfer (REST),

434
Request for proposal (RFP), 37
Request for quote (RFQ), 37
Required attribute, 266
Requirements determination

with agile methodologies, 169–173
BPR in, 167–169
conceptual data modeling and, 259
contemporary methods for, 161–166
deliverables and outcomes for,

149–150
direct observation for, 155–156
electronic commerce application,

173–175
JAD for, 147, 162–164
procedures and documents analysis for,

156–161
process of, 148–149
prototyping during, 165–166
radical methods for, 167–169
traditional methods for, 150

Requirements structuring. See Data
requirements structuring; Process
requirements structuring

Reregistration, 498
Resources

assigning and billing, 72
availability of, 90
definition of, 64
planning for, 31–32, 55–56, 88

Return on Investment (ROI), 122, 123
Reuse, 37–40
Reverse engineering, 497
Review, of BPP, 127–136
Ribbon menu, 384
Risk

assessment, 57, 123–124
factors, 123–124
identification, 58
matrix, 125–126
technical difficulty and, 90

Rolls-Royce, 97
Rows, table, 337–341
Royce, W. W., 15

S
Sales Promotion Tracking System (SPTS),

66–69
SAP AG, 6, 29, 31
Scheduling

charts, 60
critical path, 64
feasibility of, 126
methods, 71–72
preliminary, 56–57
of project plan, 63–69

Project Scope Statement (PSS), 58,
113–114, 129–131

for the customer tracking systems, 130
defined, 114

Prompting cues, 399
Prototyping

defined, 164
in dialogue design, 407
evolutionary, 165, 175
in form and report design, 355
McConnell’s evolutionary model, 165
methodology, 165
PVF, 441–443
in requirements determination,

165–166
throwaway, 166–167

PSS. See Project Scope Statement
PVF. See Pine Valley Furniture
PVF WebStore, 105, 137–138, 173–175,

207–208, 227–229
for workbook, 51

Q
Query operation, 291
Questions, interview, 151–153

R
RAM. See Random access memory
Random access memory (RAM), 421
Range control, 333
Range partitioning, 335
Ranking, 90–91
Rational Unified Process (RUP), 21
Recovery testing, 464
Recurring cost, 119
Recursive foreign key, 325
Recursive relationship, 268–269, 325
Redundancy, 94, 317
Reengineering, 497
Refactoring, 463
Referential integrity, 321, 333
Reframing, 149
Relation

definition of, 321
E-R diagrams transformed into,

321–326
merging of, 326–328
well-structured, 317

Relational database model, 317,
351–352

Relationships, 266
binary, 269, 293, 323–325
cardinalities in, 270–271, 273
class/subclass, 328
degree of, 268–270, 274
in E-R modeling, 266
extend, 219
include, 219–222
many-to-many, 335, 336
naming and defining, 271
one-to-one, 335
representation of, 322–326
ternary, 269–270, 273, 294
unary, 268–269, 325–326

Repeating group, 265

 Index 519
Triggering operation (trigger), 224,

278–279
Trustworthiness, 437–441
2NF. See Second normal form

U
UML. See Unified modeling language
Unary relationship, 268–269, 325–326
Unbalanced DFD, 194
Unified modeling language (UML), 258
Unit testing, 460
Unit-to-Function matrix, 100
Universal data models, 279
Update operation, 291
Usability

definition of, 371
efficiency, 372
error rate, 372
in form and report design, 371–373
format and, 371
help, 400
in interface and dialogue design, 402, 405
learnability, 372
memorability, 372
satisfaction and aesthetics, 372

Use case
definitions, 217–222
diagram, 217–222, 225, 226
goals, 223
for Hoosier Burger, 221, 222
process modeling using, 225–227
sequence diagrams and, 237–239
symbols, 219–222
template, 222–225
written, 222–225, 227

User(s), 162
acceptance testing by, 463–464
continual involvement of, 169–170
direct observation of, 155–156
documentation, 468–470
form and report design and, 355–356,

371–372
friendliness, 372
groups of, 123–124
personal stake of, 475
training and supporting, 456, 470–474

Utility computing model, 425

V
Validation tests and techniques, 398–399
Value chain analysis, 91
Vendor support, 35, 471–472
View integration, 346
Virtual machine, 423
Virtualization, 423
Visual Basic, 6
Visual Basic .NET, 388–389
Visual Studio .NET, 405, 497
Voice device, 392

W
Walkthroughs

action list for, 133
code, 459
defined, 132

System Service Request (SSR), 46–47, 50,
51, 53, 62

project identification from, 86
PVF, 114–115, 488

Systems integration, 6
System testing, 460

T
Tables

decision, 203–206, 299–300
formatting of, 365–369
graphs v., 368–369
physical, 334–342
rows of, 337–341

Tangible benefits, 115
Tangible costs, 117
Target situation, 101–102
Task Cards, 172
Task responsibility matrix, 132
Technical difficulty, 90
Technical feasibility, 123–124
Techniques, 4
Template-based HTML, 375
Ternary relationship, 269–270, 273, 294
Test case, 461–462, 478–479
Testing

acceptance, 463–464
alpha, 463, 480
in analysis-design-code-test loop,

14, 22, 169
approach to, 10
beta, 464, 480
coding and, 20, 462–463
in implementation, 454–457, 478–479
master test plan in, 457
for Petrie Electronics, 485
process, 460–462
security, 464
software application, 457–464
testing harness, 462
types of, 458–460
validation, 397–398

Testing harness, 462
Text display, 365
“The Agile Manifesto,” 17
Thin clients, 435–436
Thin-client technologies, 435
Third normal form (3NF), 318–321
3NF. See Third normal form
Three-tiered client/server, 423
Throwaway prototyping, 166
Time value of money (TVM), 120–123
Timing, DFD, 199
Tools, 4
Top-down approach, 259
Top-down planning, 99
Top-down source, 90, 93, 94
Total specialization rule, 275
Touch screen, 391–392
Trackball, 391–392
Traditional waterfall SDLC, 15–16, 169
Training, user, 456–457, 470–474
Transition strategy, 102
Transitive dependency, 320
Trends, 101–102

Strategic alignment, 90
Stress testing, 464
Structured walkthroughs, 132
Stub testing, 460
Stylesheet-Based HTML, 375
Subtypes, 274–275
Success guarantee, 224
Superclass, 295
Supertypes, 274–275
Support, 470

automated, 472–473
user, 455–456, 470–474
vendor, 35, 471–472

Swimlane, 233
business process modeling, 249

Symbolic debugger, 464
Synchronous message, 238
Synonyms, 327
System boundary, 219
System components, 78
System Description section, of BPP,

 129–131
System documentation, 468
System evolution, 479
System librarian, 496
System prototype evolution, 175
Systems analyst

characteristics of, 148–149
definition of, 4
life as, 2
primary responsibility of, 4
support issues and, 473

Systems analysts, 162
Systems development

definition of, 3–4
evolution of, 2, 5–6
foundations for, 2
heart of, 13–16
improvement of, 16–17
methodology, 6
modern approach to, 2, 5–6
organizational approach to, 4
possible costs of, 118
purposes of, 47
reasons for, 9–10
requests for, 88
speed in, 2

Systems development life cycle (SDLC).
See also Analysis; Design; Implementation;
Maintenance; Planning

approach to, 22–23
book guide based on, 8
CASE in, 16–17
circular process of, 7–8
conceptual data modeling and,

256–257, 312
definition of, 6
of Department of Justice’s systems, 8
design specifications and, 357–360
nature of, 2
project manager in, 44
specialized, 12–13
traditional waterfall, 15–16, 169

System security, 439
Systems engineering, 16

520 Index

Wireless system components, 6
Word, Microsoft, 384, 387, 409
Workbook, 16

project, 50, 58
Work breakdown structure, 54, 55, 56, 65
Work results, 61
Written use cases, 222–225, 227

X
XML. See eXtensible Markup Language
XRA system, 485
XSL. See eXtensible Style Language

errors in, 373, 410
guidelines for, 373–374, 449–450
layout of, 374
living forever, 439
maintenance of, 497–498
management of, 437–441
Nielsen, Jakob, 449
PVF WebStore, 280–284, 373–375, 409–412,,

441–443, 478–481, 499–500
security of, 439

Weighted multicriteria analysis, 92–93
Well-structured relation, 317

Walkthroughs (Continued)
for electronic commerce system, 137
PVF, 132–133, 137
review form for, 132–136
structured, 132

Warning messages, 400
Waterfall SDLC, 15–16, 169
Weak entity, 322
Web sites

Amazon.com, 438
CMS for, 440
consistency of, 436–437

	Cover
	Title Page ���
	Copyright Page ���
	Brief Contents ���
	Contents ���
	Preface ��
	Part One Foundations for Systems Development ���
	An Overview of Part One ��
	Chapter 1 The Systems Development Environment
	Learning Objectives ��
	Introduction ���
	A Modern Approach to Systems Analysis and Design ���
	Developing Information Systems and the Systems Development Life Cycle ��
	A Specialized Systems Development Life Cycle ���
	The Heart of the Systems Development Process ���
	The Traditional Waterfall SDLC

	Different Approaches to Improving Development ��
	Case Tools ���

	Agile Methodologies ��
	eXtreme Programming

	Object-Oriented Analysis and Design
	Our Approach to Systems Development ��
	Summary ��
	Key Terms ��
	Review Questions ���
	Problems and Exercises ���
	Field Exercises ��
	References ���

	Chapter 2 The Origins of Software
	Learning Objectives ��
	Introduction ���
	Systems Acquisition ��
	Outsourcing ��
	Sources of Software ��
	Choosing Off-the-Shelf Software
	Validating Purchased Software Information ��

	Reuse ����������������������������������
	Summary ��
	Key Terms ��
	Review Questions ���
	Problems and Exercises ���
	Field Exercises ��
	References ���
	BEC Case: The Origins of Software
	Case Questions ���

	Chapter 3 Managing the Information Systems Project ���
	Learning Objectives ��
	Introduction ���
	Pine Valley Furniture Company Background ���
	Managing the Information Systems Project ���
	Initiating a Project ���
	Planning the Project ���
	Executing the Project ��
	Closing Down the Project ���

	Representing and Scheduling Project Plans ��
	Representing Project Plans ���
	Calculating Expected Time Durations Using PERT
	Constructing a Gantt Chart and Network Diagram at Pine Valley Furniture ��

	Using Project Management Software ��
	Establishing a Project Start Date ��
	Entering Tasks and Assigning Task Relationships ��
	Selecting a Scheduling Method to Review Project Reports ��

	Summary
	Key Terms
	Review Questions
	Problems and Exercises
	Field Exercises
	References

	Appendix: Object-Oriented Analysis and Design
	Learning Objectives ��
	Unique Characteristics of an OOSAD Project
	Define the System as a Set of Components ���
	Complete Hard Problems First ���
	Using Iterations to Manage the Project ���
	Don’t Plan Too Much Up Front ���
	How Many and How Long Are Iterations? ��
	Project Activity Focus Changes Over the Life of a Project

	Summary ��
	Review Question ��
	Problems and Exercises ���
	BEC Case: Managing the Information Systems
	Case Questions ���

	Part Two Planning ��
	An Overview of Part Two ��
	Chapter 4 Identifying and Selecting Systems Development Projects ���
	Learning Objectives ��
	Introduction ���
	Identifying and Selecting Systems Development Projects ���
	The Process of Identifying and Selecting IS Development Projects
	Deliverables and Outcomes ��

	Corporate and Information Systems Planning ���
	Corporate Strategic Planning ���
	Information Systems Planning ���

	Electronic Commerce Applications: Identifying and Selecting Systems Development Projects ���
	Internet Basics ��
	Pine Valley Furniture Webstore ���

	Summary ��
	Key Terms ��
	Review Questions ���
	Problems and Exercises ���
	Field Exercises ��
	References ���
	BEC Case: Identifying and Selecting Systems Development Projects
	Case Questions ���

	Chapter 5 Initiating and Planning Systems Development Projects ���
	Learning Objectives ��
	Introduction ���
	Initiating and Planning Systems Development Projects ���
	The Process of Initiating and Planning Is Development Projects ���
	Deliverables and Outcomes ��

	Assessing Project Feasibility ��
	Assessing Economic Feasibility ���
	Assessing Technical Feasibility ��
	Assessing Other Feasibility Concerns ���

	Building and Reviewing the Baseline Project Plan ���
	Building the Baseline Project Plan ���
	Reviewing the Baseline Project Plan ��

	Electronic Commerce Applications: Initiating and Planning Systems Development Projects ���
	Initiating and Planning Systems Development Projects for Pine Valley Furniture’s WebStore

	Summary ��
	Key Terms ��
	Review Questions ���
	Problems and Exercises ���
	Field Exercises ��
	References ���
	BEC Case: Initiating and Planning Systems Development Projects
	Case Questions ���

	Part Three Analysis ��
	An Overview of Part Three ��
	Chapter 6 Determining System Requirements ��
	Learning Objectives ��
	Introduction ���
	Performing Requirements Determination ��
	The Process of Determining Requirements ��
	Deliverables and Outcomes ��

	Traditional Methods for Determining Requirements ���
	Interviewing and Listening ���
	Interviewing Groups ��
	Directly Observing Users ���
	Analyzing Procedures and Other Documents ���

	Contemporary Methods for Determining System Requirements ���
	Joint Application Design ���
	Using Prototyping During Requirements Determination ��

	Radical Methods for Determining System Requirements ��
	Identifying Processes to Reengineer ��
	Disruptive Technologies ��

	Requirements Determination Using Agile Methodologies ���
	Continual User Involvement ���
	Agile Usage-Centered Design
	The Planning Game from eXtreme Programming

	Electronic Commerce Applications: Determining System Requirements ��
	Determining System Requirements for Pine Valley Furniture’s WebStore
	Summary ��
	Key Terms ��
	Review Questions ���
	Problems and Exercises ���
	Field Exercises ��
	References ���
	BEC Case: Determining System Requirements
	Case Questions ���

	Chapter 7 Structuring System Process Requirements ��
	Learning Objectives ��
	Introduction ���
	Process Modeling ���
	Modeling a System’s Process for Structured Analysis ��
	Deliverables and Outcomes ��

	Data Flow Diagramming Mechanics ��
	Definitions and Symbols ��
	Developing DFDs: An Example
	Data Flow Diagramming Rules ��
	Decomposition of DFDs
	Balancing DFDs

	An Example DFD
	Using Data Flow Diagramming in the Analysis Process ��
	Guidelines for Drawing DFDs
	Using DFDs as Analysis Tools
	Using DFDs in Business Process Reengineering

	Modeling Logic with Decision Tables ��
	Electronic Commerce Application: Process Modeling Using Data Flow Diagrams ���
	Process Modeling for Pine Valley Furniture’s WebStore

	Summary ��
	Key Terms ��
	Review Questions ���
	Problems and Exercises ���
	Field Exercises ��
	References ���

	Appendix 7A: Object-Oriented Analysis and Design
	Learning Objectives ��
	Introduction ���
	Use Cases ��
	What Is a Use Case? ��
	Use Case Diagrams ��
	Definitions and Symbols ��

	Written Use Cases ��
	Level ����������������������������������
	The Rest of the Template ���

	Electronic Commerce Application: Process Modeling Using Use Cases ��
	Writing Use Cases for Pine Valley Furniture’s Webstore ���
	Summary ��
	Key Terms ��
	Review Questions ���
	Problems and Exercises ���
	Field Exercise ���
	References ���

	Appendix 7B: Object-Oriented Analysis and Design
	Learning Objectives ��
	Introduction ���
	When to Use an Activity Diagram ��
	Problems and Exercises ���
	Reference ��

	Appendix 7C: Object-Oriented Analysis and Design
	Learning Objectives ��
	Introduction ���
	Dynamic Modeling: Sequence Diagrams ��
	Designing a Use Case with a Sequence Diagram ���
	A Sequence Diagram for Hoosier Burger ��
	Summary ��
	Key Terms ��
	Review Questions ���
	Problems and Exercises ���
	Field Exercise ���
	References ���

	Appendix 7D: Business Process Modeling
	Learning Objective ���
	Introduction ���
	Basic Notation ���
	Business Process Example ���
	Summary ��
	Key Terms ��
	Review Questions ���
	Problems and Exercises ���
	Field Exercises ��
	References ���
	BEC Case: Structuring System Process Requirements
	Case Questions ���

	Chapter 8 Structuring System Data Requirements ���
	Learning Objectives ��
	Introduction ���
	Conceptual Data Modeling ���
	The Conceptual Data Modeling Process ���
	Deliverables and Outcomes ��

	Gathering Information for Conceptual Data Modeling ���
	Introduction to E-R Modeling
	Entities ���
	Attributes ���
	Candidate Keys and Identifiers ���
	Other Attribute Types ��
	Relationships ��

	Conceptual Data Modeling and the E-R Model
	Degree of a Relationship ���
	Cardinalities in Relationships ���
	Naming and Defining Relationships ��
	Associative Entities ���
	Summary of Conceptual Data Modeling with E-R Diagrams

	Representing Supertypes and Subtypes ���
	Business Rules ���
	Domains ��
	Triggering Operations ��

	Role of Packaged Conceptual Data Models: Database Patterns ���
	Universal Data Models ��
	Industry-Specific Data Models
	Benefits of Database Patterns and Packaged Data Models ���

	Electronic Commerce Application: Conceptual Data Modeling ��
	Conceptual Data Modeling for Pine Valley Furniture’s Webstore ��

	Summary ��
	Key Terms ��
	Review Questions ���
	Problems and Exercises ���
	Field Exercises ��
	References ���

	Appendix: Object-Oriented Analysis and Design: Object Modelling—Class Diagrams
	Learning Objectives ��
	Introduction ���
	Representing Objects and Classes ���
	Types of Operations ��
	Representing Associations ��
	Representing Associative Classes ���
	Representing Stereotypes for Attributes ��
	Representing Generalization ��
	Representing Aggregation ���
	An Example of Conceptual Data Modeling at Hoosier Burger ���
	Summary ��
	Key Terms ��
	Review Questions ���
	Problems and Exercises ���
	References ���
	BEC Case: Structuring System Data Requirements
	Case Questions ���

	Part Four Design ���
	An Overview of Part Four ���
	Chapter 9 Designing Databases ��
	Learning Objectives ��
	Introduction ���
	Database Design ��
	The Process of Database Design ���
	Deliverables and Outcomes ��
	The Relational Database Model ��
	Well-Structured Relations

	Normalization ��
	Rules of Normalization ���
	Functional Dependence and Primary Keys ���
	Second Normal Form ���
	Third Normal Form ��

	Transforming E-R Diagrams into Relations
	Represent Entities ���
	Represent Relationships ��
	Summary of Transforming E-R Diagrams to Relations

	Merging Relations ��
	An Example of Merging Relations ��
	View Integration Problems ��

	Logical Database Design for Hoosier Burger ���
	Physical File and Database Design ��
	Designing Fields ���
	Choosing Data Types ��
	Controlling Data Integrity ���
	Designing Physical Tables ��
	Arranging Table Rows ���
	Designing Controls for Files ���

	Physical Database Design for Hoosier Burger ��
	Electronic Commerce Application: Designing Databases ���
	Designing Databases for Pine Valley Furniture’s Webstore ���

	Summary ��
	Key Terms ��
	Review Questions ���
	Problems and Exercises ���
	Field Exercises ��
	References ���
	BEC Case: Designing Databases
	Case Questions ���

	Chapter 10 Designing Forms and Reports ���
	Learning Objectives ��
	Introduction ���
	Designing Forms and Reports ��
	The Process of Designing Forms and Reports ���
	Deliverables and Outcomes ��

	Formatting Forms and Reports ���
	General Formatting Guidelines ��
	Highlighting Information ���
	Color versus No Color
	Displaying Text ��
	Designing Tables and Lists ���
	Paper versus Electronic Reports

	Assessing Usability ��
	Usability Success Factors ��
	Measures of Usability ��

	Electronic Commerce Applications: Designing Forms and Reports for Pine Valley Furniture’s Webstore ���
	General Guidelines ���
	Designing Forms and Reports at Pine Valley Furniture ���
	Lightweight Graphics ���
	Forms and Data Integrity Rules ���
	Stylesheet-Based HTML

	Summary ��
	Key Terms ��
	Review Questions ���
	Problems and Exercises ���
	Field Exercises ��
	References ���
	BEC Case: Designing Forms and Reports
	Case Questions ���

	Chapter 11 Designing Interfaces and Dialogues ��
	Learning Objectives ��
	Introduction ���
	Designing Interfaces and Dialogues ���
	The Process of Designing Interfaces and Dialogues ��
	Deliverables and Outcomes ��

	Interaction Methods and Devices ��
	Methods of Interacting ���
	Hardware Options for System Interaction ��

	Designing Interfaces ���
	Designing Layouts ��
	Structuring Data Entry ���
	Controlling Data Input ���
	Providing Feedback ���
	Providing Help ���

	Designing Dialogues ��
	Designing the Dialogue Sequence ��
	Building Prototypes and Assessing Usability ��

	Designing Interfaces and Dialogues in Graphical Environments ���
	Graphical Interface Design Issues ��
	Dialogue Design Issues in a Graphical Environment ��

	Electronic Commerce Application: Designing Interfaces and Dialogues for Pine Valley Furniture’s Webstore ���
	General Guidelines ���
	Designing Interfaces and Dialogues at Pine Valley Furniture ��
	Menu-Driven Navigation with Cookie Crumbs

	Summary ��
	Key Terms ��
	Review Questions ���
	Problems and Exercises ���
	Field Exercises ��
	References ���
	BEC Case: Designing Interfaces and Dialogues
	Case Questions ���

	Chapter 12 Designing Distributed and Internet Systems ��
	Learning Objectives ��
	Introduction ���
	Designing Distributed and Internet Systems ���
	The Process of Designing Distributed and Internet Systems ��
	Deliverables and Outcomes ��

	Designing LAN and Client/Server Systems
	Designing Systems for LANs
	Designing Systems for a Client/Server Architecture

	Cloud Computing ��
	What Is Cloud Computing? ���
	Managing the Cloud ���
	Service-Oriented Architecture
	Web Services ���

	Designing Internet Systems ���
	Internet Design Fundamentals ���
	Site Consistency ���
	Design Issues Related to Site Management ���

	Electronic Commerce Application: Designing a Distributed Advertisement Server for Pine Valley Furniture’s Webstore
	Advertising on Pine Valley Furniture’s Webstore ��
	Designing the Advertising Component ��
	Designing the Management Reporting Component ���

	Summary ��
	Key Terms ��
	Review Questions ���
	Problems and Exercises ���
	Field Exercises ��
	References ���
	BEC Case: Designing Distributed and Internet Systems
	Case Questions ���

	Part Five Implementation and Maintenance ���
	An Overview of Part Five ���
	Chapter 13 System Implementation ���
	Learning Objectives ��
	Introduction ���
	System Implementation ��
	Coding, Testing, and Installation Processes ��
	Deliverables and Outcomes from Coding, Testing, and Installation ���
	Deliverables and Outcomes from Documenting the System, Training Users, and Supporting Users ��

	Software Application Testing ���
	Seven Different Types of Tests ���
	The Testing Process ��
	Combining Coding and Testing ���
	Acceptance Testing by Users ��

	Installation ���
	Direct Installation ��
	Parallel Installation ��
	Single-Location Installation
	Phased Installation ��
	Planning Installation ��

	Documenting the System ���
	User Documentation ���

	Training and Supporting Users ��
	Training Information Systems Users ���
	Supporting Information Systems Users ���
	Support Issues for the Analyst to Consider ���

	Organizational Issues in Systems Implementation ��
	Why Implementation Sometimes Fails ���
	Security Issues ��

	Electronic Commerce Application: System Implementation and Operation for Pine Valley Furniture’s Webstore ��
	Developing Test Cases for the WebStore
	Alpha and Beta Testing the WebStore
	WebStore Installation

	Project Closedown ��
	Summary ��
	Key Terms ��
	Review Questions ���
	Problems and Exercises ���
	Field Exercises ��
	References ���
	BEC Case: System Implementation
	Case Questions ���

	Chapter 14 Maintaining Information Systems ���
	Learning Objectives ��
	Introduction ���
	Maintaining Information Systems ��
	The Process of Maintaining Information Systems ���
	Deliverables and Outcomes ��

	Conducting Systems Maintenance ���
	Types of Maintenance ���
	The Cost of Maintenance ��
	Managing Maintenance ���
	Role of Automated Development Tools in Maintenance ���

	Website Maintenance ��
	Electronic Commerce Application: Maintaining an Information System for Pine Valley Furniture’s Webstore ��
	Maintaining Pine Valley Furniture’s WebStore
	Cannot Find Server ���

	Summary ��
	Key Terms ��
	Review Questions ���
	Problems and Exercises ���
	Field Exercises ��
	References ���

	Glossary of Terms ��
	Glossary of Acronyms ���
	Index ����������������������������������

		2016-01-29T11:42:33+0000
	Preflight Ticket Signature

